Oral presentation | Incompressible/compressible/hypersonic flow Incompressible/compressible/hypersonic flow-III Thu. Jul 18, 2024 10:45 AM - 12:45 PM Room D

[10-D-04] Effect of Chemical Reaction on the Flight Stability of the Hypersonic Vehicle at High Altitude

*Kyeol Yune¹, Seungjoon Chang¹, Seil Seo¹, Chongam Kim¹ (1. Seoul National University) Keywords: Hypersonic flow, Chemical reacting flow, Dynamic stability

Department of Aerospace Engineering, Seoul National University 12th International Conference on Computational Fluid Dynamics, Kobe, Japan July 14 – 19, 2024

Kyeol Yune*, Seungjoon Chang, Seil Seo, and Chongam Kim

Stability of the Hypersonic Vehicle at High Effect of Chemical Reaction on the Flight Altitude

CONTENTS

- 1. Introduction
- 2. Computational Framework
- 3. Numerical Results
- 4. Conclusion & Future works

Introduction

Demand for new flight platforms

- Capable of performing complex long-term missions at high altitudes or in space.
- Hypersonic glide vehicle and reusable space vehicles are developed recently.

[X-37b]

[Dream Chaser]

$\mathbf{\underline{\nabla}}$
X

Flight stability of space vehicles

Hypersonic vehicles are prone to flight instabilities.

- Smaller wings and control surfaces than conventional aircraft to withstand extreme flight conditions
- Due to high altitude flight, dynamic pressure is insufficient to generate enough control force.
- The failure of the first flight test of Falcon HTV-2 was caused by dynamic coupling between roll and yaw instabilities.

Aerodynamic Simulation and Design Lab.

Introduction

Research objective

- Examine the static and dynamic stabilities in the longitudinal direction of a preliminary designed hypersonic vehicle during its reentry flight (h \leq 100 km).
- Examine the stability characteristics and find out under which condition the instabilities occur.
- $\bullet \rightarrow$ Identify the causes of instabilities and propose, if possible, remedies in the future.

M 올대학교 seoul national university

<u>жегоиунанис эннианон and Design Lab.</u>

[Nominal Trajectory of Reusable Space Vehicle]

statically stable dynamic ally austable statically stable dynamic dy stable dynamic dy overdamped	n Lab. 💓 서울대학교
[Schematic Diagram of Dynamic Stability]	Aerodynamic Simulation and Desig
Ditch-down distortance	80
Ditch-down disturbance statically stable statically neutral statically unstable for the statical stability and the statical stability and the static stability and the stat	nal Conference on Computational Fluid Dynamics
	picheme picheme picheme individual individual picheme

Computational Framework

Longitudinal flight stability

ework	stability derivatives	ency domain vs. Forced oscillation	nique	and moments while oscillating the vehicle w.r.t. its + $\alpha_A \sin \omega t$ $q = \dot{\alpha}(t) = \alpha_A \omega \cos \omega t$	e forces and moments to the motion of the vehicle is n some phase difference.	$\sin(\omega t - \delta) = C_{M_0} + C_{M_A} \sin \omega t \cos \delta - C_{M_A} \cos \omega t \sin \delta$	G_{0}^{2} G_{0}
Computational Fram	Examine longitudinal	 Free oscillation, Freque 	 Forced oscillation tech 	• Measure the forces center of gravity. $\alpha\left(t ight)=lpha_{0}$ -	 The response of the also sinusoidal, with 	$C_M\left(t\right) = C_{M_0} + C_{M_A}$	

Examine longitudinal flight stability derivatives

- Forced oscillation technique (cont'd)
- The pitching moment also can be expanded using Taylor series

$$\mathcal{C}_M\left(t
ight) = C_{M_0} + C_{M_{lpha}}\left(lpha\left(t
ight) - lpha_0
ight) + C_{M_{\dotlpha}}rac{\dot{lpha}\left(t
ight)ar{c}}{2V} + C_{M_{lpha}}rac{qar{c}}{2V} + \cdots$$

Substitute the angle of attack. the angular velocity, and pitch rate

$$\alpha(t) = \alpha_0 + \alpha_A \sin \omega t \quad q = \dot{\alpha}(t) = \alpha_A \omega \cos \omega t$$
$$C_M(t) = C_{M_0} + C_{M_\alpha} \alpha_A \sin \omega t + (C_{M_{\dot{\alpha}}} + C_{M_q}) k \alpha_A \cos \omega t$$

Combine with the equations of pitching moment in the previous slide

$$C_{M_{\alpha}} = \frac{C_{M_A} \cos \delta}{\alpha_A}, \quad C_{M_{\dot{\alpha}}} + C_{M_q} = -\frac{C_{M_A} \sin \delta}{k \alpha_A}$$

Examine longitudinal flight stability derivatives

Forced oscillation technique (cont'd)

- The pitching moment can be fitted to sine and cosine functions at every time step.
- equations using the least squares method Solve the over-determined system of to minimize error

$$C_M(t_i) = A_0 + A_1 \sin \omega t_i + A_2 \cos \omega t_i + e_i$$

$$\begin{bmatrix} C_m(t_1) \\ C_m(t_2) \\ \vdots \\ \vdots \\ C_m(t_n) \end{bmatrix} = \begin{bmatrix} 1 & \sin\omega t_1 & \cos\omega t_1 \\ 1 & \sin\omega t_2 & \cos\omega t_2 \\ \vdots & \vdots \\ \vdots & \vdots \\ 1 & \sin\omega t_n & \cos\omega t_n \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$\rightarrow A_0 = C_{M_0}, A_1 = C_{M_A} \cos\delta, A_2 = -C_{M_A} \sin\delta$$

$$\rightarrow A_0 = C_{M_0}, \ A_1 = C_{M_A} \cos \delta, \ A_2 = -C_{M_A} \sin \delta$$

[Pitching Moment Graph and Data]

Aerodynamic Simulation and Design Lab.

Computational Framework

ACTFlow[1]

[1] C. Lee, et. al., AIAA SciTech Forum, 2021

- A 2nd-order finite volume in-house solver based on unstructured mixed grids
- Compressible RANS equations with low-Mach number preconditioning
- Extensively verified and validated using MMS and NASA TMR website
- Suitable for simulating complex 3–D flows (fighter, engine nozzle etc.)

Longitudinal stability of a reusable space vehicle

- Target geometry: a preliminary designed space vehicle
- 2 wings, no vertical and horizontal tails
- Assume that no control surfaces are deflected
- Eight conditions have been selected for investigation along the designed trajectory
- Vehicle descends gradually as it bounces up and down.

Target Geometry]

- \checkmark In order to maintain the angles of attack, the vehicle pitches up and down.
- After 1,900 seconds, vehicle pitches up and down rapidly for 100 seconds (phugoid mode).

аргар

e Oue upu -

Longitudinal stability of a reusable space vehicle

Target geometry: a preliminary designed space vehicle

- 2 wings, no vertical and horizontal tails
- Assume that no control surfaces are deflected
- Eight conditions have been selected for investigation along the designed trajectory
- Conditions suspected of instability

	Reynolds #	33.8×10^{6}	22.5×10^{6}	24.5×10^{6}	54.3×10^{6}	24.7×10^{6}	7.8×10^{6}	3.1×10^{6}	1.3×10^{6}
itions]	AOA (°)	12.5	13.1	13.3	15.2	17	20.4	25.3	33.3
[Flight Cond	Altitude (km)	6.7	12.9	13.1	12.4	20.3	32.0	41.2	51.1
	Mach	0.3	0.43	0.45	0.96	1.5	3.0	5.0	8.0
		case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8

[Target Geometry]

Longitudinal stability of a reusable space vehicle

Computational grids

- Subsonic ~ transonic: 12.5 M / half-body / y+ = 1
- Supersonic ~ hypersonic: 18.2 M / half-body / y+ = 1

Numerical components of ACTFlow

- Flux scheme: AUSMPW+
- Limiter: MLP-u2
- Time integration: Implicit BDF2 with dual time stepping
- Linear solver: GMRES
- Turbulence model: Menter's k-w SST
- EOS: Ideal gas law

[Computational Grids (up: subsonic, bottom: supersonic)]

Longitudinal stability of a reusable space vehicle

Forced oscillation conditions

- Subsonic ~ transonic
- ✓ Average AOA (α₀): 12.5°/13.1°/13.3°/15.2°/17°
 - \checkmark Amplitude (α_A): 4°
- \checkmark Reduced frequency ($\omega = (f \cdot \bar{c})/2V$): 2.0
- Center of rotation: 60.8% of model size from nose (C.G. point)
 - Assume uniform mass distribution
 Target time: 0.099 s ~ 0.466 s (3 periods)
- Supersonic ~ hypersonic
- ✓ Average AOA (α₀): 20.4°/25.2°/33.3°
- \checkmark Amplitude (α_A): 2°, 4°
- \checkmark Reduced frequency ($\omega = (f \cdot \bar{c})/2V$): 1.0
- Target time: 0.04817 s ~ 0.05577 s (3 periods)

Subsonic cases

Reynolds #	33.8×10^{6}	22.5×10^{6}	24.5×10^{6}	54.3×10^{6}	24.7×10^{6}	7.8×10^{6}	3.1×10^{6}	1.3×10^{6}
AOA (°)	12.5	13.1	13.3	15.2	17	20.4	25.3	33.3
Altitude (km)	6.7	12.9	13.1	12.4	20.3	32.0	41.2	51.1
Mach	0.3	0.43	0.45	96.0	1.5	3.0	5.0	0'8
	case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8

[Flight Conditions]

Longitudinal stability of a reusable space vehicle

Subsonic cases

Subsonic cases

- All three cases show that the vehicle has negative C_M , $C_{M_{\alpha}}$, and $C_{M_{\dot{\alpha}}} + C_{M_{q}}$.
- → The vehicle is statically and dynamically stable at these conditions.
- \checkmark The results of the three cases are similar because of similar freestream conditions.

$\mathcal{C}_{\mathcal{M}_{\hat{lpha}}}+\mathcal{C}_{\mathcal{M}_{q}}$	-0.3235	-0.3462	-0.3504
С _М а	-0.1276	-0.1370	-0.1417
\mathcal{C}_M	-0.3049	-0.4871	-0.3049
Mach	0.3	0.43	0.45
	case 1	case 2	case 3

[Stability Coefficients]

Longitudinal stability of a reusable space vehicle

Subsonic cases

 Leading edge vortex is generated as is typical in delta wings.

y = -1.7 m

1.6

γ = -0.9 m

v = -1.92

y = -1.7

y = -0.9 m Ε

No shockwaves or massive flow separation

Supersonic and hypersonic cases

		Anthon Anthony		Barble #
	Macn	Altitude (Km)		Reynolas #
ase 1	0.3	6.7	12.5	33.8×10^{6}
ase 2	0.43	12.9	13.1	22.5×10^{6}
ase 3	0.45	13.1	13.3	24.5×10^{6}
ase 4	0.96	12.4	15.2	$54.3 imes 10^{6}$
ase 5	1.5	20.3	17	24.7×10^{6}
ase 6	3.0	32.0	20.4	7.8×10^{6}
ase 7	5.0	41.2	25.3	3.1×10^{6}
ase 8	8.0	51.1	33.3	1.3×10^{6}

[Flight Conditions]

Longitudinal stability of a reusable space vehicle

Supersonic and hypersonic cases

Aerodynamic Simulation and Design Lab.

4 올대학교

Supersonic and hypersonic cases

- All four cases show that the vehicle has negative C_M , $C_{M_{\alpha}}$, and $C_{M_{\dot{\alpha}}} + C_{M_q}$.
- → The vehicle is statically and dynamically stable at these conditions.

	$C_{M_{\dot{d}}} + C_{M_q}$	-0.3619	-0.2782	-0.2782	-0.4238
ficients]	$\mathcal{C}_{M_{lpha}}$	-0.1876	-0.0387	-0.1314	-0.0030
[Stability Coel	$\mathcal{C}_{\mathcal{M}}$	-0.4488	-0.3151	-0.3335	-0.4755
	Mach	1.5	3.0	5.0	8.0
		case 5	case 6	case 7	case 8

24

Longitudinal stability of a reusable space vehicle

Supersonic and hypersonic cases

The shock stands in front of the nose of the vehicle.

/ = -1.92

/ = -0.9

Flow separation from the upper surface of the wing, covering the entire region of the win<u>g.</u>

Transonic case

	Reynolds #	33.8×10^{6}	22.5×10^{6}	$24.5 imes 10^6$	$54.3 imes 10^6$	$24.7 imes 10^{6}$	7.8×10^{6}	3.1×10^{6}	1.3×10^{6}
1	AOA (°)	12.5	13.1	13.3	15.2	17	20.4	25.3	33.3
)	Altitude (km)	6.7	12.9	13.1	12.4	20.3	32.0	41.2	51.1
	Mach	0.3	0.43	0.45	0.96	1.5	3.0	5.0	8.0
		case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8

[Flight Conditions]

Longitudinal stability of a reusable space vehicle Transonic case

27

Transonic case

- Transonic case shows that the vehicle has negative C_M , $C_{M_{\alpha}}$, positive $C_{M_{\dot{\alpha}}}$ + C_{M_q}
- At this condition, the vehicle is statically stable but dynamically unstable.
- → Oscillation caused by disturbance diverges slowly.

$C_{M_{\dot{\alpha}}}+C_{M_q}$	0.4053
$\mathcal{C}_{M_{lpha}}$	-0.2315
$\mathcal{C}_{\mathcal{M}}$	-0.4874
Mach	0.96
	case 4

[Stability Coefficients]

Longitudinal stability of a reusable space vehicle

Transonic cases

The leading edge vortex expands toward the root.

/ = -1.92 m

·= -1.7 m

/ = -0.9 m

- There is a shock at the upper wing-fuselage junction.
- Interaction between junction shock and LEV plays an important role in instability.

M 올대학교 seoul national university

Aerodynamic Simulation and Design Lab.

Effects of chemical reaction at case 8

• The temperature around the nose in case 8 is over 3,000 K, which is high enough to induce dissociation of oxygen molecules.

IDEA (Infinitely Differentiable Equilibrium Air)[1]

- An open-source library to predict equilibrium air properties based on ANN
- Obtain training data based on kinetic molecular theory
- 11-species air (N2, O2, N, O, NO, NO+, N+, O+, N++, O++, e-)

4 올대학교

Aerodynamic Simulation and Design Lab.

	CM	Frozen -0.4785	Equilibrium -0.4755	cal.	$(\Delta p \approx$	۸.	ise and base	of oxygen	Equilibrium	the state for the state	and Surface Pressure]	and Design Lab. 👹 서 훌 대 학 교
		e space venicie	ω	ical results are almost identi	e pressure locates at x = 6.6	bes not significantly affect to CI	e similar except near the no	rational energy and dissociation	Lozen		[Temperature Distribution around the Vehicle a	Aerodynamic Simulation
Numerical Results		Longitudinal stability of a reusable	 Effects of chemical reaction at case 8 	Surface pressure of the two numeri	 The maximum difference of surface 100 Pa). 	\checkmark It is located near the c.g. point, and dc	 Temperatures around the vehicle ar 	 At these regions, the excitation of vibr molecule may occur. 		C0.0 -0.0 -0.0 -0.0 -0.0 Equilibrium -0.0	[Cp along Surface of the Fuselage (y = -0.35)] [Cp along Surface of the Wing (y = -1.5)]	12 th International Conference on Computational Fluid Dynamics 32

vorks
-uture
ns & F
nclusio
8

Conclusions

- Longitudinal flight stability of a preliminary designed hypersonic vehicle has been investigated using forced oscillation technique.
 - Mach \leq 8, altitude \leq 50 km
- Under these conditions, the hypersonic vehicle remains stable except the transonic regime.
- At transonic condition, interaction between junction shock and leading edge vortex may cause instability.
- For Mach 8 case, the small difference between the frozen and equilibrium air results appears due to the temperature not high enough to induce chemical reactions.
- Around the nose and base, the dissociation of oxygen molecules may occur.

Future works

- Examine the flight stability of the hypersonic vehicle at high-altitude (≥ 60 km) and high-Mach number (≥ 10)
 - Effects of the thermo-chemical models (frozen/equilibrium/non-equilibrium)