Oral presentation | Incompressible/compressible/hypersonic flow Incompressible/compressible/hypersonic flow-V Fri. Jul 19, 2024 10:45 AM - 12:45 PM Room D

[13-D-02] Numerical Investigation of Disturbance Growth on a Blunt Body in High Enthalpy Hypersonic Flow

*Shuto Yatsuyanagi¹, Hideyuki Tanno¹ (1. JAXA) Keywords: Boundary layer transition, Blunt body, High Enthalpy Hypersonic Flow

Numerical Investigation of Disturbance Growth on a Blunt Body in High Enthalpy Hypersonic Flow

<u>Shuto Yatsuyanagi</u> & Hideyuki Tanno | JAXA ICCFD@Kobe

Contents

- Boundary Layer Transition (BLT) in re-entry capsules
- Blunt-body paradox
- Direct numerical simulation of disturbance growth
- Measurement of disturbance growth by FLDI

Thermal protection of re-entry capsules

- Re-entry from Lunar orbit exceeds 11 km/s
- Evaluation of aerodynamic heating is necessary for TPS design

BLT on front heat shield

- Turbulent heat flux is several times larger than laminar heat flux
- Prediction of BLT and turbulent heat flux is required for TPS design

BLT due to modal disturbances

T-S wave \rightarrow destabilization \rightarrow breakdown \rightarrow turbulence

Blunt-body paradox

[1] Reshotko and Tumin, (2000) [2] Farano et al., JFM, (2015)

Why is early transition even though modal disturbance is stable?

- Tollmien–Schlichting (TS) stable
- Görtler stable
- Cross-flow is negligible
- Transient growth^[1] : Candidate mechanisms of transition
 - > Lift-up effect of streamwise vorticity creates streaks^[2]
- Transition triggers: wall roughness, freestream disturbances

- Transient growth^[1] : Candidate mechanisms of transition
 - > Lift-up effect of streamwise vorticity creates streaks^[2]
- Transition triggers: wall roughness, freestream disturbances

Effect of roughness on BLT

[3] Hein et al., AIAA, (2018)
[4] Giovanni and Stemmer, JSR, (2018)
[5] Giovanni and Stemmer, JSR, (2019)

Isolated roughness

- No growth of mode disturbances
- No transient growth was observed (roughness was too low)

Distributed roughness

- Hairpin vortex grows
- Chemical non-equilibrium amplifies disturbances Important for high enthalpy flows!

Objective

To clarify the transition mechanism and obtain turbulent heat flux in the re-entry capsule, we evaluate the disturbance growth process under high enthalpy conditions using Apollo capsule models with isolated roughness elements

Numerical method

 $\frac{\partial \boldsymbol{Q}}{\partial t} + \frac{\partial \boldsymbol{F}_i}{\partial \xi_i} + \frac{\partial \boldsymbol{F}_{vi}}{\partial \xi_i} + \boldsymbol{S} = 0 \quad (i = 1, 2, 3) : \text{ 3D general curvilinear coordinate system Navier-Stokes equations}$

$$\boldsymbol{Q} = J \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\rho} \boldsymbol{u}_1 \\ \boldsymbol{\rho} \boldsymbol{u}_2 \\ \boldsymbol{\rho} \boldsymbol{u}_3 \\ \boldsymbol{E} \\ \boldsymbol{Y}_{n-1} \end{bmatrix}, \boldsymbol{F}_i = J \begin{bmatrix} \boldsymbol{\rho} \boldsymbol{U}_i \\ \boldsymbol{\rho} \boldsymbol{u}_1 \boldsymbol{U}_i + \frac{\partial \xi_i}{\partial \boldsymbol{x}_1} \boldsymbol{p} \\ \boldsymbol{\rho} \boldsymbol{u}_2 \boldsymbol{U}_i + \frac{\partial \xi_i}{\partial \boldsymbol{x}_2} \boldsymbol{p} \\ \boldsymbol{\rho} \boldsymbol{u}_3 \boldsymbol{U}_i + \frac{\partial \xi_i}{\partial \boldsymbol{x}_3} \boldsymbol{p} \\ \boldsymbol{\rho} \boldsymbol{u}_3 \boldsymbol{U}_i + \frac{\partial \xi_i}{\partial \boldsymbol{x}_3} \boldsymbol{p} \\ (\boldsymbol{E} + \boldsymbol{p}) \boldsymbol{U}_i \\ \boldsymbol{\rho} \boldsymbol{Y}_{n-1} \boldsymbol{U}_i \end{bmatrix}, \boldsymbol{F}_{i} = -J \frac{\partial \xi_i}{\partial \boldsymbol{x}_j} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{\tau}_{j1} \\ \boldsymbol{\tau}_{j2} \\ \boldsymbol{\tau}_{j3} \\ \boldsymbol{\tau}_{jk} \boldsymbol{u}_k + \kappa \frac{\partial T}{\partial \boldsymbol{x}_j} + \sum_s \boldsymbol{\rho} \boldsymbol{v}_{n-1} \boldsymbol{h}_{n-1} \\ \boldsymbol{\rho} \boldsymbol{v}_{n-1} \end{bmatrix}, \ \boldsymbol{S} = -J \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{s}_{\boldsymbol{Y}_{n-1}} \end{bmatrix}.$$

Inviscid terms	SLAU2 & 7 th order Weighted Compact Nonlinear Scheme (WCNS)
Viscous terms	6 th order compact difference scheme
Time integration	5-stage 4th-order accuracy Runge-Kutta scheme
Reaction model	Dunn & Kang model (5-species & 17-reaction)

Computational conditions

Stagnation conditions			Freestream conditions			
$H_{0},\mathrm{MJ/kg}$	p_0, MPa	T_0, K	$u_{\infty}, \mathrm{km/s}$	p_{∞}, kPa	T_{∞}, \mathbf{K}	Re_{∞}
3.6	17	2968	2.5	1.5	271	2.7E6
6.5	33	4529	3.4	3.5	660	2.4E6
9.2	53	5739	3.9	7.6	1012	2.5E6

Multi-block mesh (total mesh: 70 million)

Validation: Comparison of bow shock shapes

- Shock wave departure distance is consistent with Schlieren images
- No carbuncles were observed, and robust shock capture was achieved

[6] Ma & Mahesh, JFM, (2022)

Forest of hairpin

- Numerous hairpin vortices are formed in the wake of roughness^[6]
- Hairpin vortex grows once, then starts to decay and disappears

Enthalpy effect on disturbance growth

- Roughness wake hairpin vortices are reduced under low enthalpy condition
- Density disturbance power is also lower under low enthalpy condition

Enthalpy effect on disturbance growth

- Roughness wake hairpin vortices are reduced under low enthalpy condition
- Density disturbance power is also lower under low enthalpy condition

Density disturbance measurement with FLDI

- Measured density disturbance about 1 mm upstream from model surface with three-channel FLDI
- Not affected by mechanical vibrations of the model and achieves multi-MHz bandwidths

Power spectrum of density disturbance

- 3MJ: Power tends to decay from midstream to downstream
- 6, 9MJ: Power maintained downstream at the same level as midstream

Tendency to grow more disturbance under higher enthalpy conditions (qualitatively consistent with DNS)

Conclusion

To clarify the transition mechanism and obtain turbulent heat flux in the re-entry capsule, we evaluated the disturbance growth process under high enthalpy conditions using Apollo capsule models with isolated roughness elements

- Numerous hairpin vortices were formed in the wake of roughness
- Tendency to grow more disturbance under higher enthalpy conditions
 - > DNS and experimental results were qualitatively consistent
 - > Are high enthalpy conditions more likely to transition?