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Abstract: The mathematical and practical behavior of finite-domain filters is explored
for applications to turbulent flow simulations. High-order filters are constructed for
finite-difference schemes that satisfy summation-by-parts, with calibration that con-
siders the spectral behavior at boundaries and the integration norm of the numerical
scheme, leading to both symmetric and asymmetric filters. All filters studied are con-
tractive, but additional analysis of potential transient growth behavior is performed.
The filters are applied to the one-dimensional linear advection equation and the in-
viscid evolution of two-dimensional, incompressible turbulence. It is observed that
symmetric filters offer better overall performance with provable stability properties,
but the performance of asymmetric filters for turbulence simulations was still accept-
able.
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1 Introduction
Numerical schemes with high resolution and low dissipation are the cornerstone of scale-resolving tur-
bulent flow simulations. For flows without shockwaves, high-order-accurate central-difference operators
are frequently used. Such operators may be either explicitly defined or Padé-type compact difference
schemes [1, 2]. However, conventional central-difference schemes do not have any natural dissipation, and
as such, they are prone to odd-even decoupling that can (and do) destabilize simulations of non-linear
conservation laws such as the Navier-Stokes equations. One possible remedy is to employ either artificial
dissipation, which acts like upwinding by penalizing the formation of oscillations without harming the
formal order of accuracy [3, 4, 5]. Similarly, one could use adaptive schemes such as the WENO class of
schemes which automatically adapt the stencil based on local solution smoothness [6]. Another possibil-
ity is to use high-order filters that directly remove high-wavenumber oscillations from the solution and
mimic the effect of a sub-grid-scale turbulence model. Such approaches are commonly known as implicit
large-eddy simulations (ILES), and the role of the filter is illustrated below in Fig. 1 (originally from
Garmann[7]). When one considers the modified wavenumber behavior of the underlying finite-difference
scheme, it is evident that high-wavenumber content is poorly resolved by the scheme, as the magni-
tude of the derivatives can be significantly mis-predicted. Nominally, the filter inhibits the ability of
underresolved content to contaminate the solution.

In typical practice, filter formulae are constructed based on Taylor-series analysis. They feature
an integration norm (also known as a mass matrix), and add/subtract a portion of even derivative of
the solution (the exact operation depends on the order of the derivative). The calibration of the even-
derivative term is based on Fourier analysis such that the so-called πth mode, i.e. k∆x = π where k is the
dimensional wavenumber, is removed as the Nyquist wavenumber of the signal; however, this behavior
is guaranteed only on infinite/periodic domains.

Implementation of these filters on finite domains requires biased boundary closure formulae, which
are also constructed based on Taylor analysis and calibrated using Fourier analysis, tacitly assuming an
infinite domain. The combination of interior and boundary filters can have unintended consequences on
finite domains. For example, the biased boundary formula introduce overshoots that promote an increase
of energy at low-to-moderate wavenumbers. In the context of implicit large-eddy simulations, this is a
form of backscatter and is generally regarded as undesirable since solution content at those wavenumbers
is already well-resolved by the scheme. Another potential problem on finite domains is non-symmetry in
the filter operator, which leads to non-orthogonal eigenvectors and a possibility of non-modal growth of
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Figure 1: Schematic of the role of a filter as a sub-grid-scale model for implicit large-eddy simulations
(from Ref. [7]).

solution content (commonly known as transient growth [8]), even though the magnitude of all eigenvalues
are less than or equal to one.

The primary objective of this paper is to explore the mathematical and practical behavior of finite-
domain filters for applications to turbulent flow simulations. Focus is given to finite-difference schemes
that satisfy the summation-by-parts convention, with both diagonal and multi-diagonal norms. Bespoke
high-order filters are constructed for the schemes, with calibration that considers the spectral behavior at
boundaries and the integration norm of the numerical scheme. All filters considered will be contractive,
i.e., their eigenvalue spectra will all be 0 ≤ λ ≤ 1; however, additional analysis of the transient growth
will be performed using singular value decompositions. The filters (and underlying schemes) will be
applied to multiple test cases to evaluate the behaviors in a practical sense.

2 Analysis Methodology

2.1 Fourier Transforms
The standard technique for analyzing the behavior of a filter is to consider the spectral transfer function.
That is, one considers the Fourier transforms of both the filtered and unfiltered quantities, e.g.,

u (x) =

∞∑
k=0

Uke
ikx (1)

where i is the imaginary unit. Although properly defined on an infinite/periodic domain, it is nonetheless
insightful on finite domains. Accordingly, the transfer function in wavenumber space for point j in the
domain may be defined as

Gj (k∆x) =
Ûk

Uk
|j =

∑
l

ajle
ik∆x(l−j) (2)

where ajl are the entries of the filter matrix F and k∆x = [0, π]. In this expression, k the dimensional
wavenumber with its upper limit being the Nyquist wavenumber for the ∆x of the domain.

2.2 Eigenvalue Analysis
In the limit of infinite domains or the special case of periodicity, the spectral transfer function is exactly
equivalent to the eigenvalue spectrum of the filter matrix. On a finite, non-periodic domain, however,
these are no longer equivalent and preference should be given to the discrete eigenvalue decomposition,
i.e.

F = TΛT−1 (3)
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where T contains the eigenvectors and Λ the eigenvalues λj .The eigenvectors of F form a complete
basis, so any input signal may be represented as a linear combination of the eigenvectors. So long as all
eigenvalues are real and 0 ≤ λj ≤ 1, the filter is deemed to be contractive and repeated application will
not result in continuous growth of content.

2.3 Singular Value Decompositions
General filters of interest are not guaranteed to be symmetric with respect to the mass matrix Pf .
Therefore, the set of eigenvectors will be non-orthogonal. While the eigenspectrum may be contractive,
non-orthogonality of the eigenvectors allows the possibility of a transient growth phenomenon to occur.
This behavior is illustrated in Fig. 2, in which the vector w = v1 + v2. Although the contribution
of v2 decreases from n to n + 1 and the contribution of v1 remains constant, reflecting an associated
eigenvalues being less than or equal to one, the overall magnitude of w increases.

Figure 2: Transient growth phenomenon due to non-orthogonal vectors.

The transient growth induced by a filter matrix can be found by considering the weighted norms of
the input and output vectors. A generalized discrete norm takes the form,

∥a∥2M = aTMa (4)

where M is a symmetric positive definite weighting matrix. It then follows that

∥û∥2M
∥u∥2M

=
uTFTMFu

uTMu
(5)

Thus, the optimum growth of the vector magnitude is then found by taking the singular value decom-
position of RFR−1 where M = RTR is found using a Cholesky decomposition.

The choice of the weighting matrix M can be subjective for different applications. Choosing the
identity matrix returns an L2-norm that may be interpreted as the energy of the solution vector. Volu-
metric weighting may be used if available, as could the mass matrices of the associated numerical scheme
if they are symmetric positive definite.

3 Brief Overview of High-Order Filters
The general form of the high-order filters considered in this work is,

Pf û =
[
Pf − C∆x2nD2n

]
u = PfFu (6)

In this expression, û is the filtered value of u, Pf is a suitable integration norm, D2n is an even-order
derivative operator, and C is a diagonal matrix of weights usually chosen based on Fourier analysis of
the filter stencil.

The form of Eq. 6 can be extended to include additional even-order derivative operators on the left-
or right-hand sides; however, these have the effect of either lowering the formal accuracy of the filter
and/or significantly increase the filter’s computational cost.
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3.1 Conservation and Consistency
For this work, particular interest is placed on filters that are conservative and consistent. Conservation
in the sense used here is two-fold: First, it is expected that a constant signal is returned as a constant
signal, i.e.

F1 = 1 (7)

where 1 is a vector where every entry is 1. Second, it is expected that the mass matrix can be written
as a valid quadrature rule over the domain, i.e.

ˆ xR

xL

ϕdx = 1TPfϕ+O
(
∆xP

)
(8)

Satisfying this property may require modification of the C matrix to ensure proper weighting.
Consistency is defined here as the Pf mass matrix matching that of the underlying differencing

scheme. With this quality, the filter can be constructed to not conflict with the stability characteristics
of the differencing scheme, e.g. the filter can satisfy energy and/or entropy stability with respect to the
reference P norm. As will be shown below, a lack of consistency can actually introduce an instability
even if the filter is provably contractive (which is that all eigenvalues are less than one).

3.2 Lundquist-Nordström Filter
Recent work by Lundquist and Nordström[9] into the stability and accuracy of filters outlined sufficient
conditions for a filter to be contractive. They considered explicit (diagonal Pf ) and non-Padé implicit
(diagonal Pf , but D2n appears on the left-hand side) filters. Note that while Pf is a diagonal matrix, it is
not required to be the identity matrix. Lundquist and Nordström also enforce that D2n to be symmetric
positive semi-definite by defining it to be,

D2n = (−1)
n
DT

nMDn (9)

in which M is a diagonal and non-negative. For example, following the work of Penner and Zingg [10]
on dissipation operators, a filter that is 8th-order on the interior may be constructed using

D4 =



1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1


(10)

and
M = diag (0, 0, 1, . . . , 1, 0, 0) (11)

Consequently, the D8 operator takes the form

D8 =



1 −4 6 −4 1

−4 17 −28 22 −8 1

6 −28 53 −52 28 −8 1

−4 22 −52 69 −56 28 −8 1

1 −8 28 −56 70 −56 28 −8 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .


(12)

near the boundaries.
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This definition D2n is not necessarily unique, but it is convenient. With these definitions and appro-
priate constraints on the entries of Pf , the filter is contractive with guaranteed stability in the Pf -norm.
On the interior of the domain, the entries of the C matrix takes on the value,

C =
1

4n
(13)

Note that the values will always be positive in this specific formulation since the manner by which D2n

is constructed guarantees positive entries on the main diagonal for all n.
Near the boundaries, the entries of C and/or Pf can be adjusted to provide desired characteristics.

For example, Lundquist and Nordström [9] offer for the 8th-order filter

Pf = diag
(

1

16
,
5

16
,
11

16
,
15

16
, 1, . . . , 1,

15

16
,
11

16
,
5

16
,
1

16

)
(14)

which, by Fourier analysis with C = 1
256I, removes the πthmode at all points in the domain. It should be

noted that such a mass matrix, as written, is neither conservative nor consistent; however, its diagonal
nature can allow one or both qualities to be rectified by scaling entries of the C matrix.

3.3 Padé Filters
Improved spectral support of the filter (i.e., a higher roll-off wavenumber) can be obtained through the
use of a tri- and pentadiagonal mass matrix Pf to create a Padé-like transfer function. Such filters
are often used in tandem with Padé compact finite differencing, which already have improved spectral
support and offer the existing machinery for evaluating such a filter. Thus, it is not uncommon for the
bandwidth of Pf to be the same as the underlying differencing scheme.

One notable, practical example of Padé-type filters is the Visbal-Gaitonde filter [2]. For interior
points, the filter is structured as

αf ûj−1 + ûj + αf ûj+1 = αfuj−1 + uj + αfuj+1 − C (1− 2αf )∆x2nD2nuj (15)

Treatment of the boundary points is done by reverting to lower-order derivatives and biased stencils
calibrated to remove the πthoscillatory mode. This filter is used within the well-known FDL3DI solver
[2], which employs a 6th-order compact differencing scheme with tridiagonal norm with an 8th-order
interior filter. The value of αf is a user-specified parameter satisfying −1/2 < αf < 1/2. In the special
case of αf = 0, the filter reverts to an explicit filter of order 2n. The value of αf also need not be
constant in the domain, and is often modified at the boundary to improve numerical behavior. It is
important to note, however, that the mass matrix of the Visbal-Gaitonde filter generally does not match
that of the underlying differencing scheme, nor is it a symmetric positive definite matrix. Thus while the
Visbal-Gaitonde filter is demonstrably contractive, it lacks provable stability properties in the general
case.

An alternative method for constructing Padé filters is to use an analogy to the Lundquist-Nordström
filters. In this sense, the differencing operator D2n is built using Eq. 9. However, this makes the
boundary stencils fully prescriptive rather than allowing a mix-and-match approach based on desired
spectral properties.

To help provide provable stability properties, it is of interest to restrict the filter mass matrix to be
consistent with that of the differencing scheme. For the Visbal-Gaitonde filter, this implies reducing αf

to 1/3 rather than the more typical values in the range of 0.40-0.45. Another combination of interest
is the bandwidth-optimized, pentadiagonal-norm summation-by-parts Padé scheme proposed by Coder
[11]. The consistent interior filter stencil takes the form

− 5

128
ûj−2+

5

32
ûj−1+

49

64
ûj +

5

32
ûj+1−

5

128
ûj+2 = − 5

128
uj−2+

5

32
uj−1+

49

64
uj +

5

32
uj+1−

5

128
uj+2

+
3

8

(
−uj−4 + 8uj−3 − 28uj−2 + 56uj−1 − 70uj + 56uj+1 − 28uj+2 + 8uj+3 − uj+4

256

)
(16)

A comparison of the 8th-order tridiagonal-norm Visbal-Gaitonde filter interior transfer function for vari-
ous αf and the pentadiagonal norm filter are shown below in Fig. 3. Reducing αf decreases the effective
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rolloff number of the filter, and the pentadiagonal norm provides a similar transfer function to the
tridiagonal-norm filter with αf = 1/3. In all cases, the Padé-type filter provides increased wavenumber
support compared to an explicit filter of the same order.

Figure 3: Comparison of interior stencil transfer function for various Padé filters.

3.4 Treatment of Boundary Points
An question for filter application is whether or not points on the boundary should be included in the
filtering operation. The practical answer arises from how boundary conditions are imposed. For codes
that rigidly specify the boundary condition at the boundary node, it is sensible to exclude this point
from the filtering process. Take, for instance, imposing zero velocity at a no-slip boundary. Filtering
that point could introduce a non-zero velocity there, violating the boundary condition. Re-imposing the
boundary condition after filtering then may serve as a noise generator into the domain. Excluding the
point in an explicit filter is straightforward and does not affect the rest of the domain. With an implicit,
Padé-type filter, the global coupling of the mass matrix introduces an interaction between the boundary
and interior stencils. Hence, the πthmode might persist on the domain interior even though the stencils
were calibrated to fully remove it. This is illustrated below in Fig. 4, which shows how the unfiltered
boundary affects the response of the Visbal-Gaitonde filter with αf = 0.45 [2].

(a) N = 17 (b) N = 33

Figure 4: Effect of domain size on πth-mode response of Visbal-Gaitonde filter with αf = 0.45.

Alternatively, codes that use penalty fluxes or simultaneous approximation terms permit the boundary
node to not be exactly equal to the desired boundary condition. In such cases, there is no intrinsic
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advantage to exactly preserving the boundary node at the expense of other advantageous filter properties
or interior domain behavior. Since the entire domain is filtered, smoothness is maintained, and the
penalty term at the boundary coerces the solution to satisfy the boundary conditions.

Focus in the subsequent analyses is restricted to filters that include the boundary point and work
with differencing schemes that fall within the SBP-SAT paradigm. Furthermore, 8th-order filters will be
used as representative examples of their respective types.

4 Analysis

4.1 Removing the πthMode at Boundaries
Constructing a filter to remove the πthmode near domain boundaries is widely assumed to be desirable,
but it requires deeper inspection. Consider the behavior of 8th-order Lundquist-Nordström filter with
πth-mode removal as described above. The resulting transfer functions at the boundary points is shown
in Fig. 5. There is a distinct penalty incurred in that overshoots in the transfer function become
substantially larger. This is unavoidable with the boundary formulae and the goal of removing the πth

mode. Because it is an explicit formulation, these behaviors are independent of domain size.

Figure 5: Lundquist-Nordström filter boundary transfer function with Pf chosen to remove πth mode.

Per Lundquist and Norström, the filter matrix is contractive with all eigenvalues being positive and
0 ≤ λ ≤ 1. The filter is symmetric with respect to the provided definition of Pf and thus the spectrum
of singular values is equal to the eigenspectrum. Since the leading singular value is unity, no transient
growth would occur against that norm. Unfortunately, this mass matrix is non-conservative and is thus
inconsistent for use with any conservative differencing scheme. If one uses, say, the mass matrix of a
standard 4th-order SBP differencing scheme with,

P = diag
(
17

48
,
59

48
,
43

48
,
49

48
, 1, . . . , 1,

49

48
,
43

48
,
59

48
,
17

48

)
(17)

the leading singular value of RFR−1 where P = RTR is found to be σ1 = 1.05849971 for a domain
with N = 9 and asymptotes to σ1 = 1.05504612 for large N . The associated right singular vector for
N = 33 is plotted in Fig. 6. In other words, any content in the domain with this mode shape will grow
by 5-6% with each application of the filter. It is evident from this filter (and, practically speaking, all
filters of the general form considered in this work) that damping the πthmode at boundaries will lead
to assymmetry of the filter matrix with respect to a conservative P norm (note that conservatism is
a weaker test than consistency) and can be assumed to induce transient growth. Therefore, any filter
that is consistent and symmetric cannot be expected to remove the πthmode at the boundaries. This is
not necessarily problematic, however. Asserting the presence of a πthmode at the boundaries implicitly
assumes the validity of a Fourier expansion in this region, which is inherently contradictory. Rather, it
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Figure 6: Leading right singular vector for N = 33.

is more appropriate to think in terms of the finite matrix properties than in terms of Fourier spectral
response. Redefining Pf to be consistent with the aforementioned 4th-order SBP scheme yields the
boundary response shown in Fig. 7. While the πthmode isn’t removed, the overshoots are substantially
reduced, and the symmetry of RFR−1 keeps the leading singular value exactly at 1, thereby precluding
any transient growth.

Figure 7: Lundquist-Nordström filter boundary transfer functions with consistent Pf .

Similar general behaviors are observed with Padé-type filters. Here, a tridiagonal Pf with cascade-
norm boundary closure [12] is used based on a 6th-order finite-difference scheme. The boundary behaviors
for N = 33 are plotted in Fig. 8, comparing removal of the πthmode versus preserving the symmetric
structure of the matrix. As with the diagonal norm, forcing removal of the πthmode leads to much larger
amplitude overshoots at the endpoints. This contributes to a transient growth mode, as the leading
singular value ranges from σ1 = 1.01944896 at N = 9 and asymptoting to σ1 = 1.01781687 for large N .
When

4.2 Energy and Entropy Stability
It is often desirable for the underlying numerical schemes to contribute some degree of energy or entropy
stability for simulating the desired system. The intent of the filter is to augment that stability by
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(a) πthMode Removed (b) Symmetric Filter

Figure 8: Effect of removing the πthmode near the boundaries of a Padé-type filter with N = 33.

helping to prevent non-physical over/undershoots and providing a dealiasing effect for non-linear terms.
The semi-discrete energy stability of a scalar system may be expressed as,

uTP du
dt

=
dE

dt
≤ 0 (18)

where E = 1
2u

TPu. Hence, the leading singular value of RFR−1 is a direct measure of the energy
stability. If σ1 ≤ 1, then the filter can be regarded as provably dissipative, whereas σ1 > 1 suggests a
destabilizing effect.

The mathematical analyses thus far have considered filter behaviors primarily in the context of scalar
equations. Nevertheless, fluid-dynamic systems are vector equations requiring a matrix integration norm
to meaningfully evaluating the magnitude of a solution perturbation. A prominent norm is that of
Chu[13], which defines the total disturbance energy as,

E =
1

2

ˆ (
RT̄ρ′2

ρ̄
+ ρ̄u′

iu
′
i +

ρ̄CvT
′2

T̄

)
dV (19)

where the prime denotes a perturbation from the reference condition denoted by the overbar. Accordingly,
the contribution from each point may be written as,

dE = q′TMq′ (20)

where q′ contains the primitive variables ρ, ui, T , and the weighting matrix M is

M = diag
[
RT̄

ρ̄
, ρ̄, ρ̄, ρ̄,

ρ̄Cv

T̄

]
J−1 (21)

where J−1 is the inverse of the local curvilinear transformation Jacobian (i.e., the local volume). It
was recently shown by Vogel and Coder[14] that a total disturbance entropy can be calculated using
the Chu weighting matrix divided by reference temperature. Because M is diagonal, the singular values
of the vector filter are identical to those of the scalar filter. Thus, filtering the primitive variable set
[ρ, u, v, w, T ] offers provable energy and entropy stability to Navier-Stokes simulations.

Other variable sets may be used with the Chu norm and/or Vogel-Coder norm by including the
Jacobian relating them to the above-defined set of primitive variables. In other words,

dE = w′T qTwMqww
′ (22)

The transient growth behavior of the filter then becomes dependent on qw (i.e., how dense the matrix is),
the specific distribution of volumes J−1, and whether or not the reference condition is uniform in space.
Therefore, generalized statements about the matrix-norm transient growth for an arbitrary variable set
may not be possible.
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5 Test Cases

5.1 One-Dimensional Linear Advection
The first test case considered is linear advection diffusion,

∂u

∂t
+ a

∂u

∂x
= 0 (23)

on x = [0, 1]. The domain is taken to be periodic; however, the periodicity is imposed by imposing the
rightmost value from the domain interior as the target value on the boundaries at both x = 0 and x = 1.

For this study, the advection speed is taken to be a = 1 (right-moving), and the initial condition is a
Gaussian bump,

u (x, 0) = exp

[
−
(

10

∆x

)(
x− 1

2

)2
]

(24)

Two different sets of simulations were considered. Grid spacing of ∆x = 0.02 is used, and the equation is
integrated using a 4th-order Runge-Kutta method with CFL condition of 0.5. The first set employs the
4th-order bandwidth-optimized SBP scheme with diagonal P described by Coder [11]. Three different
variations were considered: unfiltered, use of an inconsistent 8th-order filter that removes the πthmode,
and a fully consistent, symmetric 8th-order filter. The filters are applied after every global time step (as
opposed to after every stage). The resulting waveforms after 20 periods are shown in Fig. 9. All three
solutions share a similar peak amplitude of the waveform, but the oscillatory behavior around the peak
differs significantly. The unfiltered result has a strong oscillation through the domain. The asymmetric
filter damps the oscillations trailing the waveform, but seems to excite the leading oscillations, as it
has higher amplitude than the unfiltered result. The symmetric filter damped the trailing oscillations,
and improved over the unfiltered result ahead of the waveform. The respective L2-norms of the errors
are 0.9666 for the unfiltered results, 1.1277 with the asymmetric filter, and 0.8086 with the symmetric
filter. Further insight may be gained by comparing the relative spectral content of the initial and final
waveforms, as shown in Fig. 10. The two filters damp the poorly resolved content at higher wavenumbers;
however, it is observed that the asymmetric filter has a backscatter effect where the energy content at
lower wavenumbers slightly increased through the simulation. This is consistent with the notion of
transient growth implied by non-orthogonality of the eigenvectors.

Figure 9: Waveform comparison of linear advection of Gaussian bump after 20 periods for diagonal P.

The second set of simulations employ a pentadiagonal, 4th-order accurate Padé scheme with 3rd-order
summation-by-parts boundary closure [11]. A comparison of the results for unfiltered, asymmetrically
filtered, and symmetrically filtered solutions show the same trends as the case with a diagonal P. The
unfiltered result has additional oscillations throughout the domain, and application of an assymetric
filter that fully removes the πthmode increases the oscillations upstream of the wave. The symmetric
filter shows generally improved behavior. The L2-norms of the errors are 0.8462 for the unfiltered results,
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Figure 10: Spectral content comparison of linear advection of Gaussian bump after 20 periods for diagonal
P.

0.8652 with the asymmetric filter, and 0.7058 with the symmetric filter. As with the diagonal scheme,
the assymetric filter shows a backscatter effect at lower wavenumbers.

Figure 11: Waveform comparison of linear advection of Gaussian bump after 20 periods for pentadiagonal
P.

5.2 2D Inviscid Homogeneous, Isotropic Turbulence
The second test case considered is the inviscid advection of 2D, homogenous, isotropic turbulence at
incompressible conditions. For these simulations, a vorticity-based formulation is used, i.e.

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0 (25)

This equation is solved on a uniform grid with x = [−π, π] and y = [−π, π], each 129 points (endpoints
inclusive). The residual is evaluated in a non-conservative from, with the derivatives of ω calculated
using a finite-difference scheme, and the velocities determined from ω using fast Fourier transforms.
To exercise the influence of boundary contributions, a background velocity of u∞ = 1 is added as the
constant of integration. Periodic boundaries are used with the boundary fluxes specified to the arithmetic
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Figure 12: Spectral content comparison of linear advection of Gaussian bump after 20 periods for pen-
tadiagonal P.

average of the end-point fluxes (i.e., centrally differenced). The initial condition is generated as a random
distribution of random-strength Taylor-type vortices based on the work of Ref. [15]. The same initial
condition is used for all simulations, and is plotted in Fig.

Figure 13: Initial condition on ω for inviscid HIT.

The nonlinearities and chaotic dynamics of the advection terms provide a practical test of the dif-
ferencing scheme and filters. As an inviscid, incompressible formulation, the integrated kinetic energy
in the domain should be exactly preserved, thus providing a quantitative metric for evaluating the fil-
ters. Results are shown in Fig. 14 for the total kinetic energy predicted by the 4th-order explicit and
4th-order Padé scheme with pentadiagonal schemes with asymmetric and symmetric filters. With the
diagonal-norm scheme, both filters show similar qualitative behaviors, but the symmetric filter preserves
the kinetic energy better over the course of the simulation. For the pentadiagonal norm, the asymmetric
filter is poorly behaved, showing erratic response in the kinetic energy. The symmetric filter is over-
all better behaved and is closer to the desired monotonic behavior. Note that neither symmetric filter
showed perfectly dissipative kinetic energy, but this is a side-effect of using a vorticity formulation rather
than a velocity formulation to the equations. To confirm this, the time history of integrated enstrophy,
E =

˜
ω2dA, for the diagonal-norm schemes was interrogated and the results are shown in Fig. 15.

Both the symmetric and asymmetric filters show very similar response over the course of the simulation.
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With a symmetric filter, the enstrophy decay is fully monotonic, whereas with the asymmetric filter,
there is a slight increase in enstophy around t = 0.05. While small and ultimately inconsequential for
this simulation, it does confirm a slight instability when the πthmode is forced to be removed.

(a) Diagonal-norm Explicit Scheme (b) Pentadiagonal-norm Padé Scheme

Figure 14: Evolution of integrated kinetic energy for inviscid, homogeneous isotropic turbulence.

(a) Full evolution (b) Initial evolution

Figure 15: Evolution of enstrophy from diagonal-norm schemes.

The final states from the various simulations are shown in Figs. 16 and 17, and energy spectra are
plotted in Fig. 18. Visually, there is not an appreciable difference in the turbulence content whether a
symmetric or an asymmetric filter is used, and this is supported quantitatively by the energy spectra.
All schemes show similar distributions up until the highest wavenumbers, which is where the filters are
most active. The backscatter that was observed for the linear advection case was not observed, and this
is presumably because the vorticity equation is nonlinear and naturally transfers energy from lower to
higher wavenumbers.

6 Conclusion
High-order, finite-domain filters were investigated in the context of turbulent flow simulations. Although
the interior filter stencils are calibrated based on Fourier analysis, such an analysis is not appropriate
near the domain boundaries due to the lack of periodicity. Instead, it is more appropriate to use matrix
analyses to understand the transfer function (it is worth noting that in the limit of an infinite/periodic
domain, the matrix eigenvalues equal to Fourier eigenvalues). It was observed that many filters calibrate
their stencils near the boundaries to remove the πthmode based on Fourier analysis. When consid-
ered with respect to the integration norms of the underlying finite-difference or finite-volume scheme,
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(a) Symmetric Filter (b) Asymmetric Filter

Figure 16: Final HIT states obtained with the diagonal-norm scheme.

(a) Symmetric Filter (b) Asymmetric Filter

Figure 17: Final HIT states obtained with the pentadiagonal-norm scheme.

(a) Diagonal-norm Explicit Scheme (b) Pentadiagonal-norm Padé Scheme

Figure 18: Energy spectra of the final HIT states.

inconsistency occurs which leads to the filter matrix being generally non-symmetric. This leads to non-
orthogonal eigenvectors, which permits transient growth of solution content through filter application,
despite having a contractive eigenvalue spectrum.
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Behaviors of bespoke finite-domain filters for two different summation-by-parts finite-difference schemes
were analyzed, one with a diagonal norm, and one Padé scheme with pentadiagonal norm. For both differ-
encing schemes, an inconsistent filter that forces removal of the πthmode at boundaries and a consistent,
symmetric filter were used. When tested with the linear advection of a Gaussian bump, the symmetric
filters outperformed the asymmetric filters in final solution accuracy. Moreover, the asymmetric filters
were found to induce some backscatter of content to lower wavenumbers.

Application of the schemes and filters to advection of two-dimensional, inviscid, incompressible tur-
bulence confirms improved behavior of symmetric filters versus forcing removal of the πthmode at bound-
aries. The symmetric filters showed better preservation of the kinetic energy through the simulation,
despite the use of a vorticity formulation. Monotonic decay of enstrophy was confirmed for the symmet-
ric filter. The asymmetric filter showed a slight growth in the initial stages of the simulation, but the
long-time behavior was consistent with the symmetric filter.

Overall, it is recommended that filters be constructed so that they are consistent and symmetric
with respect to the norm of the underlying numerical scheme. This may require forgoing removal of the
πthmode at boundaries, but as discussed above, the argument for doing so is contradictory to having a
finite domain.
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