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Abstract: This study presents the application of a direct Poisson solver combining domain de-
composition and influence matrix methods to the Direct Numerical Simulation (DNS) of oscillating
grid turbulence (OGT). Solving the pressure Poisson equation is one of the major challenges in
computational fluid dynamics. Traditional direct methods are accurate but difficult to be applied
to large-scale problems, while iterative methods can suffer from slow convergence. The hybrid
approach enables the use of the direct methods for the problem with complex computational ge-
ometry. The results show that this direct solver significantly reduces computation time compared
to the iterative BiCGSTAB method. The DNS results are validated against experimental data,
demonstrating good agreement in the vertical distribution of velocity fluctuation intensity. There-
fore, the efficiency of this direct method for simulating the OGT turbulent flows is confirmed.
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1 Introduction
Solving the pressure Poisson equation is the most time-consuming part in computational fluid dynamics
(CFD) for incompressible flows. The Poisson equation arises from the divergence-free constraint on the
velocity field, which is essential for maintaining incompressibility. There are two main categories of
methods to solve the Poisson equation, i.e. direct methods and iterative methods. The choice of method
depends on various factors including the nature of the Poisson equation to be solved, computational
resources, the desired accuracy, and computation time.

Direct methods for solving the Poisson equation, such as Gaussian elimination, LU decomposition,
and direct solvers based on the Fast Fourier Transform (FFT), aim to find an exact solution in a finite
number of operations [1]. The former two methods are typically very efficient for small to moderately sized
problems and provide consistent accuracy. However, their computational cost and memory requirements
grow rapidly with the size of the problem. The FFT-based solvers are very efficient but limited for
problems with periodic boundary conditions. Despite these limitations, direct methods are valued for
their robustness and precision in solving linear systems.

On the other hand, iterative methods such as the Jacobi method, Gauss-Seidel method, Successive
Over-Relaxation (SOR) method, and Conjugate Gradient method, solve the Poisson equation by itera-
tively refining an initial guess until convergence tolerance is achieved [1]. These methods are generally
more scalable than direct methods and can handle very large systems more efficiently in terms of memory
usage. Iterative methods are particularly useful for problems with complex geometries and boundary con-
ditions. However, they may require a large number of iterations to achieve the desired accuracy, leading
to long computation times. Preconditioning techniques are often employed to improve the convergence
rate of iterative solvers.

For flow fields involving structures and their movement, iterative methods are generally more appli-
cable due to their flexibility in handling complex and dynamic boundaries. One specific example of such
a flow field is oscillating grid turbulence (OGT), which is characterized by a grid moving periodically to
generate turbulence. Based on previous studies [2], it is obvious that the DNS (Direct Numerical Sim-
ulation) of OGT requires high spatial resolution to accurately capture the turbulent structures, leading
to excessive computation times and difficulties when iterative methods are used. The high resolution
increases the number of grid points, thereby increasing the size of the linear system to be solved, which
can significantly slow down the convergence of iterative methods.
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Therefore, this study aims to apply a di-
rect method to the DNS of OGT. The pro-
posed approach combines the domain decomposi-
tion method with the influence matrix method. Do-
main decomposition breaks the global problem into
smaller subproblems that can be solved indepen-
dently, while the influence matrix method ensures
the consistency and accuracy of the solution across
the subdomains. This hybrid approach was first
introduced by Schumann and Benner [3] who suc-
cessfully applied this method to the simulations in-
volving fluid-structure interactions. Meanwhile, it
has been applied to only a couple of studies to date
[4, 5].

The computational efficiency of this combined
method is discussed in this study based on com-
putation time by comparing it with an available
iterative method, i.e. BiCGSTAB (Bi-Conjugate
Gradient Stabilized) method [6]. Furthermore, the
OGT flow is analyzed in terms of velocity fluctua-
tion intensity.

2 Methodology

Figure 1: Schematic of computational domain:
(x1, x2.x3) is the coordinate of the non-inertial
frame, (X1, X2, X3) is the coordinate of inertial
frame, and R is the position vector from the in-
ertial to the moving frames.

A moving coordinate system, involving translation and rotation, is considered in the present study
as shown in Figure 1, where the origin of the system is located at the center of oscillating grid. The
dimensionless forms of the continuity and the Navier-Stokes equations in this system for incompressible
fluids are expressed by the following formulae:
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where uj represents the velocity component in the xj direction. Also, d2Ri/dt
2 is the transnational

acceleration term. The grid oscillates only in the x3-direction with R3 = 0.5S sin (fgt+ θ0) where S and
θ0 are the stroke and initial phase of the oscillation. Re and Ro are Reynolds and Rossby numbers,
respectively, and they are defined as follows:

Re ≡ fgM
2

ν
, Ro ≡ fg

2Ω
. (3)

In the above equations, fg, Ω, M , and ν are frequency of the grid mesh oscillation, angular velocity
for the system rotation, grid mesh size, and kinematic viscosity, respectively. The parameters related
to the oscillating grid, fg and S, are chosen so that the DNS assumes our experiments [7] where (fg,
S, M) = (2 [Hz], 60 [mm], 50 [mm]). The Re value is also set to be the same as the experiment, i.e.
Re = 5000. The Ro values chosen in this study are ∞ and 4.77, corresponding to 0 and 2 [rpm] in the
experiment, respectively. The simulations with these values are called the system at rest and the system
with rotation, respectively, in the subsequent sections.

The computational domain for the OGT studied in the present study is shown in Figure 1. The
lengths in the horizontal directions (L1, L2) are (4, 4) and that in the vertical direction L3 is 40,
respectively, where the length scale is normalized by the grid mesh size M as the characteristic length.
For the horizontal (x1, x2) directions, computational grids are uniformly distributed. For the vertical
(x3) direction, uniform computational grid is adopted for −10 ≤ x3 ≤ +10 while non-uniform grid is used
for |x3| > 10. The computational grid for this simulation is 200×200×1400. The boundary conditions
for the oscillating grid surface, horizontal directions, and vertical direction are no-slip, periodic, and
Neumann conditions, respectively. The spatial discretization is performed with second order central
finite difference in a staggered grid. The low-storage 3-stage Runge-Kutta (RK) method [8] is used for
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the time discretization, and the time increment is set to be ∆t = 1.25×103, where the time is normalized
by fg. For further details of computational setup, please refer to Ref.[9].

2.1 Direct Poisson solver
The pressure Poisson equation in this study is discretized based on SMAC method [10]. This equation
becomes a large-scale linear system equation (LSE) which is described by the following equation:

Lp = q , (4)

where p is the pressure correction and q is the source term. Direct solutions cannot be applied this LSE
if it is straightforwardly generated. In order to apply direct solutions, such as TDMA and FFT, to solve
the equation, the LSE is modified by combining the domain decomposition (DD) [3] and the influence
matrix (IM) [4] methods. Briefly describing, the basic LSE is firstly constructed by DD, and then the
solution is obtained by solving substitute equations generated by IM to which fast direct solvers can be
applied. The details of generating the DD-IM-modified LSE and solving procedure is described in the
following subsections.

2.1.1 Prerequisite of typical Poisson problems with Neumann boundaries

The problem to be solved in this study, Eq.(4), is a so-called "Poisson-Neumann" type problem [3], and
the problems of this kind require the solution of Poisson equation with Neumann boundary conditions
as follows:

1

λ
div λ grad p = q, λ > 0 onR , (5)

λn · grad p = gR on ∂R , (6)

where λ is a given space-dependent coefficient which is given, and n is the outwardly normal unit vector
on ∂R. The Gauss’s divergence theorem gives the following consistency condition for p and gR to be
satisfied, ∫∫

R

λq dV −
∮
∂R

gRdS = 0 , (7)

ensuring a solution of this problem exists. The solution in this case is not unique, and thus

p = p′ + a (8)

is a solution for an arbitrary constant a if p′ is a solution of Eq.(5).

2.1.2 Domain decomposition method

We commence with introducing the domain decomposition method using Eq.(4). The coefficient matrix
L has a rank deficit of one under the Neumann condition, i.e. det (L) = 0. This LSE is able to have a
solution if L has two eigenvectors, u ̸= 0 and v ̸= 0, satisfying the following conditions.

Lu = 0, LTv = 0 ⇔ vTL = 0T . (9)

Combining the second equation above with Eq.(4) leads to the following relationship, which is necessary
for the solution of Eq.(4) to be unique:

vTLp = vTq = 0. (10)

Meanwhile, the solution p can be solved by the following equation:

p = p′ + au , (11)

if Dp′ = q in which D is the regularized matrix of L, the D and L differ in at least one row. Also, a in
the above equation is an additional constant that adjusts the particular solution p′.
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When domain decomposition is performed, the LSE of Eq.(4) is divided into d equations (or domains)
by introducing unknown vector g, which is expressed as follows:

Lipi +Gig = qi , (12)

g +

d∑
j=1

Hjpj = 0 , (13)

where i is the index of the subdomains (i = 1, 2, · · · , d) and g is the gradient of p at the interfaces
between adjacent subdomains. Gi is defined to correct the effect of Gig on the original coefficient matrix
L. Hj is the operator for generating the pressure gradient at each domain interface.

Each decomposed equation has an eigenvector similar to that of the original LSE. Therefore, applying
Eq.(12) to Eq.(10) results in

vT (qi −Gig) = 0. (14)

Also, the following equation holds for each decomposed domain by using the regularized matrix Di of Li,

Dip
′
i +Gig = qi , (15){

pi = p′
i + aiui (i < d) ,

pi = p′
i (i = d) .

(16)

2.1.3 Eigenvectors u and v

In this subsection, the eigenvectors u and v for the matrix L are introduced. First of all, we define the
volume of (i, j, k)th computational cell as vijk = ∆x1,i∆2,j∆3,k, where i, j, and k are indices for the
x1, xj , and x3 directions and ∆xd,i indicates the length of the ith cell for the xd direction. Next, the
cell-volume diagonal matrix, V, is defined using vijk as follows:

V = diag (vijk) , VT = V. (17)

Multiplying V with the off-diagonal matrix L results in a diagonal matrix VL, and the following rela-
tionship holds.

VL = (VL)
T
= LTV . (18)

Also, the gradients of p (also p′ and u) at wall boundaries are zero, and thus the following vector u is
confirmed to be a eigenvector fulfilling Lu = 0:

u = {uijk} , uijk = 1 . (19)

Additionally, based on Eqs.(18) and (19), the eigenvector, v, satisfying LTv = 0 is,

v = Vu = {vijk} . (20)

2.1.4 Additional processing for the influence matrix method

In order to apply the IM method to the present study, an additional process needs to be made to the
LSE. As the IM method is described in detail later, a substitute LSE, for which fast direct solvers are
applied, is solved twice. The first process correspond to solving the LSE with assuming g and ai are
equal to 0 and 0, respectively, and the second one is with using the values obtained from the first one.
In the first process, the consistency condition Eq.(14) is not satisfied with the first estimates g1 (= 0),
and therefore, the second estimates g2 are defined such that Eq.(14) is satisfied as follows:

g2 = g1 +

d−1∑
j=1

bjej , (21)

where bj (j = 1, 2, · · · , d−1) is coefficients providing (d−1) degrees of consistency, and ej is the linearly
independent vector ensuring the same consistency to other subdomains. ej is linearly independent vectors
generated by the modified Gram-Schmidt method. Substituting this equation into Eq.(14) and Eq.(15)
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Figure 2: Detailed formula of the A problem, Eq.(24). The elements with red color prevent the application
of fast direct solvers.

results in the following formulae:

vT
i Gig +

d−1∑
j=1

Mi,jbj = vT
i qi (i = 1, 2, · · · , d− 1) , (22)

Dip
′ +Gig +

d−1∑
j=1

Ni,jbj = qi (i = 1, 2, · · · , d) , (23)

where Mi,j = vT
i Giej and Ni,j = Giej . It should be noted that bi = 0 for i = 1, 2, · · · d − 1 if the

consistency condition, Eq.(15), is fulfilled in each decomposed domain. Based on Eqs.(13) and (16)
together with the additional process, a new A problem is given which provides a solution for the original
pressure Poisson equation, Eq.(4), as follows:

Ax = y , det (A) ̸= 0 , (24)

where the detailed formulae of A, x, and y are shown in Figure 2. The detailed formula of the substitute
B problem is shown in the next section.

2.1.5 Influence matrix method

As can be seen in Figure 2, the fast direct solvers cannot be applied to Eq.(24). In the IM method, in
order to give a substitute B problem which is quickly solvable, A (n × n matrix) and y (n vector) are
first partitioned as follows:

A =

[
A1

A2

]
, y =

{
y1

y2

}
. (25)

A1 and A2 are m × n and (n − m) × n matrices, respectively, where A1 corresponds to the irregular
equations that prevent application of fast direct solvers to the A problem. Based on the above expressions,
Eq.(24) can be rewritten as: [

A1

A2

]
x =

{
y1

y2

}
, (26)
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Figure 3: Detailed formula of the B problem, Eq.(28). The elements with blue color are the difference
from the A problem (see Figure 2) which enable fast direct solvers to be used.

or {
A1x = y1 ,

A2x = y2 .
(27)

A quickly solvable B problem is then defined as:

Bx̄ = ȳ , det (B) ̸= 0 . (28)

As with the A problem, partitioning of B (n× n matrix) and ȳ (n vector) results in

B =

[
B1

A2

]
, ȳ =

{
ȳ1

y2

}
, (29)

where B1 is a matrix having the size of m × n, chosen so that fast direct solvers can be applied to it.
Also, ȳ1 is an m-size vector which can be arbitrary chosen. In this study, ȳ1 = 0 is initially given. Based
on the above expressions, Eq.(28) can be rewritten as follows:[

B1

A2

]
x̄ =

{
ȳ1

y2

}
, (30)

or {
B1x̄ = ȳ1 ,

A2x̄ = y2 .
(31)

The detailed formula of Eq.(28) is shown in Figure 3. It should be noted that solving this equation
corresponds to the first process of solving a substitute LSE with assuming g and ai are equal to zero, as
described in the subsection 2.1.4.

Because the solution for the B problem is x̄, next step is to utilize the B problem to obtain x without
solving the A problem. Assuming that x can be obtained by solving the following modified B problem:

Bx = ȳ +Ww , (32)
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where
W =

[
W1

O

]
. (33)

W1 is m × m matrix and usually W1 = I (I : unit matrix). The following equation is obtained by
multiplying both sides by B−1 from left.

B−1Bx = B−1 (ȳ +Ww) ,

⇔ B−1Ww = x− B−1ȳ . (34)

By substituting x̄ = B−1ȳ from Eq.(28) into the above equation, one can get

B−1Ww = x− x̄ . (35)

Additionally, by multiplying both sides of the above equation by A1, the equation becomes

A1B
−1Ww = A1x−A1x̄ . (36)

This can be rewritten by substituting A1x = y1 from Eq.(27) into the above equation.

Cw = y1 −A1x̄ , (37)

where

C = A1B
−1W , det (C) = det (A) det (W1) /det (B) ̸= 0 , (38)

is the influence matrix with the size of m×m. The detailed formula of this matrix is shown in the next
subsection.

The solution process of the IM method is summarized as follows.

1. Preparation of the influence matrix based on Eq.(38), i.e. C = A1B
−1W, and decomposing C into

LU form.

2. Solve Bx̄ = ȳ, Eq.(28), for x̄.

3. Solve Cw = y1 −A1x̄, Eq.(37), for w.

4. Solve Bx = ȳ +Ww, Eq.(32), for x.

As can be seen in the above process, the A problem, to which fast solvers cannot be applied, can be
alternatively solved by solving two of the B problems by using fast solvers (2 and 4) and solving Eq.(37)
with LU-decomposed C (3).

2.1.6 Formula of the matrix C

In this subsection, the detailed procedure of developing C is shown. First of all, Eq.(38) is rewritten as
follows:

C = A1X̃ , (39)

where X̃ = B−1W. Also, defining vectors wm and x̃m (m = 1, 2, . . . , k + d − 1) which comprise W and
X̃ matrices, respectively, i.e.

W = [w1,w2, . . . ,wk+d−1] , (40)
X̃ = [x̃1, x̃2, . . . , x̃k+d−1] , (41)

then Eq.(39) is expressed as
C = A1 [x̃1, x̃2, . . . , x̃k+d−1] . (42)

Since X̃ = B−1W → BX̃ = W, x̃m can be obtained by solving a set of the B problems of

Bx̃m = wm , (43)
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Figure 4: Fast solvers applied for the subdomains.

Table 1: CPU time (sec) for the present
direct solver and BiCGSTAB.

Solver 1-RK stage Generating C

DD-IM 5 65536

BiCGSTAB 24 -

where wm is known by Eq.(33). The resultant matrix X̃ by solving the above B problems is expressed
as follows, where δij is the Kronecker delta:

X̃ =

 I O b̃j p̃′ p̃ p̃d

O I O O uδij 0

T

. (44)

Finally, substituting the above matrix and A1 into Eq.(39) gives the influence matrix C as follows:

C =

 I +
∑d

j=1 Hj p̃j
∑d−1

j=1 Hjujδij

b̃j O

 . (45)

3 Results
The DNSs of OGT for the system at rest were performed by using the present direct solution and
BiCGSTAB [6], and the computational speeds for these cases were compared. Fast direct solvers applied
for the subdomains are illustrated in Figure 4. Table 1 shows average CPU times per single RK step for
the cases using the direct and iterative methods. This table reveals that the present direct method is
about five times faster than BiCGSTAB. For the direct method, an influence matrix has to be preliminary
generated before the initiation of simulation. This requires about 65500 sec which is almost the same as
2730 steps of BiCGSTAB.

Next, the effect of spatial resolution on the simulation results are investigated. For sake of comparison,
an additional DNS of the system at rest was performed with the computational grid of 300× 300× 1900.
Figure 5 shows the isosurfaces of the second invariant of velocity gradient tensor, Q, of Q = 0.01 (light
blue) and 0.04 (light green) of the system at rest obtained by the moderate (Figure5(a)) and high
(Figure5(b)) spatial resolutions, where Q value is defined as follows:

Q =
1

2
(WijWij − SijSij) = −1

2

∂ui

∂xj

∂uj

∂xi
. (46)

Sij and Wij in the above equation are the symmetric and antisymmetric components of the velocity
gradient tensor, respectively. As can be seen in this figure, for both results, fine and coarse vortices exist
in the vicinity of and away from the oscillating grids, respectively. This is mainly caused by turbulence
diffusion, indicating that the simulation is adequately conducted.

Comparison of it with Figure 5(a) shows a good qualitative correspondence between them, while the
result of the higher spatial resolution capture finer vortices especially in the vicinity of the oscillating
grid. This indicates that the DNS with the higher spatial resolution is more adequate. In this study,
however, the rest of the DNSs results were of the moderate spatial resolution of 200×200×1400 since our
preliminary results show that the effect of the spatial resolution on statistics is approximately negligible
(not shown).
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(a) (b)

Figure 5: Vortex structures obtained from the
present DNS of OGT using computational grid
of (a) 200× 200× 1400 and (b) 300× 300× 1900.
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Figure 6: Velocity fluctuation intensity for the
systems at rest and with rotation obtained from
the present DNS.
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Figure 7: Comparison of velocity fluctuation in-
tensity between the present DNS and experiment
for the systems at rest: ⟨u′

1⟩ is normalized by (a)
fgS and (b) ⟨u′

1⟩0.

Here, the effect of system rotation on the turbulence intensity in the horizontal direction, ⟨u′
1⟩, is

evaluated. Figure 6 shows the vertical distribution of turbulence intensity for both the systems at rest
and with rotation. The values are averaged over the ranges 480 ≤ t ≤ 490 for the system at rest, while
these are averaged over the two different ranges 480 ≤ t ≤ 490 and 490 ≤ t ≤ 500 for the system with
rotation. From this figure, it can be seen that, regardless of the presence of rotation, the trend of the
decrease in ⟨u′

1⟩ is gradual at x3 < 10 and strong at x3 > 10. Also, the values in the vicinity of the
oscillating grid are approximately identical for all the cases. On the other hand, for the system with
rotation, the turbulence intensity remains higher than those at rest in the region away from the grid.
This indicates that the effect of adding rotation becomes more pronounced beyond x3 > 10 for Ro = 4.77.

It should be noted that the velocity field of the system with rotation has not reached a statistically
steady state yet as shown in Figure 6 demonstrating that ⟨u′

1⟩ for x3 > 10 increases as time progresses.
Thus, a thorough discussion will be made in future study once the system reaches the steady state.

Figure 7(a) shows the vertical distribution of velocity fluctuation intensity in the present DNS and
experiment. The experiments were performed by using the PIV technique [7]. The experimental con-
ditions are approximately coincide with the DNS, where water was used as working fluid. From this
figure, the trend of both the DNS and experimental results are approximately the same. Comparing the
quantities of the ⟨u′

1⟩, it can be observed that the simulation results are larger than the experimental
ones for both systems over the entire x3 range. This discrepancy is possibly caused by the difference in
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turbulence generated by the oscillating grid attributed to, for example, the difference in the oscillation
motion of the grid in the experiment, where it can be assumed that the oscillation is not perfectly sine
wave, and experimental conditions, such as non-periodic boundaries.

In order to minimize these effects, the fluctuation intensity is normalized by the value at the top dead
point to which the oscillating grid can reach, ⟨u′

1⟩0, as shown in Figure 7(b). This figure demonstrates
that the numerical and experimental results collapse into each other for both systems. This supports
our consideration that the discrepancy between the DNS and the experiment is caused by the degree of
turbulence generated by the oscillating grid as well as that the fundamental flow behavior is successfully
reproduced by the present DNS.

4 Conclusions
This research performed a set of DNSs of oscillating grid turbulence (OGT) using a direct Poisson solver
that combines domain decomposition and influence matrix methods.

By decomposing the domain into smaller subproblems and using the influence matrix method, direct
solvers are able to be applied even to the problem with complex computational geometry. Our results
showed that this method significantly reduced computation times compared to the BiCGSTAB iterative
solver while maintaining or improving accuracy.

Validation against experimental data showed that the DNS results accurately replicate the vertical
distribution of turbulence intensity in the systems at rest and with rotation. The influence of rotation
becomes more pronounced beyond x3 > 10, far from the oscillating grid, highlighting the solver’s ability
to capture complex flow dynamics.

The ongoing progression observed in the simulation of the system with rotation suggests that further
time advancement is necessary to achieve statistical steady states. This highlights areas for future
improvement and optimization.

Further details about the flow structures of the OGT and the rotational effects can be seen in
our another study [9] in which the proper orthogonal decomposition (POD) and the dynamic mode
decomposition (DMD) are applied to the DNS data to analyze the structures.

In conclusion, this study demonstrated the potential of the combined domain decomposition and
influence matrix method for advancing DNS of turbulent flows. The method’s efficiency and accuracy
made it a valuable tool for detailed and extensive studies of complex fluid dynamics.
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