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Background

Area of inertial confinement fusion and astrophysics

|—> Multi-material, large deformation, shocks

Simulation using Lagrangian methods

Riemann solver
|—> One key problem : How to capture shocks? ‘_

3
Background
€ Reimann solver in the Lagrangian frame
work Author(s) Year Remark
CAVEAT Addessio et al. 1990 Least square method to compute node velocity
GLACE Despres and Mazeran | 2005 Satisfying GCL
EUCCLHYD Maire et al. 2007 Satisfying GCL with less grid aspect ratio effect
ADER-WENO Boscheri et al. 2014 Genuinely mutidimensional Riemann solver
MOOD based scheme | Chan et al. 2021 Positivity preserving and entropy consistent

The work labelled blue discussed the directional effect of the shocks.
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Background

€ The directional effect of Riemann solver

Maire et al.(2007) Boscheri et al.(2014)
R R | d °
: %
PR IS . .
B Simple and clear m A little complicated
B Less shock directional effect B More shock directional effect

Can we consider more shock directional effect in a relative simple way?
5

The cell-centered Lagrangian scheme

€ Discretization strategy(“Face” or “Corner”?)

N D1 P>

f4 Face fz

Corner

P4 D3

f l

Flux conservation is constructed around a node,
and the Riemann solver is also known as the nodal solver.
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The cell-centered Lagrangian scheme

€ Finite volume scheme ( Maire, 2009 )

"1 l c (& C (S —
m,-ﬁ(;]— ¥, (L[_,_N£+LFNF) U, =0,
¢ rEP(c)

”’ cTIC f cTIe e o
meUc+ ;( (LeM NG + LETENE) = o,
rEP(c)

d cTre ©\C CTTE NC _
me=Eet+ (L[,HPNP+LI_,H[_,N[_,)‘U,,_l}.

peP(e)

O Least square method and two-step Runge-Kutta method.

[1] Maire, A high-order cell-centered Lagrangian scheme for two-dimensional

compressible fluid flows on unstructured meshes, JCP, 2008.

Formulation of a hybrid nodal solver

€ Lagrangian Rankine-Hugoniot condition

—sAU + AF =0
where U = (V,u,E)t and F = (—u, P, Pu)®.

In multi-dimensions, the momentum RH condition writes

Af =sAu

O Au isregarded as a component of a vector;

along a certain direction.

O Au is regarded as the projection of the velocity gradient

We will always use this assumption!
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Formulation of a hybrid nodal solver

€ Sub-grid based discrete velocity gradient method

Let Az, represents the velocity difference betweencand q, A«
represents the velocity difference between p and q, the velocity
gradient in the sub-grid(yellow colored region) writes,

A’Uu-q ® N + Aul'q T
L L.Hq

cg

G =

See appendix A for the derivation.

The projection of G along the edge normal direction is
GN=Au,/L,

That means the Au in the RH condition is always setas Ax,,

Formulation of a hybrid nodal solver

€ Determination of G

O Employing a linear distribution of velocity along the half edge pp,.

Aucq - (AU’CP ) N) N'ﬁ Aupq - = (Aunp : T) T

!N

Then the RH condition is specified as

Af, =s,(Au,sN)N

Here, Au,, equalsto (Au., - IN) N . That means the flux Af, is
always along the edge normal direction V, which exactly recovers the

dimensional splitting method.
10
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Formulation of a hybrid nodal solver

& Determination of G

O Employing a constant distribution of velocity along pp,.

Aoy = Nlpp; Dby = 0

Then the RH condition is specified as

Af, = szAucp

Here, Au., equals to Au.,. That means the flux Af, is always along

the direction of Ay, -

11

Formulation of a hybrid nodal solver

€ Determination of the coefficient s

The amount of dissipation introduced by the two assumptions should
be identical since they both solve a standard discontinuity problem,

_ |A"w'N|

) =8
|Aucp

Af=Af, = s

O The two different fluxes are introduced by assuming different
velocity distribution along the half edge;

O Af, could be regarded as a rotation of Af, from the NV direction to
the A, direction.

12

ICCFD12

2024/7/3



2024/7/3

Formulation of a hybrid nodal solver

€ Hybridation strategy

O Employing a hybridation of linear and constant distribution of
velocity along the half edge pp,.

;\‘u”l :’\(Auw -N)N + (1 —I\)AU,.P, 7
A€ 0,1]

Auy,, = —A(Au,, - T) T,
The numerical flux and the coefficient is then computed as

A, =5, [ A(Au, s N)N +(1-2)Au,, |
|Au-N|
/?,(Au(W-N)N'F(l —)L)Auq,|

5 ‘

13

Formulation of a hybrid nodal solver

€ Discussion of the hybrid nodal solver

O 2 =1, it recovers the nodal solver of Maire [1];

O 2 =0, it recovers the nodal solver of Burton et al.[2];

O A€ (0,1),itis a hybrid nodal solver.

The nodal solver defines a characteristic direction that is along

A(Aue, - N) N + (1 — A) Aue, This direction is based on the hybridation of
linear and constant velocity approximation.
[1] Maire, A high-order cell-centered Lagrangian scheme for two-dimensional
compressible fluid flows on unstructured meshes, JCP, 2008.

[2] D Burton et al., a cell-centered Lagrangian Godunov-like method for solid

dynamics, C&F, 2012. e
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Solution algorithm

€ Two-stage second-order Runge-Kutta scheme

€ The solution algorithm for stage 1 is described as:

1. The density, pressure and velocity gradients are computed as

(Vo) = (M3 (ol — ) (X = X2,

delC(e)

(VR)" =)™ 3 (Py = BI(X) - X)),
deC(e)

(V)" = (M) Z (w)] —u!) (X] - X).
del(e)

2. The least square algorithm is performed for reconstruction
pe (X)) = oo + 0t (Vpe)" - (X)) - X2).
P. (X)) = P! +na) (VR.)" - (X} = X7).
1

. (X2) = ul + gl (V)" - (X3 - X7), 15

Solution algorithm

€ Two-stage second-order Runge-Kutta scheme

€ The solution algorithm for stage 1 is described as:
3. The node velocity is computed iteratively by a fixed point method

wp = (M) Y [P (Xp) (BN + LgmNg™) = Mpu, (X)]
c€C(p)
4. The numerical fluxed are computed
Lg"HE"Ng™ = L5, (X3) Ng™ - oz Au
LEm e NS™ = Le™P, (X3) Ni™ — oS Aug,
where Aug and Aw) are defined as
At = A (Au, Ne™) Ne™+ (1= 3) Al ]

Ay = A (Au, Ny ) Ng™+ (1= 3) Aut | 16
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Solution algorithm

€ Two-stage second-order Runge-Kutta scheme

€ The solution algorithm for stage 1 is described as:

5. The trajectory equation and governing equations are updated

XV = X"+ Atull,
1 1

At Con npe e e n
=t o (LN LN g,
Pe Pe «

pePic)

At
ul) —ul - =Y (L“ 5" N™ 4 Lo 5" Ny )

© peP(e)

At
(1) _ pno_ CoRyre.n C.T CRye.n pgen | o n
ED =B - =) (LI, e NE™ + Ly 1" Ny ) ul.

‘ pEP(e)

17

Typical cases

€ Saltzman problem
O |Initial condition
piston moves from the left to right with unit velocity
x=(i— 1Az + (11 — j)Aysin[Az(i — 7], y=(j—1)Ay,
O Analytical solution
t=0.9, rho = 10, shock reaches the right boundary
O Uniform 100x10 Cartesian grid. 2 = 0, 0.25, 0.5, 0.75, 1.

18
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Typical cases
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Results of the hybrid nodal solver agrees well with the analytical solultsi)on.

Typical cases

4 Noh problem shock

O Initial condition

[0, g0, Un(,y)] = [1,107°%, (—x/v/ 22 + 42, —y/ /22 + y?)]
O Analytical solution
d
{( J_r i) .0.5.u} if r<r,

£\ o
{(1)—) .(_].1} if >0,

O Uniform 50x50 Cartesian grid. 4 = 0, 0.25, 0.5, 0.75, 1.

{,0.3‘ u,.} =

20
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Results of the hybrid nodal solver agrees well with the analytical soluztion.

17
17
i1t
Attty
,ml,l;,,m,l,',‘n/,'/:

os|
b 7
7
i s 7 1
11 77 il I
7 74, i o Al i
i W A 52
7 HiHT it T T
7 A fit i i
i g it 7
e i 777777
I W 7777771
7 &
i o1 ] o1 ]
= = =
X

Typical cases

e

AN
Y
T

\
W
\
W

\
\
1

\

R

|
i

0z
distance

density-distance profile

O

4 Sedov problem

Typical cases

shock

Initial condition

Grids at the origin share a total internal energy of 0.244816.

10, Fy.ugl = [1.1 07G¢ 0

O Uniform 100x20 polar grid. A = 0, 0.25, 0.5, 0.75, 1.

v First order;

v’ Second order.

22
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Typical cases

€ Distance-density plot of the 1t and 2" order scheme

distance

105 11 08 085 [

095
distance

) 065
distance

15t order scheme 21d grder scheme

v As 21 increases, the accuracy of the results increases for 1st order
scheme;

v" The results for 2 order scheme are similar for different A.

23
Typical cases
4 RM instability problem .
1 =
Xy =@y c08(27y) yeUE‘ -
15t order scheme 2nd grder scheme
24
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Typical cases

€ Analysis of the Sedov, Noh and RM instability problem

v'  Basically, a larger value of 2 means a higher-order approximation of
the velocity variable and hence lower diffusivity, it is natural that

lower diffusivity provides more accurate results.

v The differences caused by A could be reduced in high-order

schemes.

v" From the RM instability problem, it is better to set a high value of 4

in the 2" order scheme.

25

Typical cases

€ A simplified inertial confinement fusion (ICF) test

13 if te 0,004
t—0.04
0,125 — 0.04

O Pressure imposed on the outer boundary;

O Perturbation of the interface to cause Rayleigh-Taylor instability.
rPert — o, [1 + a cos(nf)]

v ay=107, n=8

26

p'(t) 13— 125 x ————— if £ [0.04,0.125]

0.5 if te(0.125,03].
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Typical cases

O Material interface att=0.3

0.3

1 1 1
01 015 02 0.25

v" The outer interfaces are similar, the inner interfaces are somewhat different.

v' Smaller 2 produces smoother material interface because higher dissipation

are introduced.
27

Typical cases

O Vorticity fieldatt = 0.3

High vorticity is observed near the interface, this may be physical where

the shear effect exists.

28
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Typical cases

O Enlargement of the vorticity field

Atlo.v‘""

)

=2

A=0

v Obvious mesh distortion is observed where the vorticity is abnormally high.

v The situation gets worse with larger A.

v" The hybrid nodal solver with large 2 has vorticity strengthening mechanism
29

where the shear effect exists.

Typical cases

O Extremely obvious when A=1, t=0.282.

Suppose there exists a pure shear flow. This means the force resulted from

the RH condition should act only in the velocity direction. Thus, the value of 4

must take 0, otherwise the force would have a component perpendicular to

the velocity direction. 30
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Typical cases

& Selection of 4

O The RT instability problem implies that a higher value of

tend to has a vorticity strengthening mechanism.

O Vorticity filtering coefficient

1= ef\m\/s

where @ is defined as the z vorticity. Its value is computed as

31

Vorticity filtering hybridization

€ Sedov problem with 100x20 polar grid

O Distance-density plot of the 1st and 2nd order scheme

L A=D

v A=1
O filtering coefficient
Exact

L L L ) L L L )
e 085 09 105 11 e 085 09 105 11

L L
095 i 095 i
distance distance

15t order scheme 2nd grder scheme

The simulation using vorticity filtering method has high accuracy in both

1st and 2" order scheme. 32
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Vorticity filtering hybridization

€ RM instability problem

A=0 18f
A=1 A=0
1 filtering coefficient A=1

filtering coefficient

z
perturbation amplitude

perturbation amplitude

e
T

15t order scheme 2nd grder scheme

The simulation using vorticity filtering method has high accuracy in both

1stand 2" order scheme. 33

Vorticity filtering hybridization

€ Sedov problem with 50x50 Cartesian grid

O Density profile and final grid of the 1st and 2nd order scheme

12
f

s o 1st order, filtering coefficient
2nd order, filtering coefficient
Exact
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The simulations verify the effectiveness of the vorticity filtering method in

Cartesian grid. 34
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Vorticity filtering hybridization

€ RT instability problem

1
os\

lambda
° °

N A.A L
0.15 0.2 0.25
t

A vstime matter line enlargement of matter line

The sharpness of the matter line is near the cases when 4 is between
0.25 and 0.5.

35

Conclusion remarks
We propose to use a discrete velocity gradient method to
represent the velocity vector in the RH condition.

A hybrid nodal solver with rotation property is thus

constructed.

A vorticity filtering method is presented to determine the
hybridization strategy.

Numerical cases are presented to prove the effectiveness of

the hybrid nodal solver.

36
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THANK YOU
FOR LISTENING!
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Appendix A

€ Discrete velocity gradient method

Gue =GN = Aug, /L,

Gpg = G = Aupg /Ly,

- sinfl  cosf Auge/Lge  Aupg/Lp,
cosf —sind Al brge A/l .

- Auge/Lge  Atipgf/Lpg sinfl  cosf
Avge/Lge  Auvpg/Lyg cosf —sinf
B Auge ® N Auya® T
~ i T

vy
Q
(e]
=

qc Pe
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Appendix B

@ Derivation of the hybrid nodal solver

O The RH condition in a sub-cell is

PI— ITE = S5 |Au,l, . NH [A (A - N}-’,) Nz +(1—A) Au, A N
A(Bug - Ng) N+ (1= A) A |
— (s52) A (Bug - H) @75,
55| vty - N | [A (Attep - N ) NG + (1= 3) Ay @)
PI—1I5= = = == Ny
A (Buep - N ) Ng + (1= ) Aty

—(52) A (Bue-7) @7,

O The total energy conservation condition around a node is

> (LIeNg + Lyt N; ) = o. Q)
ceC(p)

39

Appendix B

O The union of Eq.(1) and (2) gives
Y. (LpP.Nj + LiP.Ny)

ceC(p)

T SoLe | Attep - NE| [A (Aucp - NE) Ni + (1 - A) Ay
‘,\ (_\u, p N‘I‘) I\r’% +(1 =X Au, ,,‘

S L% | Aty - N;,‘ [,\ (B NG ) Ng+(1 - /\]An,,,.]
B [\ (B Ng) N+ (1= 3) Ay

eeC(p)

&)

= {);
eeC(p)

For simplicity, the below expressions are defined

‘_\.H,J, . JV,',l
|,\ (Au - N) Np+ (1= ) Au,,
‘Au. - Ni|

|,\ (A;..,,,Ni) Ng+ (1= ) A,

40
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Appendix B

Eq.(3) is written as
S (LiPN; + L P.Ny) =

ceC(p)

i

30 A (apspliNg @ Nj + sy LNy @ Ny ) Au,

ceC(p)

+ 30 (1 =n) (apsily + apspLy) Au.

ceC(p)

Setting the 2x2 matrix M, and M, as
M., =) (“;_;H;_,L;_,N% @ N5+ alstLENS @ N;,)

+ (1= ) (agsply +apspLy) 1

“)

My= 3" M,.

ceC(p)

The final form of the hybrid nodal solver is expressed as

wp = M0 S [LpPNg + Ly PNy = Mou,| 5)

ceC(p)

41

ICCFD12

2024/7/3

21



