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1 Introduction
Predictions of aerodynamic flows, such as those over airfoils and wings, are of great interest to the
design community. Typically, computational fluid dynamics (CFD)-based tools are extensively used for
these predictions during the design cycle. Although CFD has been successful in these predictions to a
great extent, their usage in shape optimization to achieve a higher lift-to-drag ratio is rather limited
due to the large cost involved [1]. Further, these CFD computations require an essential pre-processing
step, generating a good-quality mesh for convergence, which is often challenging for highly cambered
airfoils and complex turbomachinery blades. Further, the intermediate designs in a traditional shape
optimization process can be a complex shape, for which it would be difficult to obtain convergence.

In this paper, we evaluate the ability to quantitatively predict flow over NACA 2412 airfoil using
Physics-informed Neural Networks (PINN, [2]). Although the applications of PINN in simple configura-
tions have shown the potential to predict fluid flows reasonably well, the literature showing its utility for
practical configurations is sparse. Even where some results are reported [3], typically integrated quanti-
ties like total lift and drag are matched to the reference data, and rigorous comparisons of flow profiles,
as done in CFD, are missing. This work attempts to fill this gap while also reporting the limitations and
advantages of PINN over CFD.

Note that while training data can be used to make predictions faster and better in PINN, current
predictions are made without employing any training data. Therefore, the predictions are made purely
by training the neural networks to minimise losses in the underlying partial differential equations (PDEs)
and boundary conditions, as shown in figure 1. Further, since PINN works on training networks on a
given distribution of collocation points, no pre-processor is necessary to generate grids. Although the
PINN approach discussed in this paper is computationally more expensive than the traditional CFD
approach, the former approach is advantageous during shape optimization as the well-trained network
can be readily used for parametric studies.

2 Numerical Approach
In this work, PINN has been used to solve the incompressible steady Navier-Stokes equation for flow
over the airfoil NACA-2412 at Re = 100. The computational domain is taken as [X × Y ] → [[−5, 15]×

Figure 1: Neural Network Architecture
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(a) Computational domain (b) Residual point distribution

Figure 2: Computational Domain for NACA 2412

[−7.5, 7.5]] as shown in Fig. 2(a). The inlet and far-field are assigned uniform velocity in the angle of
attack α-direction; the airfoil is set to no-slip boundary conditions; and the outlet is set to pressure
boundary conditions.

Now we describe the network used for the current work. All the problems studied in the paper are
solved using Forward Neural Network (FNN; [4]). The ML model for fluid flow computations has been
solved in Nvidia-Modulus [5] - a library developed for Scientific Machine Learning. In FNN, residual
points are the input, flowfields are the output, and there are several levels of hidden layers, also called
deep layers. In equation 1, the mathematical structure of PINN is given for L number of deep layers.

z1 = W 1X + b1 (1a)

z2 = W 2σ1

(
z1
)
+ b2 (1b)

· · ·
zL−1 = WL−1σL−2

(
zL−2

)
+ bL−1 (1c)

zL = WLσL−1

(
zL−1

)
+ bL (1d)

Here X is the input, W i is the weight matrix, σi is the activation function, bi is the bias and zi is
the output of ith layer. Weightage W i is applied to every residual point, which is then summed with
a bias bi and finally passed through an activation function σi to provide the desired non-linearity in
the solution. The output of the activation function is passed to subsequent layer neurons and the same
process is followed till it reaches the output layer. The output, Y L = σL−1

(
zL

)
, is then obtained from

the values in the final layer.
Figure 1 shows the network used for the NACA 2412 flow predictions. The input vectors are the

coordinates x and y, while u, v and p are desired output variables. This output value of the network is
verified to satisfy governing equations, which for our problem is the steady incompressible Navier-Stokes
equations. These equations are employed in the non-dimensional form so that the orders of magnitude of
pressure and velocity are not very different. This helps in the training process of the weights and biases.
The network also needs to satisfy the boundary conditions as mentioned earlier. Therefore, the network
minimizes the total loss, given in equation (2), which is a weighted sum of the losses due to satisfying
the governing equations (LΩi

) and the boundary conditions (LΓj
). λi and λj are weights given to partial

differential equation loss and boundary condition loss, respectively. These are hyperparameters which
can be varied to get the desired solution.

LTotal =
∑

λi ∗ LΩi +
∑

λj ∗ LΓj (2)
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Figure 3: Activation functions and their gradients
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LΓi
=

1∣∣∣Γ̂i

∣∣∣
∑
x∈Γ̂i

∥Bi − (U ,P)∥2

(4)

PDE loss, eq. (3), consists of losses in the mass (LΩ1) and momentum (LΩ2 , LΩ3) conservations. These
losses are premultiplied by λr to avoid the conflict of the boundary conditions near discontinuities. In
the current work, λr is based on the signed distance function (SDF), evaluated from the airfoil as well
as the top and bottom boundaries of the domain.

Figure 2(b) shows the distribution of residual points used for PINN predictions. A total of 30, 000
points were used in the interior domain with 10, 000 points densely packed near the airfoil. To satisfy
boundary conditions, 1000 residual points are used on the airfoil as well as the far-field, while 640
residual points are employed at both the inlet and outlet. Batch training has been used with 1000
random collocation points sent in batch per iteration.

Six deep layers, each with 512 neurons, have been used for building the neural network. Three
different activation functions, Sigmoid Linear Units(SILU; [6]), Tan-hyperbolic (TANH), and Gaussian
Error Linear Units (GELU; [7]) are employed in different attempts to study the network performance
to estimating the correct output. Figure 3 shows all three functions as well as their gradients. All
three functions as well as their gradients are smooth. SILU tends to work better when networks are
batch-normalized. GELU prevents the problem of vanishing gradients, it has a continuous derivative at
0, which can sometimes make training faster.

The Xavier random initialization was used to initialize weights. The main idea is to set the initial
weights of the network in a way that allows the activations and gradients to flow effectively during both
forward and backpropagation. In this approach, the numbers of input and output units in each layer
are used to determine the scale of the random initialization. For training, an ‘ADAM’ optimizer with
an adaptive learning rate of 0.001 was used for 0.2 million epochs. The number of epochs is estimated
based on the experience to achieve a total mean-square error (MSE) loss to at least 10−3.
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(a) Untrained weight matrix (b) Trained weight matrix

Figure 4: Weight matrix in FNN

(a) Gaussian curve of untrained weight matrix (b) Gaussian curve of trained weight matrix

Figure 5: Gaussian Weight matrix in FNN

3 Results and Discussions
PINN Predictions are obtained for a wide range of angles of attacks, 00 ≤ α ≤ 200, and the results are
compared with those from CFD simulations obtained using the commercial software, Ansys FLUENT.

Before discussing the results, we discuss the consistency of our ML approach. We select the α =
00 prediction, with SILU function as well as equal weightage of governing equation and BC in loss
calculation, for this discussion: similar observations were made for other cases also. Figures 4 and 5
show matrices of initial (untrained) and final (trained) weights. From figures 4(a) and 5(a), it can be
observed that the untrained matrix is sparse and distribution seems random as expected from the Xavier
Initialization. The final weight matrices, figures 4(b) and 5(b), however, show less sparse distributions
which approximate the Gaussian curve. Figure 6 shows final weight distributions in successive layers. It
is observed that all the layers are reasonably well trained and they all have similar sparsity qualitatively.

Figure 6: Weight matrix in each layer
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Figure 7: Change in losses with epochs

Figure 7 shows the change in losses with epochs. The adaptation in the learning rate with epochs
is also presented. It is observed that total loss has dropped to the order of 10−3. The PDE losses are
reduced to 10−4 level. All the data losses at the boundary are represented in terms of pressure and
velocity losses. While the pressure loss has reduced to below the 10−6 level, the losses in U and V
velocities are around 10−3. The learning rate has adapted logarithmically from 10−3 to 10−5.

Now we focus on flow predictions. Figure 8 shows qualitative comparisons between PINN and CFD
using contours of three primary flow variables for α = 00 case. For all three variables, PINN predictions
are very close to CFD estimates. The highest pressure obtained in PINN is slightly lower than that
obtained in CFD. Note that the pressure reported is the gauge pressure and the negative pressure just
indicates the expansion as the base pressure is set to zero value.

Using the predicted pressure and velocity values, aerodynamic forces are calculated. Equations (5)
provide the formulae to compute forces in x and y-directions, while eqns (6) gives the net lift and drag
forces by taking appropriate components of Fx and Fy.

Fx =

∫ (
−p · nx + µ

(
∂u

∂x
· nx +

∂u

∂y
· ny

))
ds

Fy =

∫ (
−p · ny + µ

(
∂v

∂x
· nx +

∂v

∂y
· ny

))
ds

(5)

Fl = Fy cosα− Fx sinα

Fd = Fy sinα+ Fx cosα (6)

The drag and lift coefficients for angles of attack between 00 and 200 are shown in figure 9 and 10
respectively. The distributions of lifts and drags due to pressure and viscous forces are also shown. For
more granular comparison, these data are presented in tables 1 and 2 for PINN and CFD respectively.

Looking at the lift curve, PINN is able to predict lift values very close to CFD for angles less than
100. The departure between the two plots increases with the angle of attack. Further, both pressure
and viscous lifts are estimated reasonably in PINN. Higher discrepancies are found in the case of drag
force which is due to slight underprediction of viscous drag by PINN. Ref.[3] have a slightly better match
in drag force, however their PINN and CFD estimations were done at a much lower Reynolds number
(Re = 20) and a relatively simple Joukowski airfoil configuration. It is well known that prediction of
flow with machine learning becomes difficult with an increase in Reynolds number.

Table 3 shows the percentage difference in lift and drag forces between PINN and CFD. The difference
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Figure 8: Comparison of PINN predictions and CFD estimates (α = 00)

Figure 9: Drag Coefficients (Cd) using PINN and CFD
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Figure 10: Lift Coefficients (Cl) using PINN and CFD

Table 1: Aerodynamic Coefficients calculated using PINN

AoA Pressure Drag Viscous Drag Total Drag Pressure Lift Viscous Lift Total Lift
0.0 0.03952 0.17146 0.21098 0.01456 0.00181 0.01637
2.5 0.0414 0.16103 0.20244 0.08511 0.00001 0.08511
5 0.04663 0.1612 0.20784 0.14823 -0.00297 0.14526

7.5 0.05694 0.16678 0.22375 0.21571 -0.00245 0.21322
10 0.07083 0.15163 0.22247 0.27084 -0.00304 0.2678

12.5 0.08686 0.15771 0.24457 0.31347 -0.00404 0.30943
15 0.1057 0.13907 0.24478 0.35586 -0.00414 0.35586

17.5 0.12899 0.13545 0.26445 0.39399 -0.00664 0.38734
20 0.15334 0.13515 0.2885 0.41982 -0.01697 0.40285

Table 2: Aerodynamic Coefficients calculated using CFD

AoA Pressure Drag Viscous Drag Total Drag Pressure Lift Viscous Lift Total Lift
0.0 0.04045 0.17285 0.2133 0.01136 0.00303 0.01439
2.5 0.04148 0.17345 0.21493 0.0836 0.00112 0.08472
5 0.04718 0.17182 0.219 0.15242 -0.000827 0.151593

7.5 0.05761 0.1681 0.22571 0.21861 -0.00282 0.21579
10 0.07198 0.16296 0.23494 0.27765 -0.0047 0.27295

12.5 0.08946 0.15636 0.24582 0.32795 -0.00645 0.3215
15 0.11046 0.1491 0.25956 0.371534 -0.0082 0.363334

17.5 0.13342 0.14158 0.275 0.40596 -0.01 0.39596
20 0.15767 0.13413 0.2918 0.43163 -0.01188 0.41975
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Table 3: Percentage difference in Lift and Drag forces due to PINN and CFD

AoA 2.5 5 7.5 10 12.5 15 17.5 20
% Diff. in Lift 0.3659 4.1776 1.1909 1.8867 3.7542 2.0570 2.1769 4.0262
% Diff. in Drag 5.8111 5.0959 0.8684 5.3077 0.5085 5.6945 3.8363 1.1309

(a) At α = 00 (b) At α = 100

Figure 11: Coefficients of Pressure, Cp

is calculated from α = 2.50, after which the lift coefficient is sufficiently high for comparison. Consistently
between 2.50 and 200, the difference in predicted cl is less than 4.2%, while the difference in predicted
cd is less than 6%. This shows a good predictive ability of PINN for such flows.

To further probe the cause of differences between PINN and CFD, we plot pressure coefficients, Cp,
along the chord. Figure 11(a) and (b) show prediction of −Cp for α = 00 and α = 100 respectively.
Predictions for CFD are also plotted for reference. PINN is able to successfully predict pressure dis-
tributions on both pressure and suction sides for most parts of the airfoil including the leading edge.
However, significant differences were found for flow near the trailing edge. PINN shows an abrupt rise
in the curve at around x/c = 0.9 on both sides. In fact, the flow seems unphysical in this region.

To correct this unphysical behaviour, several attempts were made. At first, predictions were obtained
with different numbers of collocation points as well as for a much higher number of epochs but they did
not provide any improvement near the trailing edge. The above-reported results were obtained when the
governing equation and BC had equal weightage. To correct the behaviour near the trailing edge of the
airfoil, the weightage of the airfoil BC was increased significantly. Figure 13 shows predictions when the
weightage (λ) of the airfoil was increased to 10 and 100 times. For λ = 10, the behaviour in the central
region of the airfoil became better, however, the trailing edge error remained. Increasing the weightage
to λ = 100 worsened the results as a large mismatch was found in the central region. This may be due
to the very weak enforcement of mass and momentum conservations in this region.

Next, we perform studies using two different activation functions including TANH and GELU to
see their effects on TE flow predictions. Figure 13 shows the Cp predictions using all three activation
functions. Although none of the activation functions are able to correct the TE behaviour, GELU seems

Figure 12: Cp prediction with different weights of airfoil BC
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Figure 13: Cp prediction using three different Activation Functions

to provide a better profile match than SILU.

4 Conclusions
We report a consistent PINN framework that can be employed for airfoil flow predictions. However,
we note that despite a reasonable match in integrated aerodynamic parameters with the CFD data,
significant differences in the prediction of flow near the trailing edge are found. Specifically, the behaviour
near the trailing edge is unphysical and needs to be corrected before the PINN model can be further
employed for shape optimization. This issue requires further investigation and perhaps a close look
at how boundary conditions are implemented in PINN. The study also highlights the significance of
detailed and rigorous examination of PINN predictions for complex flows as integrated parameters may
be forgiving to give misleading conclusions.
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