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Abstract: The necessity of enforcing conservation in computational elements or cells (element 
conservation) for discontinuous solutions is well understood and respected for solving 
conservation laws in computational fluid dynamics (CFD). In contrast, interface conservation, 
where the conservation across cell interfaces is enforced, is long ignored, and yet is also ruled 
and required by the underlying physics just like element conservation. The interface 
conservation is examined and explored thoroughly in this work. A novel error indicator based 
on the interface conservation is developed as a weight function in a r-adaptive grid method and 
implemented in a discontinuous Galerkin (DG) finite element method. A number of numerical 
experiments are conducted to assess the effectiveness of the interface conservation-based error 
indicator and performance of the resulting r-adaptive DG method. Numerical results for a 
variety of flow problems obtained demonstrate that the physics-based error indicator can 
reliably and efficiently detect and identify all types of discontinuities for inviscid flows and all 
under-resolved flow features and regions of high gradient solutions for viscous flows. The r-
adaptive DG method is able to align mesh cell interfaces with discontinuities, and effectively 
offer anisotropic mesh adaption for both inviscid and viscous shock waves and isotropic mesh 
adaptation for singularities and under-resolved flow regions.   
Keywords:    Computational Fluid Dynamics, Interface Conservation, Discontinuous Galerkin 
Methods, r-Adaptive Mesh Method. 

 
1     Introduction 
 
The discontinuous Galerkin (DG) finite element methods [1-30] have become a popular choice to solve 
conservation laws with arbitrary order of accuracy. They are widely used in different computation areas 
including computational fluid dynamics, computational acoustics and computational 
magnetohydrodynamics. The discontinuous Galerkin methods have many attractive advantages like 1) 
its ability to achieve high-order (>2nd) accuracy on fully unstructured grids; 2) useful mathematical 
properties with respect to conservation, stability and convergence; 3) its adjoint consistency to be 
powerful for adjoint-based optimization. In addition, the methods can also handle non-conforming 
elements, where the grids are allowed to have hanging nodes. Furthermore, spacetime discontinuous 
Galerkin methods [31-33] provide discretization of systems of conservation laws by simultaneously 
discretizing space and time. Like other DG methods, the spacetime DG method also offers the prospect 
of both arbitrary-order accuracy in space and time and adjoint consistency. However, the DG methods 
have a number of weaknesses that have not yet be addressed. Besides of computational cost and storage 
requirement, one aspect is how the properties behave in flows that are not smooth and contain 
discontinuous interfaces, such as material interface and shocks. Even though DG explores a set of 
discrete function space with discontinuous, piecewise polynomials and it can represent the 
discontinuous interfaces in principal, this requires that the interfaces are aligned with the grids. The 
stability of the DG approach may fail when misaligned grid is used. Indeed, how to control spurious 
oscillations in the presence of strong discontinuities has been an outstanding issue, whose 
mathematically sound and numerically effective solution has been an active research subject for many 
decades. 
 
Moving grid methods [34-37] are a widely used approach for solving a variety of flow problems in 
computational fluid dynamics. In Lagrangian hydrodynamics, grids are moved to tracking contact 
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discontinuities and material interfaces. Arbitrary Lagrangian-Eulerian (ALE) methods are widely used 
for moving and deforming boundary problems. In R-adaptation methods, mesh points are moved into 
regions of needed high resolution, which can significantly increase solution accuracy. In shock-fitting 
schemes, grids are moved to track shock waves.  
 
Recently, a moving discontinuous Galerkin finite element method with interface condition enforcement, 
termed MDG-ICE, was formulated for compressible flows with discontinuous interfaces by Corrigan 
et al. [38-41], where both conservative quantities and discrete grid geometry are treated as independent 
variables and both conservation laws and interface conservation (IC) are solved simultaneously in the 
space-time domain. In the MDG-ICE formulation, a space-time DG formulation is used to solve the 
governing equations in the standard discontinuous solution space, and the geometry variables are 
determined by enforcing the interface condition in its discontinuous solution trace space. A variant of 
MDG-ICE [42,43] was introduced by Luo et al., where a different variational formulation is used to 
enforce the interface conservation. Two attractive features of the MDG-ICE method, among others, are 
1) no strategies in the form of a limiter or an artificial viscosity are required to eliminate spurious 
oscillations in the vicinity of discontinuities and thus maintain the nonlinear stability of the DG 
methods, as interfaces are detected by the interface condition enforcement, and tracked by the grid 
movement and the interface condition; and 2) no numerical fluxes in the form of a Riemann solver have 
to be needed to maintain linear stability of the DG methods. Numerical results obtained indicate that 
the MDG-ICE methods are able to deliver the designed order of p-convergence even for discontinuous 
solutions, and detect and fit all types of discontinuities and interactions of different discontinuities due 
to the interface condition enforcement and grid movement. 
 
The objective of the efforts presented in this work is to develop a r-adaptive DG method for solving 
compressible viscous flow problems by exploring the interface conservation. A novel error indicator 
based on the interface conservation is introduced in the weight function of the r-adaptive grid method. 
A number of numerical experiments for both inviscid and viscous flow problems are conducted to assess 
the effectiveness of the interface conservation-based error indicator and performance of the resulting r-
adaptive DG method. Preliminary numerical results for a variety of flow problems are highly promising 
and encouraging, demonstrating that the physics-based error indicator can reliably and efficiently detect 
and identify all types of discontinuities for inviscid flows and all under-resolved flow features and 
regions of high gradient solutions for viscous flows. The r-adaptive DG method is able to align mesh 
cell interfaces with discontinuities, and effectively offer anisotropic mesh adaption for both inviscid 
and viscous shock waves and isotropic mesh adaptation for singularities and under-resolved flow 
regions. The remainder of this paper is organized as follows. The governing equations are described in 
Section 2. The developed r-adaptive DG method is presented in Section 3. Numerical experiments are 
reported in Section 4. Concluding remarks and future work are given in Section 5. 
 
2     Governing Equations 
 
The Reynolds-averaged Navier-Stokes equations governing unsteady compressible viscous flows over 
any region Ω with boundary Γ=∂Ω can be expressed as 
 

𝜕𝐔
𝜕𝑡

+
𝜕𝐅&
𝜕𝑥&

	= 		
∂𝐆𝐣
𝜕𝑥&

																																																																	(2.1) 

 
where the summation convention has been used. The conservative variable vector U, inviscid flux 
vector F, and viscous flux vector G, are defined by 
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Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui 
is the velocity of the flow in the coordinate direction xi. The pressure can be computed from the equation 
of state 

 
                                                                                                                                       (2.3)                                                      

 
which is valid for perfect gas, where γ is the ratio of the specific heats. The components of the viscous 
stress tensor σij and the heat flux vector are given by 
 

                                                                                                                                                          
(2.4) 

 
 
In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number, which is taken 
as 0.7 for air. μ represents the molecular viscosity, which can be determined through Sutherland’s law 

 
                                                                                                                                                             

(2.5) 
 
 

μ0 denotes the viscosity at the reference temperature T0, and S is a constant which for are assumes the 
value S = 110oK. The temperature of the fluid T is determined by 

                                                                                                                                                                                   
(2.6) 

 
Neglecting viscous effects, the left-hand side of Eq. (2.1) represents the Euler equations governing 
unsteady compressible inviscid flows. 
 
3      r-Adaptive Discontinuous Galerkin Method Based on the Interface 
Conservation 
 
3.1 Discontinuous Galerkin method 
 
The system of the governing Navier-Stokes equations is discretized in space using a DG finite element 
formulation. In a DG method, the computational domain Ω is divided by a set of non-overlapping 
control volumes Ωi. We use Ge to denote the boundary of We and n the unit outward normal vector to 
Ge. We introduce the following broken Sobolev space 𝐕B

C 
 

	𝐕B
C = {𝑣B ∈ {𝐿H(Ω)}K:		𝑣B|NO ∈ 	𝑉C

K			∀ΩR ∈ Ω	},																																																							(3.1) 
 
which consists of discontinuous vector-valued polynomial functions of degree p, and where m is the 
dimension of the unknown vector and 
 

𝐕BK = 𝑠𝑝𝑎𝑛	{	∏	𝑥5
YZ ∶ 		 0 ≤ 𝛼5 ≤ 	𝑝, 0 ≤ 𝑖 ≤ 𝑑}	 																																																				(3.2) 

 
where a denotes a multi-index and d is the dimension of space. To formulate the discontinuous Galerkin 
method, we introduce the following weak formulation, which is obtained by multiplying the above 
Navier-Stokes equations (2.1) by a test function wh, integrating over an element We, and then performing 
an integration by parts, 
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where Uh and wh are represented by piecewise-polynomial functions of degrees p, which are 
discontinuous between cell interfaces. Assume that Bi is the basis of polynomial function of degrees p, 
Eq. (3.3) is then equivalent to the following system of N equations, 
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where N is the dimension of the polynomial function space. Since the numerical solution Uh is 
discontinuous between element interfaces, the interface fluxes are not uniquely defined, and need to be 
computed carefully for the consideration of stability. This scheme is called discontinuous Galerkin 
method of degree p, or in short notation DG(P) method. By simply increasing the degree p of the 
polynomials, the DG methods of corresponding higher order are obtained. The domain and boundary 
integrals in Eq. (3.4) are calculated using Gauss quadrature formulas. The number of quadrature points 
used is chosen to integrate exactly polynomials of order of 2p and 2p+1 for volume and surface inner 
products in the reference element. In the DG methods, numerical polynomial solutions Uh in each 
element are expressed using either standard Lagrange finite element or hierarchical node-based basis 
as below    

𝐔y =z𝐔{

|

{}~

B{(x, t)																																																																				(3.5) 

 
where Bi are a set of the finite element basis functions. In the present work, the piecewise polynomial 
solutions are represented using a linear Taylor series expansion at the cell centroid, which can be expressed as a 
combination of cell-averaged variables and their gradients at the cell centers regardless of the element shapes. As 
a result, the very same numerical polynomial solutions are used for arbitrary shapes of elements, which can be 
triangle, quadrilateral, and polygon in 2D, and tetrahedron, pyramid, prism, and hexahedron in 3D. 
 
3.2 r-adaptive grid method 
 
Adaptive methods have been extensively developed and used to improve the accuracy of numerical 
solutions for the last few decades. The basic idea underlying most adaptive methods is to assess the 
quality of an initial numerical solution by using some form of a posteriori error estimate and then to 
dynamically change the mesh and/or the solution space, in a systematic manner, to improve the quality 
of the solution. In the r-adaptive mesh methods [46-49], grid points are repositioned in such a way that 
the grid is dense in regions of large error and coarse in regions of smoother solution. Most r-adaptive 
grid methods are based on the error equidistribution principle. The basic idea behind them is to 
equidistribute the solution error over mesh edges, 

 

n 𝑤(𝑥)𝑑𝑥 = Constant	

��

�Z

																																																																			(3.6) 
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where xi and xj are the position for the two nodes of an edge ij and w is a positive scalar error function 
termed weight or monitor function. The solution of Eq. (3.6) is equivalent to solving the Euler-Lagrange 
equation, 
 

�
�x
�𝑤 ��

�x
� = 0																					                                                     (3.7) 

 
where x and x denote the physical and computational coordinates, respectively.  When the mesh is 
viewed as a network of springs whose stiffness constants represent the edge-based weight function w, 
the solution of the Euler-Lagrange equation can be obtained from the solution of an energy 
minimization problem. For each node i,  
 

min
�Z

𝑃5=min�Z
∑ �𝑥5 − 𝑥&�

H𝑤5&&                                                  (3.8) 
 
where Pi denotes the potential energy of the all active springs sharing the node i and wij are their 
associated stiffness constants. After simplifying the constant and collecting the contributions of each 
node, Eq. (3.3) is reduced to the system describing the equilibrium state of a spring network, 

 
z(𝑥5 −
&

𝑥& )𝑤5& = 0																																																																		(3.9) 

 
which is simply solved using a relaxation Jacobi method in this work.  
 
3.3 Error indicator based on the interface conservation 
 
An important step in the r-adaptive grid methods is to determine the weigh function w. Different error 
estimation techniques, which are used in a posteriori error estimation, can be classified into three major 
groups [46]: interpolation methods, post-processing methods, and element residual methods. Although 
these error estimate techniques are different, all of them are based on some types of mathematical error 
analysis and rely on certain smoothness of the differential solution, which is not the case for 
discontinuous flows. In fact, most error estimates found in the literature become singular at 
discontinuities. To remove this singularity and to make the adaptive grid sufficiently smooth, a grid 
smoothing procedure must be used. As a result, the grid adaptation near discontinuities is driven by the 
grid smoothing procedure rather than the error estimate itself. The error indicator we develop in this 
work is based on the interface conservation, which is ruled and driven by the underlying physics and 
which can effectively address the singularity issue at discontinuities. 
 
Traditionally, the governing equations for the conservation laws are only solved on elements ΩR 
(computational cells). Similarly, the conservation laws should be enforced on element interfaces ΓR as 
required by the physics. 
  

                                                                           
Figure 1. Illustration of a zero-thickness control volume on an interface 
 
Applying the conservation laws on a zero-thickness control volume along an interface Γ� as shown in 
red in Figure 1 leads to the following interface condition or jump condition for the flux function across 
the interface   
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(𝐅(𝐔B�) − 𝐆(𝐔B�)) ∙ 𝐧 − (𝐅(𝐔B�) − 𝐆(𝐔B�)) ∙ 𝐧 = 𝟎		 => 				 [(𝐅(𝐔B) − (𝐅(𝐔B)) ∙ 𝐧] = 0,																	(3.10) 

 
where 𝐔B� and 𝐔B�	are the conservative variable vector on the interface from the left and right elements 
respectively and the bracket is the so-called the jump operator. This is the so-called interface condition, 
which is also termed the transmission condition in the hybridized DG [44] or embedded DG [45] 
formulation. The interface conservation is never considered in all shock-capturing based schemes, 
because 1) it is automatically satisfied for smooth flows, as long as the flows are fully resolved, which 
can always be achieved by using high mesh resolution; 2) it can never be satisfied for flows with 
discontinuities by simply increasingly refined meshes, unless the discontinuities are aligned with mesh 
interfaces. In other words, the interface conservation can only be achieved, if and only if the mesh 
interfaces are aligned with discontinuities. Therefore, an error indicator based on the interface 
conservation can be used to effectively align mesh cell interfaces with discontinuities in the r-adaptive 
grid methods. As in our previous work [43], a continuous variational formulation is used for the 
interface conservation (3.10) to obtain the following residual vector at grid points, 
 

 R=	∫ [(𝐅(𝑢B) − (𝐅(𝑢B)) ∙ 𝐧]tO
	𝑣B𝑑Γ,																																																															(3.11) 

 
where 𝑣B is a test function in the continuous solution trace space. In addition, the interface conservation 
is only considered for the continuity equation, which is simple and valid for all types of flow problems 
and can detect and identify all types of discontinuities. Clearly, the residual R is zero in fully-resolved 
flow regions, can never be zero, as long as mesh cell interfaces are not aligned with discontinuities, and 
therefore serves as a highly reliable, robust, efficient, and simple discontinuity detector. The weigh 
function on a grid edge ij is then defined as 
 

𝑤5& = 1 + C�max	(|𝑅5|, |𝑅&|)                                                       (3.12) 
 
where Ri and Rj are the residual at nodes i and j of the edge ij from Eq. 3.11 and C is a user-specified 
constant, which can be used to control the clustering of grid points. Note that this error indicator is 
efficient and simple to compute and is able to align mesh cell interfaces with discontinuities, and 
effectively offer anisotropic mesh adaption for shock waves and isotropic mesh adaptation for 
singularities and under-resolved flow regions, as demonstrated in the next section.  
 
4     Numerical Examples 
 
The developed r-adaptive DG method is used to solve a variety of compressible flow problems. A few 
examples are presented here to assess the effectiveness of the error indicator based on the interface 
conservation and to demonstrate the accuracy, robustness, and ability of the r-adaptive DG method for 
both inviscid and viscous compressible flow problems.  
 
A. Linear advection-diffusion equation 
 
In this test case [40], the following advection-diffusion equation with Dirichlet boundary conditions 
 

��
��
= 𝜇 ���

���
     in (0,1) 

𝑢(0) = 0 
𝑢(1) = 1 

 
is considered and solved. The exact solution is given by  
 

𝑢(𝑥) = 	
1 − 𝑒�/ 

1 − 𝑒~/ 
 

 
and exhibits a boundary layer like profile at x=1, which can be used to qualitatively assess the ability 
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of the mesh adaptation strategy based on the interface conservation to cluster grid points to the boundary 
layer regions of high gradient solution (boundary layer like solution) and to quantitatively measure the 
accuracy and convergence of the r-adaptive discontinuous Galerkin methods. Numerical solutions on 
the initial uniform grid of ten cells and on the final r-adapted grids obtained by the DG(P1), DG(P2), 
DG(P3) and DG(P4) methods are compared with the exact solution in Figures 2-5, respectively. One 
can observe that the r-adaptation mesh method based on the interface conservation is extremely 
effective to cluster grid points towards the regions of high gradient solutions. As expected, the DG 
methods of all orders and even the fifth order accurate DG(P4) method are unable to produce an 
oscillation-free and accurate solution on an under-resolved uniform mesh of 10 cells, clearly indicating 
the motivation and need of having adaptive mesh methods. Au contrary, the DG methods of all orders 
and even the second order DG(P1) method are able to achieve accurate and oscillation-free solutions 
on the adapted grids. Figure 6 presents the convergence results for the DG methods of different orders 
on an initial uniform grid of 10 cells and adapted grids, where one can see that the DG(P1) solution on 
the adapted mesh is one order of magnitude more accurate than the DG(P4) solution on the uniform 
grid and the difference is even more profound for the higher DG methods. This example clearly 
demonstrates that our r-adaptive strategy based on the interface conservation is able to relocate grid 
points to initially under-resolved solution features, therefore allowing the r-adaptive DG methods to 
achieve highly accurate solutions for these solution features.  
 

  
Figure 2. The DG(P1) solutions on an initial uniform grid of 10 cells indicated by the red tick marks 
and on the r-adaptive mesh with blue tick marks are compared with the exact solution.   
 

  
Figure 3. The DG(P2) solutions on an initial uniform grid of 10 cells indicated by the red tick marks 
and on the r-adaptive mesh with blue tick marks are compared with the exact solution.   
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Figure 4. The DG(P3) solutions on an initial uniform grid of 10 cells indicated by the red tick marks 
and on the r-adaptive mesh with blue tick marks are compared with the exact solution.   
 
 

  
 
Figure 5. The DG(P4) solutions on an initial uniform grid of 10 cells indicated by the red tick marks 
and on the r-adaptive mesh with blue tick marks are compared with the exact solution.   
 
 

  
 
Figure 6. p-convergence of the DG methods on an initial uniform grid of 10 cells and on the r-adaptive 
mesh. 
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B. Inviscid transonic flow past a NACA0012 airfoil 
 
Although our main motivation of developing the r-adaptive DG methods is for hypersonic viscous flows 
characterized by a strong bow shock, the r-adaptation mesh method based on the interface conservation 
can be certainly used for inviscid flows and for relatively weak normal shock waves. As an illustrative 
example, an inviscid transonic flow past a NACA0012 airfoil at a Mach number of 0.8 and an angle of 
attack of 1.25o is presented using a DG(P1) method in this test case, which exhibits a number of different 
flow features: both strong and weak normal shocks, singularities (leading and trailing edges), and a 
trailing edge wake,  and therefore poses a great challenge for the interface conservation based r-
adaptation method to relocate more grid points to these regions and obtain more accurate solutions to 
these flow features simultaneously. Figures 7 and 8 show the global view and close-up of the initial and 
final r-adaptive meshes, respectively. The mesh consists of 1,999 elements, 1,048 grid points, and 97 
boundary faces with 73 faces on the surface of the airfoil. As one can observe from Figure 7, mesh 
points in the far field are effectively clustered towards the airfoil and wake region to provide more grid 
points and more accurate resolution to these regions. Alignments of mesh interfaces with a strong 
normal shock on the upper surface of the airfoil and a weak normal shock on the lower surface of the 
airfoil are clearly visible. More grid points are also relocated to the region of both leading and trailing 
edges. The r-adaptive mesh method is able to effectively provide anisotropic mesh adaption for shock 
waves and isotropic mesh adaptation for singularities like leading and trailing edges, as illustrated in 
Figure 8. The computed Mach number and pressure contours on the initial grid and the final adapted 
grid after 5 r-adaptations are compared in Figures 9 and 10, respectively. The computed pressure 
coefficient and Mach number on the surface of the airfoil between the initial and final adapted solutions 
are shown in Figure 11. As can be seen from these figures, the benefits of the r-adaptive mesh method 
are quite obvious: a more accurate solution near the stagnation point as witnessed by the smallest Mach 
number of 0.085 on the initial grid and the smallest Mach number of 0.0285 on the adapted mesh and 
the trailing edge, better resolution for the wake of the trailing edge, and much sharper and almost shock 
fitting look-like result for shocks.  

  
Figure 7. Global view of initial mesh (left) and adapted mesh after 5 r-adaptations (right)   
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Figure 8. Close-up of the initial mesh (left) and adapted mesh after 5 r-adaptations (right) 
 
 

 
 
Figure 9. Computed Mach number contours on the initial mesh (left) and adapted mesh after 5 r-
adaptations (right) 
 
 

  
 
Figure 10. Computed pressure contours on the initial mesh (left) and adapted mesh after 5 r-adaptations 
(right) 
 



 ICCFD12

  
Figure 11. Comparison of the computed pressure coefficient and Mach number on the surface of the 
airfoil on the initial mesh and the adapted mesh after 5 r-adaptations.  
 
C. Hypersonic viscous flow past a half-circular cylinder on a quadrilateral grid 
 
In this test case [40], a viscous hypersonic flow past a half-circular cylinder at a Mach number of 5 and 
a Reynolds number of 1,000 with an iso-thermal wall boundary condition is computed using a DG(P1) 
method on a grid of 40x20 quadrilateral elements with 40 and 20 cells in the circumferential and radial 
directions, respectively. The temperature at the isothermal wall is given as Twall =2.5T¥. where T¥ is the 
freestream temperature. Figure 12 presents the grid used in this test case and the corresponding pressure 
and temperature contours obtained by the DG(P1) solution. Figures 13-15 show the adapted meshes 
and the corresponding pressure and temperature fields computed by the DG(P1) method after one, three, 
and five r-adaptations, respectively. One can observe that our r-adaptive grid method is highly effective 
to relocate grid points to the bow shock region, provide anisotropic mesh adaptation to and align grid 
cell interfaces with the bow shock, and consequently significantly improve resolution of the bow shock. 
Figure 16 compares the computed pressure coefficients and Stanton number, which is a dimensionless 
coefficient for the normal heat flux, obtained by the DG(P1) method on the initial mesh and the final r-
adapted mesh. Even though the size of the mesh used in the computation is too small to provide a fully 
resolved solution, as witnessed by a large jump of pressure across element interfaces, the computed 
pressure coefficient and even Stanton number which is infamously known to be very difficult to 
compute accurately, are in good agreement with the reference solutions [40]. Even more surprisingly, 
the difference between these two solutions is quite small, considering the extremely poor resolution of 
the bow shock on the initial grid and excellent resolution of the bow shock on the final r-adapted grid. 
One possible explanation might be that the numerical error from the poor resolution of the shock wave 
is cancelled by the symmetry of the quadrilateral mesh used in the computation.  
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Figure 12. Initial mesh and the corresponding pressure and temperature contours 
 

   
 
Figure 13. Adapted mesh and the corresponding pressure and temperature contours after one r-
adaptation 
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Figure 14. Adapted mesh and the corresponding pressure and temperature contours after three r-
adaptations 
 

   
 
Figure 15. Adapted mesh and the corresponding pressure and temperature contours after five r-
adaptations 
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Figure 16. Comparison of the computed pressure coefficients (left) and Stanton number (right) between 
the initial mesh and the final r-adapted mesh. 
 
D. Hypersonic viscous flow past a half-circular cylinder on a triangular grid 
 
The same numerical experiment as Test Case C is conducted using a DG(P1) method on a grid of 1,178 
triangular elements, 645 grid points, and 110 boundary faces with 39 faces on the surface of the circular 
cylinder. Figure 17 presents the grid used in this test case and the corresponding pressure and 
temperature contours obtained by the DG(P1) solution. As expected, the DG(P1) solution is not 
symmetric due to the very nature of the triangular mesh used in this case and is highly inaccurate due 
to a lack of mesh resolution in the bow shock region. Figures 18-20 show the adapted meshes and the 
corresponding pressure and temperature fields computed by the DG(P1) method after one, three, and 
five r-adaptations, respectively. One can observe again that our r-adaptive grid method is highly 
effective to relocate grid points to the bow shock region, provide anisotropic mesh adaptation to and 
align grid cell interfaces with the bow shock, and consequently significantly improve resolution of the 
bow shock. Clearly, the DG(P1) solutions become more and more accurate and symmetric with more 
r-adaptations, which is attributed to the highly efficient anisotropic adaptation of the bow shock and 
relocation of grid points to under-resolved regions. Figure 21 compares the computed pressure 
coefficients and Stanton number obtained by the DG(P1) method on the initial mesh and the final r-
adapted mesh. As can be seen, the DG(P1) solution on the initial mesh is unable to obtain accurate 
pressure and heat fluxes, even though it provides a well resolved solution judging a relatively 
continuous solution of pressure across element interfaces. However, both pressure coefficient and 
Stanton number are accurately computed by the r-adaptive DG method on the final adapted mesh, 
producing similar or even more accurate solutions than the one on structured quadrilateral meshes.   
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Figure 17. Initial mesh and the corresponding pressure and temperature contours 

 

 
Figure 18. Adapted grid and the corresponding pressure and temperature contours after one r-
adaptations 
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Figure 19. Adapted grid and the corresponding pressure and temperature contours after three r-
adaptations 

 
Figure 20. Adapted grid and the corresponding pressure and temperature contours after five r-
adaptations 
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Figure 21. Comparison of the computed pressure coefficients (left) and Stanton number (right) between 
the initial mesh and the final r-adapted mesh.    
 
5     Conclusion and Future Work 
 
The interface conservation has been examined and explored thoroughly in this work. A novel error 
indicator based on the interface conservation has been introduced as a weight function in a r-adaptive 
grid method and implemented in a discontinuous Galerkin (DG) finite element method. A number of 
numerical experiments have been conducted to assess the effectiveness of the interface conservation-
based error indicator and performance of the resulting r-adaptive DG method. Preliminary results for 
a number of benchmark test cases are promising and encouraging, indicating that the physics-based 
error indicator can reliably and efficiently detect and identify all types of discontinuities for inviscid 
flows and all under-resolved flow features and regions of high gradient solutions for viscous flows. 
The r-adaptive DG method is able to align mesh cell interfaces with discontinuities, and effectively 
offer anisotropic mesh adaption for shock waves and isotropic mesh adaptation for singularities and 
under-resolved flow regions. Ongoing work is focused on extending the r-adaptive DG method for 
chemical- and thermo-nonequilibrium hypersonic viscous flows on 3D hybrid grids.   
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