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I Contents

® Boundary Layer Transition (BLT) in re-entry capsules
® Blunt-body paradox
® Direct numerical simulation of disturbance growth

® Measurement of disturbance growth by FLDI
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IThermaI protection of re-entry capsules
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® Re-entry from Lunar orbit exceeds 11 km/s
® Evaluation of aerodynamic heating is necessary for TPS design
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I BLT on front heat shield

Laminar boundary layer Turbulent boundary layer?

Streamwise direction Roughness

® Turbulent heat flux is several times larger than laminar heat flux

® Prediction of BLT and turbulent heat flux is required for TPS design
]
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I BLT due to modal disturbances
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[1] Reshotko and Tumin, (2000)
[2] Farano et al., JFM, (2015)

I Blunt-body paradox

Why is early transition even though modal disturbance is stable?

® Tollmien-Schlichting (TS) stable
® Gortler stable

® Cross-flow is negligible

® [ransient growth!!l I Candidate mechanisms of transition
> Lift-up effect of streamwise vorticity creates streaksl(?!
® Transition triggers: wall roughness, freestream disturbances
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[1] Reshotko and Tumin, (2000)
[2] Farano et al., JFM, (2015)

I Blunt-body paradox

Streamwise i
ny > Lift-up mechanism > Formatlpn_and cc_)llapse of
vorticity P hairpin vortices

® [ransient growth!!l I Candidate mechanisms of transition
> Lift-up effect of streamwise vorticity creates streaksl(?!
® Transition triggers: wall roughness, freestream disturbances
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[3] Hein et al., AIAA, (2018)

IEffect of roughness on BLT S e S 58 o

[4.5]

Isolated roughness Distributed roughness

® No growth of mode disturbances ® Hairpin vortex grows

® No transient growth was observed ® Chemical non-equilibrium amplifies
(roughness was too low) disturbances

Important for high enthalpy flows!
]

ICCFD12



I Objective

To clarify the transition mechanism and obtain turbulent heat
flux in the re-entry capsule, we evaluate the disturbance growth

process under high enthalpy conditions using Apollo capsule
models with isolated roughness elements

ICCFD12



INumericaI method

9 OF  OF
o o 0
p
PUy
Pz
Q=J pu FE,=J
E

+=2+8=0 (i=1,2,3) : 3D general curvilinear coordinate system Navier-Stokes equations

PU; 1
pu, U, + 2 [ 0 | r 0
gzl Tjt 0
i Tj 0
PU2U;*‘EEQP vFLi:“_Jéé% Tis . S=—J| 0
OE, J or 0
pu;;l]i + a—ip Tk Uk + K a_xj + Zspvnflhnfl 0
(E+p)U, : Poncs /
pYnfl (]z -

Inviscid terms

SLAU2 & 7t order Weighted Compact Nonlinear Scheme (WCNS)

Viscous terms

6t order compact difference scheme

Time integration

B5-stage 4th-order accuracy Runge-Kutta scheme

Reaction model

Dunn & Kang model (5-species & 17-reaction)
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Computational conditions

Stagnation condit
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Freestream conditions
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IVaIidation: Comparison of bow shock shapes

® Shock wave departure distance is consistent with Schlieren images

® No carbuncles were observed, and robust shock capture was achieved
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[6] Ma & Mahesh, JFM, (2022)

IForest of hairpin

Side view
(9MJ condition, Q=0.001)

® Numerous hairpin vortices are formed in the wake of roughness/®!

® Hairpin vortex grows once, then starts to decay and disappears
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IEnthaIpy effect on disturbance growth

9.2 MJ/kg
(Q =0.001)

3.6 MJ/kg
(Q =0.001)

® Roughness wake hairpin vortices are reduced under low enthalpy condition

® Density disturbance power is also lower under low enthalpy condition
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IEnthaIpy effect on disturbance growth
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® Roughness wake hairpin vortices are reduced under low enthalpy condition

® Density disturbance power is also lower under low enthalpy condition
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| Density disturbance measurement with FLDI

® Measured density disturbance about T mm upstream from
model surface with three-channel FLDI

® Not affected by mechanical vibrations of the model and achieves
multi-MHz bandwidths
Focused Laser Differential Interferometry, FLDI

Prism Apollo CM Prism Band-pass filter

Convex lens test model

Laser Polarizer Convex lens Convex lens Polarizer Photo detector
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Three channel FLDI system
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Three channel FLDI system
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|Power spectrum of density disturbance
(c) 9 MJ/kg

(a) 3 MJ/kg

(b) 6 MJ/kg
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® 3MJ: Power tends to decay from midstream to downstream

® 6, 9MJ: Power maintained downstream at the same level as midstream

== Tendency to grow more disturbance under higher enthalpy
conditions (qualitatively consistent with DNS)

ICCFD12



IConcIusion

To clarify the transition mechanism and obtain turbulent heat flux in
the re-entry capsule, we evaluated the disturbance growth process

under high enthalpy conditions using Apollo capsule models with
isolated roughness elements

® Numerous hairpin vortices were formed in the wake of roughness
® Tendency to grow more disturbance under higher enthalpy conditions
» DNS and experimental results were qualitatively consistent

» Are high enthalpy conditions more likely to transition?
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