
[11-C-04]

Keywords:

©Retained by Authors 

 ICCFD12 

Oral presentation | Data science and AI

Data science and AI-III 
Thu. Jul 18, 2024 2:00 PM - 4:00 PM  Room C

 
PDE-free Models for Transitional Flows: a Universal
Substituted Machine Learning Framework 

*Lei Wu1, Zuoli Xiao1,2 （1. State Key Laboratory for Turbulence and Complex Systems, College of
Engineering, Peking University, Beijing, China, 2. Department of Mechanics and Engineering Science,
College of Engineering, Peking University, Beijing, China）

Laminar-turbulent transition, Transition modeling, Artificial neural network, Intermittency
factor 



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

ICCFD12-2024-xxxx

PDE-free Models for Transitional Flows: a Universal
Substituted Machine Learning Framework

L. Wu∗ and Z.L. Xiao∗,∗∗

Corresponding author: z.xiao@pku.edu.cn
∗ State Key Laboratory for Turbulence and Complex Systems, College of Engineering,

Peking University, Beijing, China
∗∗ HEDPS and Center for Applied Physics and Technology, College of Engineering,

Peking University, Beijing, China
1 Introduction
Accurate simulation of the laminar-turbulent transition is of great importance in engineering applications.
At present, the mainstay of industrial transition prediction has been carried out by the Reynolds-averaged
NavierStokes (RANS) methods incorporated with well-calibrated transition models, and is likely to per-
sist for a long time. Thereinto, the intermittency factor (γ)-based models are most popular [1]. However,
more human-art interventions and free parameters are invoked compared with their full-turbulence RANS
counterparts, let alone the higher computational cost. Such deficiencies are difficult to overcome based
on traditional approaches. Owing to the flourishing achievement of machine learning (ML) techniques
in fluid mechanics community, the present study aims to construct a PDE-free artificial neural network
(ANN) model for γ, which is expected to share the equivalent accuracy and engineering usability to the
PDE-based models while eliminating the defect of its traditional counterparts.

2 The Proposed USML Framework
Depicted in Figure 1 is the a universal substituted machine learning (USML) framework for PDE-free
transition modeling. As is well recognized, RANS modeling is more along the lines of surrogate model for
specific types of flows. Therefore, verifying the performance of baseline model in transitional flows is the
logically first step. Once a tradition model is derived with the approved accuracy (recalibrated/modified
or not), the process of USML rolls into the “training” phase, which definitively shapes the overall perfor-
mance of ML-substituted transition model. In the “testing” phase, a priori test is employed to quantify
how well the regression predictions approximate the baseline. The established ML-alternative model is
tested a posteriori to evaluate the comprehensive substitutability for traditional transition model along
with their efficiency. In this study, ANN is chosen as the ML approach, users can change other RANS
models and ML algorithms based on the actual flow regimes.

Verifying

Identify the transition type being 

studied

(i) Tollmien-Schlichting instability

(ii) Separation-induced transition

(iii) Crossflow transition

(iv) Roughness-induced transition

……

Verify the performance of -

sensitized RANS model in hand

J Positive

K Neutral: recalibration…

L Negative: modify/enhance…

Well-behaved -sensitized 

RANS model (baseline)

Training

Determine the modeling strategy

(i) Machine learning (ML) algorithm

(ii) Model architecture

(ii) Input features construction and 

selection

(iii) Dataset

(iv) Other modeling technique……

-sensitized 

RANS model

Input features ML

model

(iii) Dataset

(iv) Other modeling technique……

Output

Testing

A priori test

(i) Correlation coefficient

(ii) Coefficient of determination

(iii) t-Distributed Stochastic Neighbor 

Embedding technique

……

ML

model

(iii) 

Embedding technique

CFD 

solvers

CFD 

ComparisonComparison
-sensitized 

RANS model

omparison
-sensitized 

RANS model

A posteriori test

Training

Figure 1: The USML framework for PDE-free transition modeling.
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3 Models Formulation and Results
As listed in Table 1, three ANN-alternative transition models are derived through the USML framework.
Taking shear stress transport (SST)-γ model as the benchmark, two airfoils with various angles of attack
(AoAs) and Mach (Ma) numbers are selected as the training set, and three other airfoils over broader
ranges of AoAs and Ma numbers are employed as the testing set. The a posteriori test results manifest
that the skin friction coefficient Cf , laminar separation bubble, Reynolds stress, etc., predicted by SST-
γANN are in excellent accordance with the baseline SST-γ model [2].

To validate the applicability of USML to other RANS models and further explore the generalization
ability in Reynolds number, ANN-alternative Spalart-Allmaras (SA)-γ model is selected as the second
example. It is demonstrated that the USML also holds as in the former case and can be well generalized
to different Reynolds numbers [3].

However, the above models are rather insufficient for practical engineering applications. When shifting
toward the practical aerodynamic adoptions, improving the predictive capability of baseline model in
three-dimensional (3D) transitional flows becomes the overarching business. To this end, flows past the
infinite swept NLF(2)-0415 wing are adopted as the training set, while flows around NLF(2)-0415, finite
ONERA M6 swept wing, and more complicated configurations of non-wing-like geometry 6:1 inclined
prolate spheroid are employed as the test-bed. The results show that SST-γANN aligns well with the CF-
enhanced SST-γ model, completely breaking through the barrier encountered by original SST-γ model
(see Figure 2). Two effective a priori analysis strategies are proposed for beforehand evaluation. In
addition, verification concerning the calculation efficiency, grid-dependence, etc., are also implemented
to inspect its industrial feasibility. Furthermore, the underlying rationale behind the preliminary success
and transferability of USML are elucidated [4].

Transition type Baseline performance Model comparison Generalization
2D, TS, separation-induced Positive SST-γ vs. SST-γANN Geometry, AoA, Ma
2D, TS, separation-induced Positive SA-γ vs. SA-γANN Geometry, AoA, Ma, Re
3D, TS, separation-induced,

and crossflow (CF) Negative SST-γ vs. SST-γANN Geometry, AoA, Ma, Re

Table 1: Three examples of the present USML framework.

Figure 2: Contours of skin friction coefficient predicted by three models for 6:1 inclined prolate spheroid.

To summarize, through the proposed USML framework, one can derive a PDE-free transition model
with more computationally efficient property and nearly identical precision, robustness, and generaliz-
ability in comparison with its traditional counterpart. Indeed, the philosophy and formalisms employed
in the present USML are of a general nature, which is demonstrated to be an attractive alternative for
various routine engineering design processes.

References
[1] F.R. Menter, P.E. Smirnov, T. Liu, and R. Avancha. A one-equation local correlation-based transition

model. Flow Turbul. Combust., 95:583–619, 2015.
[2] L. Wu, B. Cui, and Z.L. Xiao. Two-equation turbulent viscosity model for simulation of transitional

flows: An efficient artificial neural network strategy. Phys. Fluids, 34(10):105112, 2022.
[3] L. Wu, B. Cui, and Z.L. Xiao. Artificial neural network-based one-equation model for simulation of

laminar-turbulent transitional flow. Theor. Appl. Mech. Lett., 13(1):100387, 2023.
[4] L. Wu, B. Cui, R. Wang, and Z. L. Xiao. Artificial neural network-substituted transition model for

crossflow instability: Modeling strategy and application prospect. Phys. Fluids, 36(4), 2024.

2


