Oral presentation | Numerical methods

Numerical methods-VIII

Fri. Jul 19, 2024 10:45 AM - 12:45 PM Room A

[13-A-02] A hybrid nodal solver with rotation property for the cellcentered Lagrangian scheme

*Chunyuan Xu¹, Zhijun Shen¹, Qinghong Zeng¹ (1. Institute of Applied Physics and Computational Mathematics)

Keywords: Lagrangian methods, Rankine-Hugoniot condition, hybrid nodal solver

Presentation for ICCFD12 (Kobe, Japan, July 14-19, 2024)

A hybrid nodal solver with rotation property for the cell-centered Lagrangian scheme

Chunyuan Xu*, Zhijun Shen*, Qinghong Zeng*

* Institute of Applied Physics and Computational Mathematics, China

Lists

- Background
- The cell-centered Lagrangian scheme
- Formulation of a hybrid nodal solver
- Solution algorithm
- Typical cases
- Conclusion remarks

Background

♦ Reimann solver in the Lagrangian frame

work	Author(s)	Year	Remark
CAVEAT	Addessio et al.	1990	Least square method to compute node velocity
GLACE	Despres and Mazeran	2005	Satisfying GCL
EUCCLHYD	Maire et al.	2007	Satisfying GCL with less grid aspect ratio effect
ADER-WENO	Boscheri et al.	2014	Genuinely mutidimensional Riemann solver
MOOD based scheme	Chan et al.	2021	Positivity preserving and entropy consistent

The work labelled blue discussed the directional effect of the shocks.

Background

◆ The directional effect of Riemann solver

Maire et al.(2007)

- Simple and clear
- Less shock directional effect

Boscheri et al.(2014)

- A little complicated
- More shock directional effect

Can we consider more shock directional effect in a relative simple way?

.

The cell-centered Lagrangian scheme

◆ Discretization strategy("Face" or "Corner"?)

Flux conservation is constructed around a node, and the Riemann solver is also known as the nodal solver.

The cell-centered Lagrangian scheme

◆ Finite volume scheme (Maire, 2009)

$$\begin{split} & m_c \frac{d}{dt} (\frac{1}{\rho_c}) - \sum_{p \in \mathcal{P}(c)} \left(L^c_{\underline{p}} \boldsymbol{N}^c_{\underline{p}} + L^c_{\overline{p}} \boldsymbol{N}^c_{\overline{p}} \right) \cdot \boldsymbol{U}_p = 0, \\ & m_c \frac{d}{dt} \boldsymbol{U}_c + \sum_{p \in \mathcal{P}(c)} \left(L^c_{\underline{p}} \Pi^c_{\underline{p}} \boldsymbol{N}^c_{\underline{p}} + L^c_{\overline{p}} \Pi^c_{\overline{p}} \boldsymbol{N}^c_{\overline{p}} \right) = \boldsymbol{0}, \\ & m_c \frac{d}{dt} E_c + \sum_{p \in \mathcal{P}(c)} \left(L^c_{\underline{p}} \Pi^c_{\underline{p}} \boldsymbol{N}^c_{\underline{p}} + L^c_{\overline{p}} \Pi^c_{\overline{p}} \boldsymbol{N}^c_{\overline{p}} \right) \cdot \boldsymbol{U}_p = 0. \end{split}$$

□ Least square method and two-step Runge-Kutta method.

[1] Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, JCP, 2008.

7

Formulation of a hybrid nodal solver

◆ Lagrangian Rankine-Hugoniot condition

$$-s\Delta \boldsymbol{U} + \Delta \boldsymbol{F} = 0$$

where $U = (V, u, E)^t$ and $F = (-u, P, Pu)^t$.

In multi-dimensions, the momentum RH condition writes

$$\Delta f = s \Delta u$$

- \square $\triangle u$ is regarded as a component of a vector;
- \Box Δu is regarded as the projection of the velocity gradient along a certain direction.

We will always use this assumption!

Formulation of a hybrid nodal solver

Sub-grid based discrete velocity gradient method

Let Δu_{cq} represents the velocity difference between c and q, Δu_{pq} represents the velocity difference between p and q, the velocity gradient in the sub-grid(yellow colored region) writes,

$$G = \frac{\Delta u_{cq} \otimes N}{L_{cq}} + \frac{\Delta u_{pq} \otimes \tau}{L_{pq}}$$

See appendix A for the derivation.

The projection of G along the edge normal direction is

$$GN = \Delta u_{cp} / L_{cp}$$

That means the Δu in the RH condition is always set as Δu_{cq}

9

Formulation of a hybrid nodal solver

Determination of G

□ Employing a linear distribution of velocity along the half edge pp₁.

$$\Delta \boldsymbol{u}_{cq} = (\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{N}) \, \boldsymbol{N}, \quad \Delta \boldsymbol{u}_{pq} = - (\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{\tau}) \, \boldsymbol{\tau}$$

Then the RH condition is specified as

$$\Delta \mathbf{f}_1 = s_1 \left(\Delta \mathbf{u}_{cp} \bullet \mathbf{N} \right) \mathbf{N}$$

Here, Δu_{cq} equals to $(\Delta u_{cp}\cdot N)\,N$. That means the flux Δf_1 is always along the edge normal direction N, which exactly recovers the dimensional splitting method.

Formulation of a hybrid nodal solver

Determination of G

☐ Employing a constant distribution of velocity along pp₁.

$$\Delta \boldsymbol{u}_{cq} = \Delta \boldsymbol{u}_{cp}, \quad \Delta \boldsymbol{u}_{pq} = 0$$

Then the RH condition is specified as

$$\Delta \mathbf{f}_2 = s_2 \Delta \mathbf{u}_{cp}$$

Here, Δu_{cq} equals to Δu_{cp} . That means the flux Δf_2 is always along the direction of Δu_{cp} .

11

Formulation of a hybrid nodal solver

Determination of the coefficient s

The amount of dissipation introduced by the two assumptions should be identical since they both solve a standard discontinuity problem,

$$\Delta \mathbf{f}_1 = \Delta \mathbf{f}_2$$
 $\mathbf{s}_2 = \mathbf{s}_1 \frac{\left| \Delta \mathbf{u}_{cp} \cdot \mathbf{N} \right|}{\left| \Delta \mathbf{u}_{cp} \right|}$

- ☐ The two different fluxes are introduced by assuming different velocity distribution along the half edge;
- lacktriangledown Δf_2 could be regarded as a rotation of Δf_1 from the N direction to the Δu_{cv} direction.

Formulation of a hybrid nodal solver

◆ Hybridation strategy

 \square Employing a hybridation of linear and constant distribution of velocity along the half edge pp_1 .

$$\begin{split} \Delta \boldsymbol{u}_{cq} &= \lambda \left(\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{N} \right) \boldsymbol{N} + \left(1 - \lambda \right) \Delta \boldsymbol{u}_{cp}, \\ \Delta \boldsymbol{u}_{pq} &= -\lambda \left(\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{\tau} \right) \boldsymbol{\tau}, \end{split}$$

The numerical flux and the coefficient is then computed as

$$\Delta \mathbf{f}_{3} = s_{3} \left[\lambda \left(\Delta \mathbf{u}_{cp} \cdot \mathbf{N} \right) \mathbf{N} + (1 - \lambda) \Delta \mathbf{u}_{cp} \right]$$

$$s_{3} = s_{1} \frac{\left| \Delta \mathbf{u}_{cp} \cdot \mathbf{N} \right|}{\left| \lambda \left(\Delta \mathbf{u}_{cp} \cdot \mathbf{N} \right) \mathbf{N} + (1 - \lambda) \Delta \mathbf{u}_{cp} \right|}$$

13

14

Formulation of a hybrid nodal solver

- ◆ Discussion of the hybrid nodal solver
 - \square $\lambda = 1$, it recovers the nodal solver of Maire [1];
 - \square $\lambda = 0$, it recovers the nodal solver of Burton et al.[2];
 - \square $\lambda \in (0, 1)$, it is a hybrid nodal solver.

The nodal solver defines a characteristic direction that is along

 $\lambda \left(\Delta u_{cp}\cdot N\right)N+\left(1-\lambda\right)\Delta u_{cp}$. This direction is based on the hybridation of linear and constant velocity approximation.

[1] Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, JCP, 2008.

[2] D Burton et al., a cell-centered Lagrangian Godunov-like method for solid dynamics, C&F, 2012.

Solution algorithm

- ◆ Two-stage second-order Runge-Kutta scheme
- ◆ The solution algorithm for stage 1 is described as:
 - 1. The density, pressure and velocity gradients are computed as

$$\begin{split} \left(\boldsymbol{\nabla}\rho_{c}\right)^{n} &= \left(M_{c}^{n}\right)^{-1} \sum_{d \in \mathcal{C}(c)} \left(\rho_{d}^{n} - \rho_{c}^{n}\right) \left(\boldsymbol{X}_{d}^{n} - \boldsymbol{X}_{c}^{n}\right), \\ \left(\boldsymbol{\nabla}P_{c}\right)^{n} &= \left(M_{c}^{n}\right)^{-1} \sum_{d \in \mathcal{C}(c)} \left(P_{d}^{n} - P_{c}^{n}\right) \left(\boldsymbol{X}_{d}^{n} - \boldsymbol{X}_{c}^{n}\right), \\ \left(\boldsymbol{\nabla}\boldsymbol{u}_{c}\right)^{n} &= \left(M_{c}^{n}\right)^{-1} \sum_{d \in \mathcal{C}(c)} \left(\boldsymbol{u}_{d}^{n} - \boldsymbol{u}_{c}^{n}\right) \left(\boldsymbol{X}_{d}^{n} - \boldsymbol{X}_{c}^{n}\right), \end{split}$$

2. The least square algorithm is performed for reconstruction

$$\begin{split} & \rho_{c}\left(\mathbf{X}_{p}^{n}\right) = \rho_{c}^{n} + \eta \boldsymbol{\phi}_{c}^{n} \left(\boldsymbol{\nabla} \rho_{c}\right)^{n} \cdot \left(\mathbf{X}_{p}^{n} - \mathbf{X}_{c}^{n}\right), \\ & P_{c}\left(\mathbf{X}_{p}^{n}\right) = P_{c}^{n} + \eta \boldsymbol{\phi}_{c}^{n} \left(\boldsymbol{\nabla} P_{c}\right)^{n} \cdot \left(\mathbf{X}_{p}^{n} - \mathbf{X}_{c}^{n}\right), \\ & \boldsymbol{u}_{c}\left(\mathbf{X}_{p}^{n}\right) = \boldsymbol{u}_{c}^{n} + \eta \boldsymbol{\phi}_{c}^{n} \left(\boldsymbol{\nabla} \boldsymbol{u}_{c}\right)^{n} \cdot \left(\mathbf{X}_{p}^{n} - \mathbf{X}_{c}^{n}\right), \end{split}$$

15

Solution algorithm

- ◆ Two-stage second-order Runge-Kutta scheme
- ◆ The solution algorithm for stage 1 is described as:
 - 3. The node velocity is computed iteratively by a fixed point method

$$\boldsymbol{u}_{p}^{n}=\left(M_{p}^{n}\right)^{-1}\sum_{c\in\mathcal{C}\left(p\right)}\left[P_{c}\left(\mathbf{X}_{p}^{n}\right)\left(L_{\overline{p}}^{c,n}\boldsymbol{N}_{\overline{p}}^{c,n}+L_{\underline{p}}^{c,n}\boldsymbol{N}_{\underline{p}}^{c,n}\right)-M_{cp}^{n}\boldsymbol{u}_{c}\left(\mathbf{X}_{p}^{n}\right)\right]$$

4. The numerical fluxed are computed

$$\begin{split} L_{\overline{p}}^{c,n} \Pi_{\overline{p}}^{c,n} \mathbf{N}_{\overline{p}}^{c,n} &= L_{\overline{p}}^{c,n} P_c \left(\mathbf{X}_p^n \right) \mathbf{N}_{\overline{p}}^{c,n} - \alpha_{\overline{p}}^{c,n} \Delta \boldsymbol{u}_{\overline{a}}^n, \\ L_p^{c,n} \Pi_{\overline{p}}^{c,n} \mathbf{N}_p^{c,n} &= L_p^{c,n} P_c \left(\mathbf{X}_p^n \right) \mathbf{N}_p^{c,n} - \alpha_p^{c,n} \Delta \boldsymbol{u}_{\underline{a}}^n, \end{split}$$

where Δu_a^n and Δu_a^n are defined as

$$\begin{split} \Delta \boldsymbol{u}_{a}^{n} &= \left[\lambda \left(\Delta \boldsymbol{u}_{cp}^{n} \cdot \boldsymbol{N}_{\overline{p}}^{c,n} \right) \boldsymbol{N}_{\overline{p}}^{c,n} + (1 - \lambda) \, \Delta \boldsymbol{u}_{cp}^{n} \right], \\ \Delta \boldsymbol{u}_{a}^{n} &= \left[\lambda \left(\Delta \boldsymbol{u}_{cp}^{n} \cdot \boldsymbol{N}_{p}^{c,n} \right) \boldsymbol{N}_{p}^{c,n} + (1 - \lambda) \, \Delta \boldsymbol{u}_{cp}^{n} \right], \end{split}$$

Solution algorithm

- ◆ Two-stage second-order Runge-Kutta scheme
- ◆ The solution algorithm for stage 1 is described as:
 - 5. The trajectory equation and governing equations are updated

$$\begin{split} &\mathbf{X}_{p}^{(1)} = \mathbf{X}_{p}^{n} + \Delta t \mathbf{u}_{p}^{n}, \\ &\frac{1}{\rho_{c}^{(1)}} = \frac{1}{\rho_{c}^{n}} + \frac{\Delta t}{m_{c}} \sum_{p \in \mathcal{P}(c)} \left(L_{\overline{p}}^{c,n} \mathbf{N}_{\overline{p}}^{c,n} + L_{\underline{p}}^{c,n} \mathbf{N}_{\underline{p}}^{c,n} \right) \cdot \mathbf{u}_{p}^{n}, \\ &\mathbf{u}_{c}^{(1)} = \mathbf{u}_{c}^{n} - \frac{\Delta t}{m_{c}} \sum_{p \in \mathcal{P}(c)} \left(L_{\overline{p}}^{c,n} \Pi_{\overline{p}}^{c,n} \mathbf{N}_{\overline{p}}^{c,n} + L_{\underline{p}}^{c,n} \Pi_{\underline{p}}^{c,n} \mathbf{N}_{\underline{p}}^{c,n} \right), \\ &E_{c}^{(1)} = E_{c}^{n} - \frac{\Delta t}{m_{c}} \sum_{p \in \mathcal{P}(c)} \left(L_{\overline{p}}^{c,n} \Pi_{\overline{p}}^{c,n} \mathbf{N}_{\overline{p}}^{c,n} + L_{\underline{p}}^{c,n} \Pi_{\underline{p}}^{c,n} \mathbf{N}_{\underline{p}}^{c,n} \right) \cdot \mathbf{u}_{p}^{n}. \end{split}$$

17

Typical cases

- ◆ Saltzman problem
 - ☐ Initial condition

piston moves from the left to right with unit velocity

$$x = (i-1)\Delta x + (11-j)\Delta y \sin[\Delta x(i-1)\pi], \quad y = (j-1)\Delta y,$$

■ Analytical solution

t=0.9, rho = 10, shock reaches the right boundary

□ Uniform 100×10 Cartesian grid. $\lambda = 0$, 0.25, 0.5, 0.75, 1.

- ◆ Noh problem
 - □ Initial condition

shock

□ Analytical solution

$$\left\{ \rho, \varepsilon, u_r \right\} = \begin{cases} \left\{ \left(\frac{\gamma + 1}{\gamma - 1} \right)^d, 0.5, 0 \right\} & \text{if} \quad r < r_s \\ \left\{ \left(1 - \frac{t}{r} \right)^d, 0, 1 \right\} & \text{if} \quad r > r_s, \end{cases}$$

□ Uniform 50×50 Cartesian grid. $\lambda = 0$, 0.25, 0.5, 0.75, 1.

- ◆ Sedov problem
 - □ Initial condition

Grids at the origin share a total internal energy of 0.244816.

$$[\rho_0, P_0, \mathbf{u}_0] = [1, 10^{-6}, 0]$$

- □ Uniform 100×20 polar grid. $\lambda = 0$, 0.25, 0.5, 0.75, 1.
 - √ First order;
 - ✓ Second order.

◆ Distance-density plot of the 1st and 2nd order scheme

- 1st order scheme
- 2nd order scheme
- \checkmark As λ increases, the accuracy of the results increases for 1st order scheme;
- ✓ The results for 2^{nd} order scheme are similar for different λ .

23

Typical cases

◆ RM instability problem

$$x_{pert} = a_0 \cos(2\pi y)$$
 $y \in \left[0, \frac{1}{2}\right]$

- ◆ Analysis of the Sedov, Noh and RM instability problem
- \checkmark Basically, a larger value of λ means a higher-order approximation of the velocity variable and hence lower diffusivity, it is natural that lower diffusivity provides more accurate results.
- \checkmark The differences caused by λ could be reduced in high-order schemes.
- \checkmark From the RM instability problem, it is better to set a high value of λ in the 2nd order scheme.

25

Typical cases

◆ A simplified inertial confinement fusion (ICF) test

- ☐ Pressure imposed on the outer boundary;
- □ Perturbation of the interface to cause Rayleigh-Taylor instability.

$$r_i^{\text{pert}} = r_i \left[1 + a_0 \cos(n\theta) \right]$$

 $\checkmark a_0=10^{-3}, n=8$

□ Enlargement of the vorticity field

- ✓ Obvious mesh distortion is observed where the vorticity is abnormally high.
- ✓ The situation gets worse with larger λ .
- \checkmark The hybrid nodal solver with large λ has vorticity strengthening mechanism where the shear effect exists.

Typical cases

 \square Extremely obvious when λ =1, t=0.282.

Suppose there exists a pure shear flow. This means the force resulted from the RH condition should act only in the velocity direction. Thus, the value of λ must take 0, otherwise the force would have a component perpendicular to the velocity direction.

- ♦ Selection of λ
 - ☐ The RT instability problem implies that a higher value of tend to has a vorticity strengthening mechanism.
 - □ Vorticity filtering coefficient

$$\lambda = e^{-|\boldsymbol{\omega}|/5}$$

where ω is defined as the z vorticity. Its value is computed as

$$\left|\boldsymbol{\omega}\right| = \left|\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right|$$

31

Vorticity filtering hybridization

- ◆ Sedov problem with 100×20 polar grid
 - □ Distance-density plot of the 1st and 2nd order scheme

1st order scheme

2nd order scheme

The simulation using vorticity filtering method has high accuracy in both 1st and 2nd order scheme.

Conclusion remarks

- ☐ We propose to use a discrete velocity gradient method to represent the velocity vector in the RH condition.
- ☐ A hybrid nodal solver with rotation property is thus constructed.
- ☐ A vorticity filtering method is presented to determine the hybridization strategy.
- □ Numerical cases are presented to prove the effectiveness of the hybrid nodal solver.

THANK YOU FOR LISTENING!

37

Appendix A

◆ Discrete velocity gradient method

$$G_{qc} = GN = \Delta u_{qc}/L_{qc},$$

$$G_{pq} = G \boldsymbol{\tau} = \Delta \boldsymbol{u}_{pq} / L_{pq},$$

$$G\begin{pmatrix} \sin\theta & \cos\theta \\ \cos\theta & -\sin\theta \end{pmatrix} = \begin{pmatrix} \Delta u_{qc}/L_{qc} & \Delta u_{pq}/L_{pq} \\ \Delta v_{qc}/L_{qc} & \Delta v_{pq}/L_{pq} \end{pmatrix},$$

$$G = \begin{pmatrix} \Delta u_{qc}/L_{qc} & \Delta u_{pq}/L_{pq} \\ \Delta v_{qc}/L_{qc} & \Delta v_{pq}/L_{pq} \end{pmatrix} \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & -\sin \theta \end{pmatrix}$$
$$= \frac{\Delta u_{qc} \otimes N}{L_{qc}} + \frac{\Delta u_{pq} \otimes \tau}{L_{pq}}$$

Back

Appendix B

- Derivation of the hybrid nodal solver
 - ☐ The RH condition in a sub-cell is

$$P_{c}I - H_{\overline{p}}^{c} = \frac{s_{\overline{p}}^{c} \left| \Delta u_{cp} \cdot N_{\overline{p}}^{c} \right| \left[\lambda \left(\Delta u_{cp} \cdot N_{\overline{p}}^{c} \right) N_{\overline{p}}^{c} + (1 - \lambda) \Delta u_{cp} \right]}{\left| \lambda \left(\Delta u_{cp} \cdot N_{\overline{p}}^{c} \right) N_{\overline{p}}^{c} + (1 - \lambda) \Delta u_{cp} \right|} \otimes N_{\overline{p}}^{c}$$

$$- \left(s_{\overline{p},2}^{c} \right)^{c} \lambda \left(\Delta u_{cp} \cdot \tau_{\overline{p}}^{c} \right) \tau_{\overline{p}}^{c} \otimes \tau_{\overline{p}}^{c},$$

$$P_{c}I - H_{\underline{p}}^{c} = \frac{s_{\underline{p}}^{c} \left| \Delta u_{cp} \cdot N_{\underline{p}}^{c} \right| \left[\lambda \left(\Delta u_{cp} \cdot N_{\underline{p}}^{c} \right) N_{\underline{p}}^{c} + (1 - \lambda) \Delta u_{cp} \right]}{\left| \lambda \left(\Delta u_{cp} \cdot N_{\underline{p}}^{c} \right) N_{\underline{p}}^{c} + (1 - \lambda) \Delta u_{cp} \right|} \otimes N_{\underline{p}}^{c}$$

$$- \left(s_{\underline{p},2}^{c} \right)^{c} \lambda \left(\Delta u_{cp} \cdot \tau_{\underline{p}}^{c} \right) \tau_{\underline{p}}^{c} \otimes \tau_{\underline{p}}^{c},$$

$$(1)$$

☐ The total energy conservation condition around a node is

$$\sum_{c \in \mathcal{C}(p)} \left(L_{\overline{p}}^{c} \Pi_{\overline{p}}^{c} N_{\overline{p}}^{c} + L_{\underline{p}}^{c} \Pi_{\underline{p}}^{c} N_{\underline{p}}^{c} \right) = 0.$$
(2)

39

Appendix B

☐ The union of Eq.(1) and (2) gives

$$\begin{split} &\sum_{c \in \mathcal{C}(p)} \left(L_{\overline{p}}^{c} P_{c} N_{\overline{p}}^{c} + L_{\underline{p}}^{c} P_{c} N_{\underline{p}}^{c} \right) \\ &- \sum_{c \in \mathcal{C}(p)} \left[\frac{s_{\overline{p}}^{c} L_{\overline{p}}^{c} \left| \Delta \boldsymbol{u}_{cp} \cdot N_{\overline{p}}^{c} \right| \left[\lambda \left(\Delta \boldsymbol{u}_{cp} \cdot N_{\overline{p}}^{c} \right) N_{\overline{p}}^{c} + (1 - \lambda) \Delta \boldsymbol{u}_{cp} \right]}{\left| \lambda \left(\Delta \boldsymbol{u}_{cp} \cdot N_{\overline{p}}^{c} \right) N_{\overline{p}}^{c} + (1 - \lambda) \Delta \boldsymbol{u}_{cp} \right|} \right] \\ &- \sum_{c \in \mathcal{C}(p)} \left[\frac{s_{\underline{p}}^{c} L_{\underline{p}}^{c} \left| \Delta \boldsymbol{u}_{cp} \cdot N_{\underline{p}}^{c} \right| \left[\lambda \left(\Delta \boldsymbol{u}_{cp} \cdot N_{\underline{p}}^{c} \right) N_{\underline{p}}^{c} + (1 - \lambda) \Delta \boldsymbol{u}_{cp} \right]}{\left| \lambda \left(\Delta \boldsymbol{u}_{cp} \cdot N_{\underline{p}}^{c} \right) N_{\underline{p}}^{c} + (1 - \lambda) \Delta \boldsymbol{u}_{cp} \right|} \right] = 0. \end{split}$$

For simplicity, the below expressions are defined

$$\begin{split} &\alpha_{\overline{p}}^{c} = \frac{\left|\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{N}_{\overline{p}}^{c}\right|}{\left|\lambda \left(\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{N}_{\overline{p}}^{c}\right) \boldsymbol{N}_{\overline{p}}^{c} + \left(1 - \lambda\right) \Delta \boldsymbol{u}_{cp}\right|},\\ &\alpha_{\underline{p}}^{c} = \frac{\left|\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{N}_{\underline{p}}^{c}\right|}{\left|\lambda \left(\Delta \boldsymbol{u}_{cp} \cdot \boldsymbol{N}_{\underline{p}}^{c}\right) \boldsymbol{N}_{\underline{p}}^{c} + \left(1 - \lambda\right) \Delta \boldsymbol{u}_{cp}\right|}, \end{split}$$

Appendix B

Eq.(3) is written as

$$\begin{split} &\sum_{c \in \mathcal{C}(p)} \left(L_{\overline{p}}^{c} P_{c} \mathbf{N}_{\overline{p}}^{c} + L_{\underline{p}}^{c} P_{c} \mathbf{N}_{\underline{p}}^{c} \right) = \\ &\sum_{c \in \mathcal{C}(p)} \lambda \left(\alpha_{\overline{p}}^{c} s_{\overline{p}}^{c} L_{\overline{p}}^{c} \mathbf{N}_{\overline{p}}^{c} \otimes \mathbf{N}_{\overline{p}}^{c} + \alpha_{\underline{p}}^{c} s_{\underline{p}}^{c} L_{\underline{p}}^{c} \mathbf{N}_{\underline{p}}^{c} \otimes \mathbf{N}_{\underline{p}}^{c} \right) \Delta \mathbf{u}_{cp} \\ &+ \sum_{c \in \mathcal{C}(p)} (1 - \lambda) \left(\alpha_{\overline{p}}^{c} s_{\overline{p}}^{c} L_{\overline{p}}^{c} + \alpha_{\underline{p}}^{c} s_{\underline{p}}^{c} L_{\underline{p}}^{c} \right) \Delta \mathbf{u}_{cp}. \end{split}$$

Setting the 2×2 matrix $M_{\it cp}$ and $M_{\it p}$ as

$$\begin{split} M_{cp} = &\lambda \left(\alpha_{\overline{p}}^{c} s_{\overline{p}}^{c} L_{\overline{p}}^{c} N_{\overline{p}}^{c} \otimes N_{\overline{p}}^{c} + \alpha_{\underline{p}}^{c} s_{\underline{p}}^{c} L_{\underline{p}}^{c} N_{\underline{p}}^{c} \otimes N_{\underline{p}}^{c} \right) \\ &+ (1 - \lambda) \left(\alpha_{\overline{p}}^{c} s_{\overline{p}}^{c} L_{\overline{p}}^{c} + \alpha_{\overline{p}}^{c} s_{\overline{p}}^{c} L_{\underline{p}}^{c} \right) I, \end{split}$$

$$M_{p} = \sum_{c \in \mathcal{C}(p)} M_{cp},$$

The final form of the hybrid nodal solver is expressed as

$$\boldsymbol{u}_{p} = M_{p}^{-1} \sum_{c \in \mathcal{C}(p)} \left[L_{\overline{p}}^{c} P_{c} \boldsymbol{N}_{\overline{p}}^{c} + L_{\underline{p}}^{c} P_{c} \boldsymbol{N}_{\underline{p}}^{c} - M_{cp} \boldsymbol{u}_{c} \right]$$
(5)