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1     Introduction 
 
We present a data-driven methodology for representing spatiotemporal nonlinear chaotic dynamics using 
deep neural network,  in which the master dynamics in a low-dimensional space are employed to 
represent the slaved dynamics in the corresponding complemented subspace. It is shown that the 
proposed method comprehensively elucidates the underlying interaction mechanism in a nonlinear 
system where the small-scale dynamics is in fact completely slaved by the large-scale dynamics, as 
modelled by the theory of invariant and inertial manifolds. This then servers as a basis for effectively 
representing chaotic or turbulent systems by data in low-dimensional space. Theoritically, the method is 
supported by the representation of the dissipative dynamics, which reveals that the unresolved dynamics 
is slaved by the low-dimensional master dynamics. We finally demonstrate that the proposed method 
shows strong generalization and fidelity for spatiotemporal nonlinear dynamic systems. 

In the realm of science and engineering, spatiotemporal nonlinear dynamics refers to the study of 
complex systems where both spatial and temporal dynamics play crucial roles. These systems often 
exhibit intricate patterns and interactions across multiple dimensions, making their analysis and 
prediction challenging. Chaotic behaviours are commonly observed in spatiotemporal systems, 
characterized by extreme sensitivity to initial conditions and the absence of long-term predictability. 
Understanding and predicting these chaotic behaviours is essential for various applications, including 
weather forecasting, ecological modelling, and understanding the behaviour of turbulent flows. To 
tackle the complexity of these systems, model reduction techniques have been employed to simplify 
the underlying dynamics while preserving the essential features. By identifying dominant modes or 
variables and capturing their interactions, reduced models enable efficient computation and provide 
valuable insights into the low dimensional dynamics governing the system. This reduction not only 
aids in unravelling the fundamental principles and behaviours of complex systems but also facilitates 
the design of control strategies and optimization in engineering applications. 

In the study of spatiotemporal nonlinear dynamics, two dominant mode reduction strategies have 
been widely used throughscale decomposition. These strategies include both deterministic and 
stochastic methodologies. The decomposition of scales simplifies the analysis and forecasting of 
spatiotemporal systems, allowing for a more profound comprehension of the interaction between distinct 
scales and harnessing the complex behaviour of spatiotemporal nonlinear dynamics in various scientific 
and engineering fields. However, a majority of existingliterature takes small-scale dynamics as a 
stochastic process, using classical or ML-assisted low-dimensional modeling methods to eliminate 
small-scale dynamics and derive equations for large-scale dynamics exclusively. Although successful 
in establishing equations for large-scale dynamics, a notable challenge emerges in the effective 
capture and representation of small-scale dynamics. This discrepancy raises a crucial question 
regarding the production of a representation of fine-scale dynamics based solely on the information 
derived from large-scale dynamics. The investigation of methods to accurately represent small-scale 
dynamics and recover them exclusively from large-scale dynamics has not been undertaken in the 
existing literature, posing an open problem and a significant challenge. 

An approximate inertial manifold, as highlighted earlier, offers a simplified representation of a 
system's long-term behavior by identifying a reduced set of variables or modes governing its 
evolution. This approach is utilized to approximate the interactionbetween large-scale and small-scale 
dynamics. Notably, modal expansion coefficients are distributed randomly in mode order and involve 
a wide range of spatial scales. However, it is still a chanllenge to find a single time scale for the 
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evolution of each mode, especially for the higher mode numbers. Given the complexity, neural 
network is employed as a tool to establish such a high-fidelity mapping. Computationally, the 
construction of approximate inertial manifolds involves the nonlinear Galerkin procedure. The 
establishment of a slaved dynamics representation is inspired by the principles of the nonlinear 
Galerkin method, which forms the theoretical foundation for neural network approximation in higher 
mode space. This conceptual fusion introduces a novel methodology for representing small-scale 
dynamics and provides fresh insights into the connections between large-scale and small-scale 
dynamics, advancing our understanding of complex spatiotemporal nonlinear systems. Looking 
ahead, this innovative approach holds significant potential to recover the real dynamics of complex 
systems from low precision and fidelity dynamics alone. It opens avenues for further exploration and 
application, promising a deeper comprehension of intricate system behaviors in spatiotemporal 
nonlinear dynamics. 

 
Figure 1: Illustration of dynamics of the Kuramoto-Sivashinsky equation in the full space and 

complementary manifold. a. Real full dynamics (Top) and represented full dynamics consist of real 
large-scale dynamics and represented slaved small-scale dynamics (Bottom). b. Real slaved small-
scale dynamics (Top) and represented slaved small-scale dynamics (Bottom). c. Absolute error of 
small-scale slaved dynamics between truth and prediction. Left hand side and right hand side of 
vertical lines indicates corresponding quantities respectively on training dataset and test dataset. 
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