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Abstract: This study realizes fast three-dimensional simulations of supersonic flows around com-
plex geometries in a space marching manner. Thus far, complex geometries have not been consid-
ered using a space marching method which restricts grid topology. In this study, a novel immersed
boundary method on Cartesian grids is developed under requirement of supersonic conditions for
space marching. The axisymmetric and three-dimensional steady Euler equations are respectively
solved to simulate flows around a complex axisymmetric geometry and a delta wing body used
in the American Institute of Aeronautics and Astronautics (AIAA) sonic boom prediction work-
shops. The computational results show that all waves emanating from complex geometries are
highly resolved over the radial distance several times the body length. The pressure signatures
are comparable to those obtained in the previous simulations using time marching methods and
in wind tunnel experiments. The three-dimensional simulation of flows around a delta wing body
that includes the grid generation takes less than 100 s on a laptop. These results indicate that
fast simulations of supersonic flows with complex geometries are enabled by employing a space
marching method in combination with an immersed boundary method.

Keywords: Space Marching Method, Immersed Boundary Method, Computational Fluid Dynam-
ics, Sonic Boom.

1 Introduction
Shock waves emanating from a supersonic aircraft cause explosive sound on the ground, which is known
as sonic boom [1]. Sonic boom strength must be mitigated for enabling overland supersonic flight
that has been restricted. Therefore, approaches to design of low sonic boom supersonic aircraft have
been developed for decades. They generally require parametric studies that include computational fluid
dynamics (CFD) analysis.

For sonic boom prediction, three-dimensional CFD simulations must be applied in the near field
around an aircraft, extending to a radial distance five to ten times the aircraft length [2]; thus, the
computational cost is too high to cope with both accurate sonic boom prediction and efficient parametric
studies. To address this issue, a space marching method [2, 3, 4, 5], instead of conventional time marching
methods, has been applied. This is because sonic boom can usually be predicted under the assumption
of supersonic flows everywhere. All information for supersonic flows propagates downstream, hence their
flows can be solved by marching in space. For a space marching method, a spatially three-dimensional
steady problem can be reduced to a spatially two-dimensional unsteady problem, leading to considerable
reduction of computational cost. The latest three-dimensional CFD simulation [2] extending to a radial
distance ten times the aircraft length took only a minute on a standard laptop when using an explicit
space marching method. Furthermore, full-field simulation [6] of sonic boom over the entire flow field
extending to the ground has successfully been performed in a space marching manner. The previous
studies described above indicate that fast CFD simulations except for the vicinity of supersonic aircraft
have been achieved by employing a space marching method. However, the restriction of supersonic
conditions for space marching makes it difficult to consider complex geometries, even when inviscid flows
are assumed; i.e., numerical simulations in the vicinity of a supersonic aircraft must be performed in a
time marching manner, while still keeping high computational cost.

In this study, we newly propose an immersed boundary method [7, 8] in combination with a space
marching method, which enables fast simulations involving complex geometries. For a space marching
method, downstream data is calculated using only upstream data. However, both upstream and down-
stream data are conventionally used for applying immersed boundary conditions; thus, general immersed
boundary methods are not applicable directly. Therefore, the objectives of this study are to develop
a novel immersed boundary method that can be used with a space marching method and to realize
near-field sonic boom simulations around complex geometries in a space marching manner.
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2 Computational Method
A novel immersed boundary method in combination with an explicit space marching method in Cartesian
coordinates is developed to consider complex geometries in steady supersonic flows. It is described in
this section.

2.1 Governing Equations
The governing equations are the three-dimensional steady Euler equations in Cartesian coordinates
(x, y, z):
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where E is the vector of conservative variables for space marching. F and G are the flux vectors in the
y and z directions, respectively. u, v, and w are the velocity components in the x, y, and z directions,
respectively. ρ and p are the density and pressure, respectively. The total energy is calculated as

e =
p

γ − 1
+

ρ

2
(u2 + v2 + w2) (3)

where the ratio of specific heats for air is γ = 1.4. The system of the governing equations is closed by
the equation of state as

p = ρRT (4)

where T is the temperature and the gas constant is R = 287 J/(K·kg).

2.2 Space Marching Method
Sonic boom can usually be predicted under the assumption of supersonic flows everywhere. All informa-
tion for supersonic flows propagates downstream, hence their flows can be solved by marching in space.
The governing equations given by Eq. (1) can be rewritten as

∂E
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= −

(
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∂z

)
= R(E) (5)

where x is the marching direction and acts like time which is evaluated in conventional time marching
solvers. The vector of conservative variables, E, can be updated by only one marching sweep, in which
the numerical fluxes F and G are calculated. Therefore, a spatially three-dimensional steady problem
given by Eq. (1) can be reduced to a spatially two-dimensional unsteady problem given by Eq. (5),
leading to considerable reduction of computational cost. A space marching solver can be formulated
in the same way as conventional time marching solvers. In this study, we apply the third-order total
variation diminishing (TVD) Runge-Kutta method [9] as

E(1) = Ei +∆xR(Ei)
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2

3
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(6)

The numerical fluxes F and G can be calculated in the similar way as those evaluated in conventional nu-
merical schemes. The third-order monotonic upstream-centered schemes for conservation law (MUSCL)
[10] interpolation is employed with the minmod limiter. The AUSM+-up scheme [11] is used as an ap-
proximate Riemann solver. In a space marching method, the primitive variables are calculated from the
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Figure 1: Immersed boundary method for space marching. Immersed boundary conditions are determined
on a cross-sectional plane vertical to the x direction (left: side view, right: front view).

vector of conservative variables, E = (e1, e2, e3, e4, e5)
T , as

p =
e2 ±

√
e22 − (γ2 − 1)(2e1e5 − e22 − e23 − e24)

γ + 1

u = (e2 − p) /e1

v = e3/e1

w = e4/e1

ρ =
γp

γ − 1

(
e5
e1

− u2 + v2 + w2

2

)−1

(7)

where the plus and minus sings apply for subsonic and supersonic flows, respectively.
For explicit time marching methods, a time step is restricted due to Courant-Friedrichs-Lewy (CFL)

constraint; i.e. a numerical information speed within one time step must be faster than a wave propaga-
tion speed. Conversely, for an explicit space marching method, grid topology is restricted due to CFL
constraint as

tan θ < min

(
∆y

∆x
,
∆z

∆x

)
(8)

where θ can be approximated as the maximum shock wave angle. Under this constraint, computational
grids used in a space marching method must be generated. The CFL constraint can be alleviated when
using implicit solvers [4, 5]. However, their solvers require inner iterations which increase computational
cost; i.e., the advantage of reduction in computational cost owing to space marching is diminished.
Therefore, in this study, the explicit solver given by Eq. (6) is applied as in the previous study [2, 6],
and computational grids are generated under consideration of the CFL restriction.

2.3 Immersed Boundary Method for Space Marching
For sonic boom prediction, fast CFD simulations except for the vicinity of supersonic aircraft have
been achieved by employing a space marching method. However, the restriction of CFL and supersonic
conditions makes it difficult to consider complex geometries in a space marching manner; i.e., numerical
simulations in the vicinity of a supersonic aircraft must be performed in a time marching manner, while
still keeping high computational cost. We therefore propose a novel immersed boundary method for
space marching, which enables fast flow simulations with complex geometries.

Immersed boundary methods [7, 8] have been applied for considering complex geometries on Cartesian
grids. Their usefulness has been confirmed in many previous simulations using time marching methods

3



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 2: Coarse Cartesian grids in the vicinity of the AXIE model, shown every 10 points in all directions.

Table 1: Overview of Cartesian grids used for axisymmetric simulation of flows around the AXIE model.
Grid Grid spacing Number of grid points Computational time [s]

∆x/L ∆r/L x direction r direction
Coarse 0.002 4511 5001 3.0
Medium 0.001 9021 10001 11.0
Fine 0.0005 18041 20001 42.6

[12, 13, 14]. Conversely, for space marching methods, they have not been applied to date. Figure 1
shows an overview of the immersed boundary method developed in this study. Grid cells are classified
into body cells, fluid cells, and ghost cells inside the body adjacent to fluid cells. An immersed boundary
condition is conventionally set using data at an image point that is allocated on the normal vector to
the surface of a body. In a space marching method, downstream data needs to be updated using only
upstream data; i.e., an immersed boundary condition must be made using only upstream data, without
downstream data. Thus, a conventional immersed boundary method that uses downstream data cannot
be directly applied for space marching solvers. In this study, we propose a novel immersed boundary
method which can be used with a space marching method, as shown in Fig. 1. An immersed boundary
condition at x = xi is calculated from data on a cross-sectional plane at x = xi as

VGC =
|VIP|
|VIP,t|

VIP,t

pGC = pIP

ρGC = ρIP

(9)

where V denotes the velocity vector (u, v, w). The subscripts GC and IP denote the ghost cell and
the image point, respectively. The subscript t denotes the tangential vector to a body at x = xi. An
image point is set on a planar vector at x = xi that is normal to the cross-sectional outline of a body at
x = xi, as shown in Fig. 1. Computational accuracy of the method proposed above is lower than that of
conventional immersed boundary methods because an image point is not allocated on a vector normal
to the surface of a body. However, this disadvantage can be easily overcome by applying adequately
fine grids which can be allowed for space marching. This is because a space marching method enables
a spatially three-dimensional steady problem to be reduced to a spatially two-dimensional unsteady
problem, leading to considerable reduction of computational cost. Thus, deterioration of resolution on
immersed boundaries is trivial when applying a space marching method.

3 Validation and Evaluation
Numerical simulations were performed to demonstrate that complex axisymmetric (Sec. 3.1) and three-
dimensional (Sec. 3.2) geometries can be resolved by the immersed boundary method for space marching
which is proposed in Sec. 2.3.
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Figure 3: Overpressure distribution around the AXIE model that is considered as immersed boundaries
in axisymmetric simulation using a space marching method (left: overall view, right: closeup view in the
vicinity of the AXIE model).

3.1 Numerical Simulation of Flows around a Complex Axisymmetric Body
Multiple shock waves emanating from the Axisymmetric Equivalent Area (AXIE) [15] model were solved
in this section. The AXIE model is an axisymmetric geometry with an area equivalent to the C25F
[15] low sonic boom supersonic aircraft, which consists of wing, body, tail, nacelle, and flow-through
engine. It was designed to recover a pressure signature at three times the body length under track of
the C25F aircraft. The length of the AXIE model is L = 32.92 m. The AXIE model was used in the
second American Institute of Aeronautics and Astronautics (AIAA) sonic boom prediction workshop
(SBPW). The geometry data and computational results gathered from many participants in the SBPW
are publicly available. Therefore, the AXIE model was selected as a test case to validate the accuracy of
the immersed boundary method developed in this study. The computational conditions were the same
as those used in the SBPW. The freestream Mach number was set to 1.6, and zero angle of attack was
assumed.

The flow field around the AXIE model was modeled by the axisymmetric Euler equations on the
square Cartesian grids. The computational domain in the streamwise (x) and radial (r) directions ranges
over x/L = −0.02–9 and r/L = 0–10, respectively. The AXIE model was considered by the immersed
boundary method described in Sec. 2.3. The boundary at r = 0 was evaluated under the assumption of
axisymmetry. The boundary at r = rmax was evaluated as zeroth order extrapolation. The boundary
condition at x = xmin, which is equivalent to the initial condition in the simulation using a space marching
method, was set to the freestream condition. The boundary condition at x = xmax was not required for
space marching solvers. Figure 2 shows the computational grid in the vicinity of the AXIE model. The
computations were made on the coarse, medium, and fine grids which were used for the grid convergence
study. Table 1 shows the overview of the computational grids and the computational time on a laptop
with Intel CoreTM i7-1255U (10 cores). The simulation using the fine grids with approximately 0.36
billion points took only 42.6 s. This demonstrates that fast axisymmetric flow simulations with the
AXIE model were achieved by employing a space marching method in combination with an immersed
boundary method.

3.1.1 Overpressure distribution

Figure 3 shows the overpressure distribution around the AXIE model. The distribution was comparable
regardless of the grid resolution; thus, only the result obtained by the fine grid is shown in Fig 3. The
AXIE model was designed in order that the pressure signature generated from the body roughly between
x/L = 0–1.5 is similar to that from the C25F aircraft. Therefore, the waves issued from the body at
x/L > 1.5 is not evaluated in this study, as well as in the SBPW. Multiple waves are generated from the
AXIE model. This is because the cross-sectional area of the AXIE model are composed of wing, body,
tail, nacelle, and flow-through engine. The multiple waves that propagate over r/L = 5 shown in Fig. 3
are well captured on square Cartesian grids in a space marching manner. These results show that the
complex axisymmetric geometries were well considered as the immersed boundaries developed for the
space marching solver in this study.
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Figure 4: Pressure signature emanating from the AXIE model at r/L = 3 (top) and 5 (bottom), obtained
by axisymmetric simulation with immersed boundaries for space marching. The results obtained in the
SBPW are shown, consisting of the ensemble mean of the results gathered in the SBPW and one standard
deviation.

3.1.2 Pressure signature

Figure 4 shows the pressure signature at r/L = 3 and 5. The computational accuracy was validated
through comparison with the results obtained in the SBPW, which consist of the ensemble mean of
the results gathered in the SBPW and one standard deviation. All the computational results in the
SBPW were obtained using the conventional time marching methods, not a space marching method.
The standard deviation at r/L = 5 is higher than that at r/L = 3. This is because the grid resolution is
deteriorated as the radial distance increases. The pressure signature consists of multiple waves emanating
from the complex AXIE geometry shown in Fig. 3. The overpressure is increased as the grid resolution
is increased. The trend of grid convergence can be seen through comparison of the results between the
coarse, medium, and fine grids. The results obtained by the fine grid lie entirely within the range of
one standard deviation obtained in the SBPW. Therefore, the CFD simulations using a space marching
method in combination with an immersed boundary method achieve a comparable level of accuracy
to those using conventional time marching methods. These results show that the immersed boundary
method developed in this study is applicable for evaluating complex axisymmetric geometries which have
been difficult to analyze in a space marching manner to date.

3.2 Three-dimensional Simulation of Flows around a Delta Wing Body
Three-dimensional simulation was performed to demonstrate that a Delta Wing Body (DWB) can be
resolved using an immersed boundary method for space marching solvers in this section. The DWB
was used in the first AIAA SBPW [16], where the near-field pressure signatures gathered from many
participants and those obtained from the wind tunnel experiments were provided. The DWB used in
the SBPW was the small scale model that was made for the wind tunnel experiments. It consists of an
axisymmetric body with the length of L = 0.1752 m and a diamond airfoil with the half span of 0.0345
m. The sting used in the wind tunnel experiment is attached to the tail end of the DWB. There are
steps in the sting where subsonic flows arise. This violates the requirement of supersonic conditions in a
space marching method. Therefore, the sting where x/L ≥ 1 was replaced by the uniform cylinder with
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Figure 5: Coarse Cartesian grid (left) in the region of interest around the DWB shown every other
points in all directions, and semi-adapted structured grid (right) between r/L = 0.2 and 1 shown every
10 points in the x direction.

Table 2: Overview of Cartesian grids used for three-dimensional simulation in the vicinity of the DWB.
The region of interest is entirely discretized by grids with the minimum grid spacing, whose number is
shown in brackets.

Grid Minimum grid spacing Number of grid points Computational time [s]
∆x/L ∆y/L ∆z/L x direction y direction z direction

Coarse 0.004 503 133(53) 265(105) 4.0
Medium 0.002 1005 185(105) 369(209) 14.7
Fine 0.001 2009 289(209) 577(417) 60.1

the diameter of the original sting at x/L = 1 in this study. The computational conditions were set to
those used in the SBPW. The freestream Mach number was 1.7, and zero angle of attack was assumed.

The three-dimensional steady Euler equations given by Eq. (1) were solved by employing a space
marching method. To reduce the computational cost, the computational domain was split into the near
field involving the DWB on Cartesian grids and the mid field on semi-adapted structured grids [2].
Figure 5 shows the Cartesian and semi-adapted grids. For the near field simulation, the computational
domains in the y and z directions were set between y/L =0–5 and z/L = −5–5, respectively. The region
of interest in the y and z directions ranged between y/L = 0–0.2 and z/L = −0.2–0.2, respectively,
where high resolution grids were applied. The other region was added for avoiding the influence of the
outer boundaries on the region of interest. The grid spacing was increased as the distance from the
body increased. The computational domain in the x direction, i.e. the space marching direction, was set
to x/L = −0.008–2.0. The computational domain was discretized by Cartesian grids shown in Fig. 5.
The DWB was evaluated as immersed boundaries which were developed for the space marching solver
in this study. The boundary conditions at x = xmin, y = ymax, z = zmin, and z = zmax were set to the
freestream condition. The boundary condition at x = xmax is not required for space marching solvers.
The symmetric boundary condition was applied at y = 0. Table 2 shows the number of grid points
and the computational time on a laptop with Intel CoreTM i7-1255U (10 cores). The three-dimensional
flow simulation around the DWB took only a minute even when the fine grid with approximately 0.34
billion points was used; thus, the fast three-dimensional CFD simulation was achieved using the space
marching method in combination with the immersed boundary method. The computational results were
comparable between the coarse, medium, and fine grids (see Sec. 3.2.2 for details). Hence, the results
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Figure 6: Overpressure distribution around the DWB model, obtained by three-dimensional simulation
with immersed boundaries which are applicable for space marching solvers. (left: three-dimensional view,
right: bottom view)

obtained by the fine grid are shown in the rest of this paper, unless otherwise stated.
The mid field simulation was performed using semi-adapted structured grids in generalized curvilin-

ear coordinates, where grid lines are aligned to shock waves under restriction of CFL and supersonic
conditions that are required for space marching solvers. The cylindrical computational domain was set
between r/L = 0.2–5. The region of interest ranged between r/L = 0.2–3.6. The other region was
set for avoiding the influence of the outer boundary on the region of interest. The computational do-
main in the azimuthal direction was set between θ = 0–180◦, considering the symmetry of the DWB.
To efficiently capture shock waves, grid lines need to be aligned to their waves. However, in a space
marching method, grid topology is restricted due to requirement of CFL and supersonic conditions, as
given by Eq. (8); thus, grid lines cannot be strictly aligned to shock waves when using a space marching
method. Therefore, a semi-adapted grid was generated as in the previous computational study [2]. The
procedure of the grid generation is described as follows: The initial grid was generated, in which the
grid angle was set to the Mach angle. Numerical simulation in the region between r/L = 0.2–1.0 was
performed using the initial grid. If it diverged, the grid was regenerated by slightly increasing the grid
angle. Then, the simulation and the grid regeneration were alternately performed until the simulation
was finished without divergence. Consequently, the grid lines were made as close to shock waves as
possible, while satisfying CFL and supersonic conditions. It should be noted that the shock wave angle
significantly changed between r/L = 0.2− 1.0, whereas at r/L > 1.0 it changed slightly with the radial
distance. Therefore, the grid angle at r/L > 1.0 was set to the constant value. The grid spacing in the
radial direction was increased between r = 0.004 m and 0.2 m as the radial distance increased. The
grid spacing in the streamwise and azimuthal directions were set to ∆x = 0.0002 m and ∆θ = 1.0◦,
respectively. The equivalent numbers of grid points in the x, r, and θ directions were 1793, 155, and 183
points, respectively. The grid convergence was investigated by comparison with the result obtained by
the finer grid that has double the resolution in all directions. Consequently, the pressure signatures at
r/L = 3.6 were comparable regardless of the grid resolution; thus, the grid resolution is high enough to
accurately analyze shock wave propagation between r/L =0.2–3.6. The boundary condition at r/L =
0.2 was set by extrapolating the results obtained by the near-field simulation. The boundary at x = xmin

and r = rmax was evaluated as freestream. The boundary condition at x = xmax was not needed for
space marching solvers. The symmetric boundaries were applied for θ = 0 and 180◦. The grid generation
and the numerical simulation took tens of seconds each on the same laptop as used in the near-field
simulation. Hence, the total computational time including the grid generation over the near and mid
fields between r/L =0–5 took less than 100 s even when the fine grid shown in Table 2 was applied.
These results indicate that the fast three-dimensional flow simulation around the DWB was achieved by
employing the space marching method in combination with the immersed boundary method.
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Figure 7: Overpressure distribution from the side view of the DWB, obtained by three-dimensional
simulation that uses a space marching method in combination with an immersed boundary method.

3.2.1 Overpressure distribution

Figures 6 and 7 show the overpressure distribution around the DWB. Three shock waves originate from
the nose, fore wing, and aft wing, which are hereinafter referred to as the front, middle, and rear shock
waves, respectively. They are highly resolved over the entire region of interest between r/L =0–3.6. The
interfaces between the Cartesian grids and the semi-adapted grids are smoothly connected. The flow
structure is similar to that in the previous computational study [17]. These results demonstrate that
the DWB was well evaluated as the immersed boundaries that were applicable for the space marching
solver, and the fast simulation involving three-dimensional aircraft geometry was achieved.

3.2.2 Pressure signature

Figure 8 shows the pressure signature at r/L = 3.6. The pressure signature consists of the front, middle,
and rear shock waves, and the expansion waves between the three shock waves. The abrupt increase
due to the shock waves is accurately captured. The overpressure and the locations of the shock waves
slightly differ between the coarse, medium, and fine grids. This is mainly because the grid resolution
on the immersed boundaries has an effect on the pressure signature. However, the characteristic of the
pressure signature is comparable regardless of the grid resolution, and the results indicate a trend toward
convergence.

Figure 9 shows the comparison of the pressure signatures between the space marching simulation in
this study, the time marching simulation [17], and the wind tunnel experiment [16]. The sting attached
to the original DWB was replaced by the uniform cylinder; i.e., the pressure signature behind the
rear shock wave differs from those in the time marching simulation and the experiment. The pressure
signatures except in the region behind the rear shock wave are comparable in all results, although the
overpressure and the locations of the shock waves slightly differ. The previous studies [16] show that the
overpressure in the experiment is entirely lower than those in the simulations, and the pressure increase
due to the shock waves is gradual; thus, the experimental result has a relatively low resolution. The
simulation results gathered in the SBPW differed according to the computational methods. The variation
in accuracy among the different computational methods is similar to that observed between the space
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Figure 8: Pressure signature at r/L = 3.6 under track of the DWB, obtained by three-dimensional
simulation with immersed boundaries which are developed for space marching solvers.

Figure 9: Comparison of pressure signature at r/L = 3.6 under track of the DWB model between space
marching simulation, time marching simulation [17], and wind tunnel experiment [16].

and time marching methods shown in Fig. 9. Therefore, the three-dimensional simulation using the space
marching method with the immersed boundaries reaches a comparable level of accuracy to that using
time marching methods. These results demonstrate that the immersed boundary method proposed in
this study enables the three-dimensional aircraft geometry to be considered in a space marching manner,
while considerably reducing the computational cost.

4 Conclusions
A novel immersed boundary method was developed to consider complex geometries in a space marching
manner. Its accuracy was validated through axisymmetric and three-dimensional simulations which
respectively dealt with the AXIE model and the DWB on the immersed boundaries. For the axisymmetric
simulation, the pressure signature lied entirely within the range of one standard deviation which was
obtained in the SBPW. For the three-dimensional simulation, the pressure signatures were comparable
to those obtained in the previous simulations using the time marching methods and in the wind tunnel
experiments. Therefore, the space marching simulation with the immersed boundaries reached a similar
level of accuracy to the time marching simulations; thus, the complex axisymmetric and three-dimensional
geometries were successfully considered by employing the immersed boundary method in combination
with a space marching method. Furthermore, the three-dimensional flow simulation including the grid
generation between r/L =0–5 took less than 100 s on a laptop. These results indicate that the space
marching method in combination with the immersed boundary method developed in this study is powerful
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for accurately predicting the pressure signature, while considerably reducing the computational cost. This
enables parametric studies, which are essential for design of low sonic boom supersonic aircraft, to be
conducted more efficiently than ever.
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