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Abstract: Simulation of a �ow over an array of objects can be di�cult to perform due to the high
mesh requirement near each object. We intend to reduce this high cost by utilizing both data and
physics within a physics informed neural network (PINN). Our study aims to show this potential
using a �ow past an array of cylinders at Re = 40 as the study case. Using data from a �ow past
single cylinder, PINN would learn and adapt it using its physics based loss as it interacts with
other cylinders in an array. The result shows that PINN is indeed capable of modeling the �ow
interaction in such �ow �eld, though it performs better at weaker interactions. As this study both
utilizes collocation points and data, both of them holds an importance to resolve the �ow �eld.
Collocation points are still required to properly resolve the �ow around the cylinder, though their
amount is signi�cantly minimized compared to not using any data. Collocation points are also
required between the cylinders allowing the PINN to model the interaction between them. For the
data, the utilization of the main �ow variables does lead to the correct �ow �eld and the utilization
of its �rst derivative does lead to an accurate drag coe�cient. The adjustments of the weight for
every of these variables may be a crucial factor in this PINN as it prevents it from following any
incorrect information too much.

Keywords: Computational Fluid Dynamics, Physics Informed Neural Network, Machine Learning,
Fluid Structure Interaction, Near Wall Flow Reconstruction.

1 Introduction

Optimization of wind turbine farm layout can be quite a challenging task. Both the terrain [1, 2, 3, 4, 5]
and wake [6, 7, 8] e�ect are predominant, but it can be di�cult to model. Currently, simpli�ed analytical
approaches are still preferred [8, 9, 10, 11] as computational �uid dynamics (CFD) models are still too
expensive [12]. This is more so for blade resolved simulations [13, 14, 15, 16] which requires a �ne mesh
near each blade surface.

In this research, we would like to lower the load of such simulations by utilizing physics informed
neural network (PINN)[17]. By utilizing a physical based loss, PINN is encouraged to give a physical
based result, allowing it to simulate many physical systems [18, 19, 20], including �uid �ow [21, 22, 23].
While as a pure physics based system PINN still numerous issues [24, 25, 26, 27], this method can also
utilize data which not only o�ers some way to resolve the issues but also o�ers many unique applications.
Some example of this includes �ow interpolation [28], solving inverse problems [29], optimization [30]
and discovering physical equations [31].

In our study, we focus on utilizing data as a way to lower the computational cost of PINN. By using
data, the amount of collocation points (CP) in PINN can be signi�cantly reduced [32], leading to a faster
training process [33]. Unlike other data driven neural network, as PINN also utilizes physics, the data
requirement is way less [34, 35, 36]. Also, for the same reason, PINN does not require a totally accurate
data as the physics can detect this and �x it [32].

For the wind turbine application, the PINN would learn the �ow �eld from a single wind turbine
and then adapt it as it interact with each other in the array. However, as this method has not been
proven yet, we choose to demonstrate it in a much more simpler case �rst which is a �ow past an array
of 3 cylinders at Re = 40. A �ow past single cylinder would be initially conducted with CFD and then
the PINN would utilize the data around this cylinder to predict the whole array �ow �eld. While one
main goal of this research is to demonstrate the capability of such method, we also want to investigate
the e�ect of CP near the object. Both CFD and PINN typically requires a high resolution calculation
near the object due to boundary layer. However, with the utilization of data, this requirement may be
mitigated. Due to its potentially signi�cant e�ect, this is going to be the second objective of our research.
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2 Methodology

The overall methodology of this research is shown in �gure (1). First we conduct a few CFD simulations
which includes the �ow past singular cylinder to be replicated and the �ow past the array of cylinders for
veri�cation purposes. Next, some part of the single cylinder simulation is going to be used as a reference
for the PINN which tries to resolve the array �ow, including the interactions between each cylinders. For
the veri�cation, the result of the PINN is going to be directly compared to the CFD data.

Figure 1: The overall methodology of this research

The details regarding the array, simulation domain and boundary conditions can can be seen in �gure
(2) with each cylinder diameter set to 1. These conditions also applies for the single cylinder simulation
which only utilize the front cylinder. The distance of front and back cylinders (R) is set to R = {7.5, 12.5}
and the size of the replicated data (s) is set to s = {1.2, 2, 6}.

Figure 2: The array con�guration and simulation domain.

The CFD simulations are conducted using the commercial software Fluent that solves equation (1)
which is the two dimensional incompressible steady state Navier-Stokes. The mesh distribution, can be
seen in �gure (3) with the number of cells of 38k, 125k and 114k for the single cylinder, array with
R = 7.5 and R = 12.5 respectively. The simulation was conducted until machine accuracy to ensure a
high level precision. Regarding the result, the array simulations shows a symmetrical pattern between
the top and bottom cylinder, evident by the drag coe�cient (CD) that is presented in table (1). We also
calculated the �ow di�erence inside the s × s domain (s domain) between the single cylinder and the
array which is an information that the PINN requires. This error calculation is conducted using equation
(2) and the result is shown in table (2).

Table 1: The drag coe�cient (CD) from the CFD data.

Front Back - Top Back-Bottom
Single Cylinder 1.53
Array R = 7.5 1.49 1.64 1.64
Array R = 12.5 1.52 1.63 1.63
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(a) Single cylinder (b) Array with R = 7.5

(c) Array with R = 12.5

Figure 3: The CFD simulations mesh

The PINN used to calculate this �ow interaction consist of a feed forward neural network with 6
layers each with 64 neurons. The inputs of the network are (x, y) and the outputs are (u, v, p). The loss
function mainly consists of 3 terms, the boundary loss (LB), the governing equation loss (LF ) and a
modi�ed data loss (LM ) which is based on our previous research that allows the incorporation of incorrect
data into the PINN. Each of these loss are de�ned in equation (3) - (6), with the D,B,F operators are
respectively the data, boundary and governing equation operator. These operators would give either the
PINN values (DP ,BP ,FP) or the CFD values (reference values) (DRef,BRef) at each respective points,
with FP being de�ned as the residual of the 2 dimensional steady state Navier-Stokes equation. The
variable N and ω are the number of points and weight for each respective loss. As for the L1 norm, these
sum each loss for each respective variables such as {u, v, p} or over all governing equation.
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Table 2: The error comparison of the �ow around each cylinder (ϵs) towards the single cylinder.

R s u v p ∂u/∂x ∂u/∂y ∂v/∂x ∂v/∂y ∂p/∂x ∂p/∂y
7.5 1.2 Front 2.24% 2.21% 9.91% 2.93% 2.52% 2.92% 2.91% 4.82% 4.87%
7.5 1.2 Back 6.19% 6.85% 21.19% 7.18% 5.80% 7.71% 7.17% 10.74% 10.32%
7.5 2 Front 2.01% 2.08% 10.86% 2.98% 2.55% 2.77% 2.81% 4.72% 4.67%
7.5 2 Back 5.33% 7.00% 22.77% 7.19% 5.73% 7.32% 7.11% 10.11% 10.53%
7.5 6 Front 2.56% 6.91% 23.03% 4.92% 3.43% 3.77% 4.37% 6.91% 6.23%
7.5 6 Back 6.96% 13.73% 40.78% 9.23% 24.46% 7.57% 8.58% 12.50% 11.70%
12.5 1.2 Front 0.72% 0.74% 3.42% 1.47% 0.99% 1.47% 1.43% 3.23% 3.48%
12.5 1.2 Back 4.87% 4.92% 17.43% 5.35% 4.94% 5.62% 5.34% 8.60% 7.84%
12.5 2 Front 0.61% 0.67% 3.76% 1.64% 1.04% 1.39% 1.35% 3.03% 3.18%
12.5 2 Back 4.38% 4.51% 18.66% 5.29% 4.78% 5.36% 5.20% 8.21% 8.04%
12.5 6 Front 0.69% 1.29% 7.14% 1.87% 1.14% 1.46% 1.43% 3.12% 3.18%
12.5 6 Back 4.02% 5.76% 31.46% 5.33% 4.96% 5.27% 5.18% 8.16% 8.08%
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For the total loss, this is de�ned in equation (7) which consist of 6 components. There are 2 types
of boundary loss, the Dirichlet boundary (LD

B ) and Neumann boundary (LN
B ) with a total NB = 2380.

There are also 2 types of modi�ed data loss, the main �ow data (Lu
M ) and the �rst derivative data

(L∂u/∂x
M ) with the later being used for a better approximation of the CD. The total ND is ND = 3.9K,

7.5K, 14.1K for R = 1.2, 2, 6 respectively. The governing equation is also split into 2 parts, the inner
and outer loss which are based on the zones in �gure (4). The outer loss is only based on the freestream
zone which has a CP distribution that becomes more dense near the cylinder. As for the inner loss, this
is based on all of the other zones each having a di�erent distribution. The interaction zone has a uniform
distribution but when it is near the cylinder it would transition to become denser. The near cylinder
zone would also have a distribution that is dense towards the cylinder, but unlike the other zones that
has �xed amount of CP, this zone would have a varying amount of CP to test the e�ect of reducing the
CP near the cylinder. An example of this CP distribution can be seen in �gure (5) with the detailed
amount provided in table (3). However, as each s has a di�erent near cylinder area, the CP would later
be quanti�ed with ϕF which is the CP density per unit area.

Figure 4: The collocation points zone separation.
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LTotal = LD
B + LN

B + Lu
M + L∂u/∂x

M + Lout
F + Lin

F (7)

There are three special settings in our PINN. First is the governing equation weight which is de�ned
in equation (8) with r being the minimum distance to any of the three cylinders. This equation would
focus the residual near the cylinders, ensuring the propagation of the boundary information towards the
cylinders. The second one is β1 which is the tolerance for the incorrect data. This value is set following
equation (9) with ϵs is the average error across u, v, p from the �ow �eld near all of the cylinders. Both
formula in equation (9) are empirical formula based on our initial test. Regarding β2, we set it at a
constant value of 3. The third special setting is the weight for each variable in equation (6). This weight
is set to normalize every component for the result in table (2). The formulation of this weight is shown in
equation (10) with the L1 norm being the summation of all the main �ow variables or its �rst derivative
and this value is being summed over all cylinders.

Table 3: The amount of CP on each zone

NF

R s Freestream Interaction Transition Near Cylinder
7.5 1.2 8532 950 3372 0 ≤ NF ≤ 372
7.5 2 8532 950 2772 0 ≤ NF ≤ 972
7.5 6 8532 950 144 0 ≤ NF ≤ 3600
12.5 1.2 7538 3300 3372 0 ≤ NF ≤ 372
12.5 2 7538 3300 2722 0 ≤ NF ≤ 972
12.5 6 7538 3300 144 0 ≤ NF ≤ 3600

Figure 5: The collocation points distribution on R = 7.5, s = 2. Dark blue points are the boundary
points, light blue points are the data points and red are the collocation points.

ωF =
200r

1 + exp(25r − 15)
(8)
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The training is conducted 2 times each using the Adam method for the �rst 104 iterations and the L-
BFGS-B method afterwards. The �rst training only utilize the replicated data and the collocation points
at the freestream zone which is then re�ned using the collocation points from the whole domain for the
second training. This 2 time training process was done to ensure a more stable and faster training,
especially due to the variation of collocation points near the cylinder. Some of the weights for both

training's are set the same such as ωB = 1 for both boundary loss, ωu
D = 1 and ω

∂u/∂x
D = 0.01. As for

the di�erent settings, the �rst training utilize ωF = 100 and Lout
F for the LF in equation (5). As for the

second training, ωF = 1000 and it uses Lin
F instead.

To quantify the error of the PINN, we use three di�erent parameters. The �rst one is ϵG which is
the error in the whole domain with the ϵ described in equation (11). The second one is ϵI which is the
error in the inner zones which includes the interaction, transition and near cylinder zone. Both of these
calculations would be done on every data point in respective area. The last parameter is the ED which
is the average drag error from all cylinders. This is mathematically described in equations (12) & (13)
with u∞ = 1, A = 1, n being the normal direction and S is the cylinder surface.

ϵ = (ϵu + ϵv + ϵp) /3 (11)

ED =
1

3

3∑
Cyl=1

|CD,P − CD,Ref|
CD,Ref

(12)
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0.5ρu2
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∫ [
µ

(
∂u

∂x
+

∂v

∂y

)
nx + µ

(
∂u

∂y
− ∂v

∂x

)
ny − pnx

]
dS (13)

3 Results & Discussion

While the PINN did reference the �ow past a single cylinder for all three cylinders, as seen in the examples
of �gures (6) and (7), the PINN managed accurately �x this. This capability is due to the modi�ed data
loss. As shown in �gure (8), the modi�ed data loss make the e�ect of the data less signi�cant than the
governing equation loss, allowing the PINN to prioritize the governing equation instead.

Figure 6: The �ow comparison of R = 7.5 with s = 1.2 and ϕs
F = 36.66

The importance of the data is shown more clearly in table (4). By using data, a PINN with ϕs
F = 0 is

not only more accurate than ϕs
F = 34 but also simulates faster which is 4.3×104s compared to 6.1×104s.

The higher accuracy can be attributed due to the constraining e�ect of the data loss. While the PINN
does not exactly follow the data, it does frequently prefers a highly deviating solution. With the presence
of the data loss, such tendency can be prevented, allowing the PINN to favor a more accurate solution.
As for the faster simulation time, this is caused by two reasons. The �rst one is due the data loss that
does not require additional calculation time from the auto di�erentiation. The second reason is the
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amount of iterations which is only 20.7K for ϕs
F = 0 and 43K for ϕs

F = 34. This di�erence is due to
stabilization of the �ow near the cylinder which typically requires more iteration with higher CP.

Figure 7: The �ow comparison of R = 12.5 with s = 6 and ϕs
F = 34

(a) (b)

Figure 8: The loss curve for (a) �gure (6) & (b) �gure (7)

The usage of both main �ow variables and �rst derivative data is also important, especially at lower
CP. The main �ow variables are responsible to make the �ow �eld more accurate. As for the �rst
derivatives, these variables helps correct the CD which is primarily calculated using derivative values. In
lower CP, with the lack of CP, they are highly dependent on the data to get an accurate result.

To �x the data, the PINN does require CP. There are two main functions of CP in this study. The
�rst one is to transfer the information from the boundaries, especially the outer boundaries. As for the
second one is to detect any local mistake in the near cylinder zone where the data is located.

Within this study, a special weight function (Eq. (8)) was used to ensure that the information from
the outer boundaries is transmitted well to the cylinders. This is done by prioritizing the residuals near
the boundary which resulted in an almost no error transmission between the boundary and cylinders,
though there may still be some error in between or around each cylinder. Compared to that, the usage of
no weight function (ωF = 1) usually leads to a signi�cantly worse result which is clearly seen in table (4).
In such condition, the error are spread out in the domain, allowing a high error between the boundaries
and cylinders. This would make the cylinders experience the wrong �ow conditions, thus a high error.
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Table 4: A comparison of using various settings at R = 12.5, s = 6 with ϕs
F = 0 and ϕs

F = 34

ϕs
F = 0 (NF = 0) ϕs

F = 34 (NF = 3600)

Settings ϵG ϵI ED ϵG ϵI ED

Current Setting 7.39% 3.12% 1.50% 3.31% 1.42% 3.82%
Data = u, v, p 7.23% 2.94% 7.86% 3.67% 1.57% 4.53%
Data = ∂u/∂x, ..., ∂p/∂y 17.3% 19.2% 15.7% 14.1% 10.6% 3.06%
No Data 50.2% 64.8% 38.9% 11.3% 9.57% 2.98%
ωF = 1 7.45% 3.11% 2.13% 7.24% 3.51% 5.53%
No Data, ωF = 1 52.3% 66.6% 39.1% 42.5% 55.6% 38.8%

(a) (b)

Figure 9: (a) The whole domain �ow error (ϵG), (b) the �ow error inside the interaction zone (ϵI)

For the second e�ect of CP, this is quantitatively shown in �gure (9). In general, the PINN resolve
R = 12.5 better than R = 7.5. The lower error seems to be caused by the weaker �ow interaction in
R = 12.5 which makes it easier for the PINN to solve.

There are several observable trends in �gure (9). First is that a higher ϕs
F does tends to give a more

accurate �ow �eld. This trend occurs at s = 2 and s = 6 in which with more CP, the �ow is being
corrected at more places, thus more accurate.

For the second trend, an increase in ϕs
F does not changes the error. This occurs for s = 1.2, which

we think is due to the lack of CP. For s = 1.2 the maximum CP in the near cylinder zone compared the
whole inner zone (interaction, transition and near cylinder zone) is only about 8%. This is in contrast
to s = 2 which has a maximum percentage of 21% and s = 6 which has 77%. The lack of CP means that
it is going to have less e�ect, thus the error does not change.

Another potential reason that the error does not change is that increasing the CP in the near cylinder
zone is not enough to make the �ow �eld better. This is visualized more clearly in �gure (10) where the
residual plot is presented. At a lower ϕs

F = 0, the residual is totally concentrated in the near cylinder
zone where there are no CP to correct the �ow. However at a higher ϕs

F , the high residual spreads out
to both the transition and interaction zone. This would hamper the interaction modeling of the PINN
leading to a not so accurate result. With the CP at both of these zones being unchangeable in this study,
this may limit how accurate the PINN can be, indicated by the constant, non-decreasing error.

The third trend is that at ϕs
F = 0, especially at lower s, the value of ϵ can decrease. This condition

can happen as the usage of some, but insu�cient CP, tends to create a more confused state for the
PINN. In such condition, as seen in �gure (10), the residual �uctuates more as it only being minimized
at a very few locations. In contrast, without any CP, there is less confusion, thus a more accurate result.
This confused state is more prominent at lower s as the distance between the CP at the transition zone
towards the near cylinder zone is closer, leading to the �uctuating residual trend. On the other hand, at
a larger s, with the larger distance between CP, the residual is going to be smoother.
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Figure 10: The residuals on R = 7.5 and s = 1.2

Regarding the accuracy at ϕs
F = 0, even with no CP near the cylinder the result can still be accurate

enough if s is quite small. The boundary loss does ensure that the �ow on the surface of each cylinder
is correct. This information is then propagated through the CP, in which due to the closer CP at lower
s, it propagates better in such condition. A such, even when there are no CP in the near cylinder zone,
the interaction between object is still being modeled by the PINN leading to the accurate result.

(a) Front cylinder (b) Back - top cylinder (c) Back - bottom cylinder

Figure 11: The error of each variable on the near cylinder zone of each cylinder for R = 7.5, s = 1.2 and
R = 12.5, s = 6.
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A more detailed investigation about ϵs reveals that the PINN seems to have more di�culty in solving
the back cylinders and also the pressure. This can be seen in more detail within �gure (11) where the
error of each variable near each cylinder are presented. This di�culty can be attributed to the di�erence
between the reference data and correct �ow which is already presented in table (2). With a higher
di�erence, the PINN cant just follow the reference data and instead it has to put more e�ort to resolve
the correct �ow �eld.

The value of Ω seems very important to solve this di�culty. This value can be understood as how
much the PINN should follow the reference data. With a higher Ω the PINN would trust that variable
more, making it more similar to the reference data. Due to the error values in table (2), a uniform Ω (Ω
= 1), would lead to the PINN to trust the pressure data more. This would resulted in a higher ϵsp which
could be twice as high compared to the our current normalized Ω, as shown in table (5).

Table 5: A comparison of the Ω e�ect on R = 7.5, s = 1.2 with ϕs
F = 189

Current Ω Uniform Ω (Ω = 1)
Location ϵsu ϵsv ϵsp ϵsu ϵsv ϵsp
Front 1.50% 2.43% 3.32% 1.23% 1.79% 8.16% (× 2.46)

Back - top 3.03% 4.06% 6.27% 4.82% 5.24% 11.49% (× 1.83)
Back - bottom 3.61% 3.67% 6.56% 5.78% 6.40% 12.32% (× 1.88)

There are two current issues with Ω in which the �rst one is its formulation. As ϵsp seems to be still
the dominant error, the current formulation of Ω seems to fail to completely normalize the error from
each variable. The second issues is that currently, a prior knowledge of the correct �ow �eld is required to
set the value of Ω. While the PINN does not require an exact value for these weights, approximation or
educated guess regarding these values still requires a knowledge or expectation of the correct �ow �eld.
Without this, in order to get an accurate result, the value of β1 should be set higher, disregarding the
data as a whole even more. However this would potentially increase the required CP to get an accurate
result which also increases the computational cost.

Figure 12: The CD error

For ED, this result is presented in �gure (12). For both R = 7.5 and R = 12.5, ED have the same
trend for every s. While at lower s the ED for R = 12.5 seems slightly higher, this trend would �ip at
higher s. In order to better understand these trends, a more detailed investigation of ED was conducted
by separating the drag force into its pressure and shear components. This result is presented in �gure
(13) where it could clearly be seen that the pressure drag error is always be the more dominant one,
especially at higher s and at the back cylinders.
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(a) Front, pressure (b) Back - top, pressure (c) Back - bottom, pressure

(d) Front, shear (e) Back - top, shear (f) Back - bottom, shear

Figure 13: The pressure drag and shear drag error on R = 12.5

For s = 1.2 and s = 2, our current best explanation of why the pressure drag error kept increasing is
due to the residual distribution. As seen in �gure (10), at higher ϕs

F there is going to be a high residual
in front of the cylinder. This residual would a�ect the strength of the �ow experienced by the back
cylinder. As further proof, �gure (14) shows the u-velocity at x = 30.3 which is 3 units in front of the
back cylinders. A signi�cant velocity deviation can be seen, especially at higher ϕs

F which would then
a�ect the pressure distribution on the back cylinders.

(a) s = 2 (b) s = 6

Figure 14: The u-velocity pro�le on R = 12.5, located at 3 units in front of the back cylinders (x = 30.3).
The dashed line indicates the location of the back cylinders.
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Regarding ϕs
F = 0 which gives the more accurate result, this is due to CD being an integral quantity

and there is no information propagation error anywhere else in the domain except near the cylinder. As
presented in �gure (15), the pressure distribution along the back - top cylinder shows that at ϕs

F = 0, the
pressure is not the most accurate. Due to being an integral quantity, the positive and negative pressure
does balance out and this act of balancing is better at lower ϕs

F , due to the more accurate velocity.

(a) s = 2

(b) s = 6

Figure 15: The pressure pro�le of R = 12.5, on the back - top cylinder.

For s = 6, all of the same problems as the lower s occurs as well. The di�erences is that the CP
inside the near cylinder zone at s = 6 has a more prominent role, unlike the lower s which is still a�ected
by the CP outside this zone. Once again, insu�cient CP would only make the PINN confused, thus the
increase in error. At a certain point (ϕs

F ≥ 6.3), this would then instead improve the �ow �eld, until it
later on would not have any e�ect. It should be noted that while an increase in ϕs

F does mean that it
could solve the �ow around the cylinder better, it still does not solve the high residual in front of these
back cylinders. For that, more CP should be added in the interaction zone instead.

Overall, even as the PINN only reference the �ow over a single cylinder, the PINN did manage to
resolve the correct �ow �eld. The utilization of the data allows the PINN to evade the high collocation
point requirement at high gradients [37] which typically occurs due to boundary layers. This makes
the PINN capable of running with signi�cantly less collocation points and even improving its accuracy
compared to not using any data. While there is still some imperfections especially on the pressure of
the back cylinders, the average errors are still within 5%. Obtaining this values though requires a lot
of setting in the PINN, especially on the weights. Without it, the PINN may end up with a signi�cant
increase in its errors.
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4 Conclusion & Future Works

This study demonstrated the use of PINN to solve a �ow over an array based on the data of the �ow
past a single object. The result shows that using such data, PINN is indeed capable of resolving such
�ow �eld with good enough accuracy (ϵG, ϵI , ED ≤ 5%), more so at weaker �ow interaction. While CP
are still required in the area of the data, the amount of points are signi�cantly less compared to the
usage of no data. Su�cient CP are also required where there is some interaction between the objects.
Neglecting this could lead to some error in the �ow propagation which may have more e�ect on the drag
force error.

Our study also found that for our simulations there are a lot of technical settings that has to be done
in order to ensure a good result. These settings includes assigning an individual weight for all of types
of data, utilizing both the main �ow variable and its derivative, approximating the tolerance towards
the incorrect data and using a special weight function for the collocation points. While our study may
achieve a good enough result, these settings may not be the best setting and it could be di�erent for
di�erent cases. More study is still required to determine the best settings for all of these parameters.

Considering that this model is developed for wind turbine simulations, there are several other things
that needs to be upgraded and tested from the current model. One of them is about turbulence. While
it is indeed possible to add the RANS (Reynolds Averaged Navier-Stokes) equation, the issue lies on
the thin boundary layer which means that su�cient collocation points in a thin area is still required.
Another issue lies on modeling the wind turbine blade motion. We prefer to use the multiple reference
frame model, but we have not tested of utilizing such model in PINN. Lastly, the challenge is to �nd an
e�cient way to simulate such cases while increasing the dimension, both from two dimension to three
dimensions and from steady to unsteady.
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