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Abstract: Machine-learning (ML) techniques have bloomed in recent years, especially in fluid
mechanics applications. In this paper, we trained, validated and compared two types of ML-
based models to augment Reynolds-averaged Navier-Stokes (RANS) simulations. The methodology
was tested in flows around bumps. The ML-based models were trained in four configurations
presenting attached flow, small and moderate separations and tested in a configuration presenting
large separation. The output quantity of the machine-learning model is the normalized turbulent
viscosity as done in [1]. The new models based on artificial neural networks (NN) and random
forest (RF) improved the results if compared to the baseline Spalart-Allmaras model, in terms
of velocity field and skin-friction profiles. We noted that NN has better extrapolation properties
than RF, but the skin-friction distribution can present small oscillations when using certain input
features. These oscillations can be reduced if the RF model is employed. One major advantages
of RF is that raw quantities can be given as input features, avoiding normalization issues (such
as division by zero) and allowing a larger number of universal inputs. At the end, we propose
a mixed NN-RF model that combines the strengths of each method and, as a result, improves
considerably the RANS prediction capability, even for a case with strong separation where the
Boussinesq hypothesis (and therefore the eddy-viscosity assumption) lacks accuracy.

Keywords: RANS modeling, machine learning, random forests, neural networks.

1 Introduction
Turbulence modeling based on artificial intelligence (AI) and machine learning (ML) has drawn a lot
of interest in recent years, especially because these modern techniques can be powerful when applied to
improve Reynolds-averaged Navier-Stokes (RANS) models [2, 3, 4]. Well-disseminated approaches consist
of fixing existing models, such as the Spalart-Allmaras (SA) model, by solving an inverse problem and
training an AI algorithm on a selected dataset and extrapolating to other cases that are not included
in the training set. Parish and Duraisamy [5] and Singh et al. [6] proposed to correct the source terms
in turbulence transport equations using data assimilation and machine learning. Volpiani et al. [7]
opted to introduce a correction to the Boussinesq-hypothesis by adding a forcing term in the momentum
equations. They employed variational data assimilation to infer the vectorial source correction from
high-fidelity numerical data and machine learning to reconstruct this quantity from the local mean-flow
features.

A different approach consists of learning directly the unknown terms in the RANS equations based
on a high-fidelity training set. Many authors proposed to directly predict the Reynolds stress (more
specifically, its deviatoric part) using machine learning [8, 9, 10, 11]. Others focused on the discrepancies
between the exact and the RANS modeled Reynolds stresses [12, 13, 14] or even on the divergence of
the Reynolds stress tensor, also called the Reynolds force vector, as a target for the machine learning
procedure [15, 16]. More recently, Volpiani et al. [1] used machine-learning techniques to infer the
eddy viscosity from high-fidelity simulations to correct the SA model and successfully improved RANS
results of flows over bi-dimensional bumps. Despite the constraint of the Boussinesq hypothesis in the
latter study, predicting a turbulence-eddy viscosity has two main advantages: first, we no longer need
to transport a turbulent variable, i.e. we only need to solve for the mass and momentum equations
since the problem is closed; and secondly, from a machine learning perspective, it is easier and faster to
predict a scalar quantity, rather than a vector or a tensor (especially if we consider three-dimensional
configurations).

From the list of works mentioned above, the majority of them employed artificial neural networks
to model the key quantity. Fewer studies focused on random forest as the ML strategy. This work is a
continuation of Volpiani et al. [1]’s study and in this paper, we compare the performance and address
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Table 1: Summary of configurations studied in this work. The reference data was performed by [20].
Case Height (mm) Characteristics Usage
h20 20 (0.0659C) No separation training
h26 26 (0.0878C) Incipient separation training
h31 31 (0.1032C) Small separation training
h38 38 (0.1259C) Medium separation training
h42 42 (0.1377C) Large separation testing

pros and cons of two types of supervised-learning methodologies: artificial neural networks (NN) and
random forests (RF). Careful attention is also drawn to the choice of input features used by the ML
algorithm in order to have a more generic model for RANS computations. The ultimate goal is to try
to answer the question: “Are random forests better suited than neural networks to augment RANS
turbulence models?”. The paper is organized as follows: in 2, we present the RANS equations and the
configuration we simulate; in 3, we expose the two types of supervised-learning strategies used in this
work: NN and RF; section 4 discusses the list of inputs and outputs considered in this study; in 5, a
posteriori results are presented using different implementations of the ML-based model and we address
the limitations of each method; in 6, an improved ML-based model is proposed and we finally end with
a conclusion. Note that most of the results and methods presented in this paper have been published in
[17].

2 RANS equations and configuration
By using the Reynolds decomposition for the velocity ui = ui + u′

i and pressure p = p + p′, the RANS
equations for an incompressible steady flow can be written as

∂ui

∂xi
= 0, (1)

ui
∂uj

∂xj
= − ∂P

∂xi
+

∂(2νSij)

∂xj
− ∂aij

∂xj
(2)

where the overbar stands for mean quantities and the prime for fluctuations. Sij = (ui,j + uj,i)/2 is
the mean strain tensor and ν is the molecular viscosity. P = p + 1/3u′

iu
′
i is the modified pressure

and aij = u′
iu

′
j − 1/3u′

ku
′
kδij is the deviatoric anisotropic part of the Reynolds stress tensor. In the

RANS framework, common eddy-viscosity models use the Boussinesq hypothesis and the tensor aij is
approximated by aij = −2νtSij . In this paper, the kinetic-eddy viscosity νt is estimated by the one
equation Spalart-Allmaras turbulence model [18]:

uj
∂ν̃

∂xj
−∇ ·

(
σ−1(ν + ν̃)∇ν̃

)
= P ν̃ (ν̃,∇u)−D ν̃ (ν̃,∇u) + C ν̃ (∇ν̃) (3)

where the terms P ν̃ , D ν̃ and C ν̃ are the production, destruction and cross-diffusion terms of the quantity
ν̃, and are given by:

P ν̃ = cb1S̃ν̃, D ν̃ = cw1fw

[
ν̃

d

]2
, C ν̃ =

cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
. (4)

More details about the model variables and the physical definitions of each term are found in ref.
[18]. Numerical implementation in the finite-element software FreeFEM was done following [19].

We simulate the flows over a family of bidimensional bumps for which a reference dataset from Matai
and Durbin [20] is available. Large-eddy simulations were performed for five bump heights: 20, 26, 31,
38 and 42 mm (see figure 1). This set of configurations is interesting because it is characterized by
different levels of curvature, pressure gradient and flow separation. For the lowest bump height (h20),
the flow remains attached all along the bottom wall. Case h26 presents incipient separation. The other
configurations (h31, h38, h42) develop a recirculating bubble near the end of the bump and its length
increases with the protuberance height. Details about the geometry and numerical conditions can be
found in Matai and Durbin (2019) and Volpiani et al. (2022). A summary of simulations carried out in
this study is given in Table 1.
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Figure 1: Computational domain for the flows over the family of bumps. The baseline geometry is shown
in black.

3 Supervised-Learning techniques
Supervised learning is a machine learning paradigm for problems where the available data consists of la-
belled examples, meaning that each input data is associated with a known output. The goal of supervised
learning algorithms is to learn a function that maps input features to labels (output). These algorithms
are particularly employed to classify data or to predict outcomes accurately. Supervised learning uses
a training set to teach models to predict the desired output. This training dataset includes inputs and
correct outputs, which allow the model to learn over time. The algorithm measures its accuracy through
a loss function, which is adjusted until the error has been sufficiently decreased. In an ideal scenario,
the algorithm is capable of estimating the correct output even for situations not present in the training
phase. This requires the learning algorithm to generalize from the training data to unseen situations in a
reasonable way. In this report, we employ two major techniques of supervised learning: artificial neural
networks (NN) and random forest (RF).

Artificial Neural Networks is a subset of supervised learning that represents a structure of artificial
neurons connected to each other. They are organized in one or multiple layers, through which information
is transmitted successively from the input layer to the intermediate (hidden) layers, towards the output
layer. Each node is made up of inputs, weights, a bias, and an output. To each neuron unit, it is assigned
a function that represents how it will receive the information from the previous layer and transmit it to the
next one, called the activation function σ. The activation outputs that come from each layer are usually
treated by assigning them weights (w) and biases (b), generating a weighted input zli =

∑
j w

l
ija

l−1
j + bli,

for the ith neuron at layer l, where j designates the jth neuron at layer l − 1. Thus, the activation
output is given by ali = σ(zli) = σ

(∑
j w

l
ija

l−1
j + bli

)
. The training of a neural network is conducted

by minimizing the error, given by the difference between the predicted output of the network and a
correct (target) output. Successive adjustments of its weights and biases will cause the neural network
to produce an output which is increasingly similar to the target output. After a sufficient number of
adjustments (epochs) the training is paused based upon certain criteria. In this report, we employ the
open-source Python library Pytorch to perform the training phase of our NN algorithm.

Random forest is a supervised machine learning algorithm used for classification and regression. The
“forest” references a collection of uncorrelated decision trees, which are then merged together to reduce
variance and create more accurate data predictions. There are several advantages associated to the RF
technique: it offers a good performance when dealing with high-dimensional problems, it does not require
hyper-parameter tuning, it is simple to implement, and it has low computational overhead. However,
we can cite a few inconveniences associated to this method as well: decision-tree learners can create
over-complex trees that do not generalize the data well, predictions of decision trees are neither smooth
nor continuous, but piecewise constant approximations, and decision trees can be unstable because small
variations in the data might result in a completely different tree being generated. In this study, the RF
algorithm is based on the open-source Python library Scikit-Learn.
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Table 2: Set #1 of local input features.
Feature Description Formula

q1 Q-criterion
∥Ω∥2 − ∥S∥2

∥Ω∥2 + ∥S∥2

q2 Ratio of pressure normal stresses to shear stresses

√
∂P
∂xi

∂P
∂xi√

∂P
∂xj

∂P
∂xj

+ 1
2

∂ū2
k

∂xk

q3 Modified [24] marker

∣∣∣ūkūl
∂ūk

∂xl

∣∣∣∣∣∣ūiūj
∂ūi

∂xj

∣∣∣+√
ūnūnūi

∂ūi

∂xj
ūm

∂ūm

∂xj

q4 Streamline pressure gradient
ūk

∂P
∂xk∣∣∣ūl

∂P
∂xl

∣∣∣+√
∂P
∂xj

∂P
∂xj

ūiūi

q5 Viscosity ratio
νt

νt + 100ν

q6 SA ratio of production to destruction
cb1S̃ν̃∣∣∣cb1S̃ν̃∣∣∣+ cw1fw

(
ν̃
d

)2
q7 SA ratio of production to diffusion

cb1S̃ν̃∣∣∣cb1S̃ν̃∣∣∣+ cb2
σ

∂ν̃
∂xk

∂ν̃
∂xk

q8 Turbulence intensity
kqcr

kqcr +
1
2 ū

2
i

4 Input and output features
For the neural-network model, the input features are the same from [1] and they are summarized in
Table 2. They were inspired by [21, 12, 7]. Concerning the random forest algorithm, two sets of inputs
were tested: set 1, which is the same one used in [1] and set 2, which uses non-normalized inputs and
is more generic. Note that using set 2 for a NN model is not feasible, because this situation may lead
to an imbalance in the input importance in the output prediction. Normalizing all features in the same
range avoids this type of problem. The second choice of input features takes into consideration some
philosophies and fallacies in turbulence modeling [22]. For example, models should respect the rules of
Galilean invariance and independence of the direction of the axes. Galilean invariance states that the
laws of motion are the same in all inertial frames of reference. Therefore, in general, velocity should
not be a valid entry in a model. Moreover, Spalart and Shur [23] explain that even the derivative Uy

itself is not Galilean invariant, because it is referred to axes of a reference frame, which is aligned with
the velocity. Consequently, the streamline curvature itself is also an inadequate entry into a model.
However, it is true that if we are dealing solely with steady flow problems, a unique reference frame can
be identified and this limitation can be withdrawn. Spalart [22] also highlights that acceleration and
pressure-gradient dependence in models should be avoided, because they have no direct impact on the
turbulence, and can be introduced to or removed from the equations by a simple change of reference
frame. The list of inputs concerning set 2 is given in Table 3.

Since interpretability may be useful when designing a new model, two methods to shed some light in
understanding the importance of each feature to predict the output were investigated: the mean decrease
impurity (MDI, or Gini importance), and the mean decrease accuracy (or permutation importance). In
the first method, each feature importance is calculated as the sum over the number of splits across all
trees that include the feature, proportionally to the number of samples it splits. In the second method,
we shuffle the entries of a specific variable in the test dataset and we compute the resulting increase
in error. Figures 2 and 3 show the feature importance using the MDI and permutation methods for
RF1 and RF2, respectively. A clear conclusion arises from these images: input features related to the
SA eddy-viscosity, νSA

t , and the modeled turbulence kinetic energy, kqcr, present great relevance in the
estimation of the corrected eddy viscosity. The fact that νSA

t is the most important variable is not
surprising, since it models the output quantity. The second most important quantity kqcr also indicates
that this quantity is of prime importance in modelling turbulence closure.

The output quantity is the eddy-viscosity estimated from the LES as done in Volpiani et al. (2022):
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Table 3: Set #2 of non-normalized input features.
Feature Description Formula

q1 Strain-rate magnitude ∥S∥
q2 Rotation-rate magnitude ∥Ω∥
q3 SA eddy viscosity νSA

t

q4 SA production cb1S̃ν̃

q5 SA destruction cw1fw
(
ν̃
d

)2
q6 SA cross-diffusion cb2

σ
∂ν̃
∂xk

∂ν̃
∂xk

q7 Turbulence intensity (kqcr) 3
2ccr2νt

√
2SijSij

Figure 2: Feature importance concerning model RF1.

Figure 3: Feature importance concerning model RF2.
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Figure 4: Normalized turbulent viscosity νt/ν computed from the SA, LES, NN, RF1 and RF2 models
(from top to bottom), case h20 (left) and h42 (right).

νLES
t =

max (0,−aij ∂jui)

max (0, 2SijSij) + ϵ
(5)

where ϵ is a small parameter. Figure 4 shows the normalized eddy-viscosity fields coming from the
baseline SA model, the reference simulation, the NN, RF1 and RF2 models for both extreme cases: h20,
which presents no separation and belongs to the training set and h42, which presents large separation
and belongs to the testing set. For case h20, the SA model tends to overpredict the eddy viscosity above
and in the rear of the bump. We would like to emphasize that predicting the correct amount of νt for
all configurations is not easy, and our goal is to use machine-learning algorithm to help in this task. We
note that the NN model manages to reproduce the correct levels of turbulent eddy viscosity, despite some
fluctuations in the frontier of the free stream. Models RF1 and RF2 present similar predictions. For case
h42, the traditional SA model underpredicts the eddy viscosity in the boundary-layer recovery region.
The NN model predicts precisely the eddy-viscosity field. However, it is possible to note oscillations after
the bump and close to the wall region which can contribute to a noisy RANS solution. The RF models
do not present such oscillatory behavior. For this test case, RF2 is superior than RF1. The drawback
of the RF models is that the maximum value of the output quantity is bounded by the maximum value
present in the training set, indicating that the RF method should be used with caution when dealing
with extrapolations. These conclusions are also supported by figure 5 that plots the output of the ML
models (NN, RF1 and RF2) as a function of the expected quantity. If the model works, the scatter
points should approximate to the solid line plotted as reference. The NN model manages to predict a
more realistic trend overall, despite its oscillatory behavior observed in figure 4. On the other hand, RF
models are more stable, they predict extremely well the training set, but quantitatively are less precise
than NN when extrapolating. In the next section, we present a posteriori RANS results obtained with
the NN and RF models.

5 A posteriori results
The new ML assisted models were trained in four configurations: cases h20 (attached flow), 26 (incip-
ient separation), h31 (small separation), and h38 (moderate separation); and tested in case h42 (large
separation). This setup allows us to evaluate the new ML models in scenarios of extrapolation. Figure

6



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 5: Normalized output quantities from NN (left), RF1 (middle) and RF2 (right). The scatter
points should approximate to the solid line plotted as reference.

6 (top) displays the wall-pressure and the skin-friction coefficients for testing case h42 using the NN1
model. We note a considerable improvement when predicting the skin-friction distribution when using
the new ML-based model. Conversely, we observe significant noise in the near wall region affecting the
Cf profiles. This noise is particularly present in the first boundary cells and is not a generalized behavior.
The wall pressure distribution presents a smooth signal. Figure 6 (middle and bottom) shows the same
quantities using the RF1 and RF2 model respectively. Two conclusions stand out from this graphic: i)
the first is that the Cf profiles present less oscillations than in the NN situation; and (ii) the second is
that the results are closer to the reference LES results. At least for the skin-friction distribution, the RF
model seems to be less sensitive than the NN one. Contrarily to NN, non-dimensionalized input features
can be fed to a RF model. This means that more variables can be used to train the model and using
crude quantities avoids divisions by small numbers, helping to improve the prediction capabilities. On
the other hand, the RF2 model degrades the pressure distribution in the separation zone. Globally, the
ML-based model manages to augment the RANS prediction, even for a case in which the eddy-viscosity
formula is known to lack accuracy [1].

Now we focus our attention in the velocity field as a whole. In Figure 7, we plot the error

e(x) =

[(
uRANS(x)− uLES(x)

u∞

)2

+

(
vRANS(x)− vLES(x)

u∞

)2
]1/2

(6)

given by the difference between the reference and modeled velocities for testing case h42. We note that,
in the baseline simulation, the error is concentrated in the boundary-layer region, especially after the
bump. The discrepancy between LES and RANS for case h42 is flagrant. The baseline SA simulation
fails in the boundary-layer region and in a more extended region after the bump. The ML model that
best corrects the velocity field is the NN-based one, but there is still a region around 0.8 < x/c < 1.0
where it lacks precision. Model RF1 presents a similar behavior than the NN-based one but the error is
slightly amplified in the same region. The error given by RF2 is similar than RF1 and for brevity is not
shown. It is important to note that the error given by the ML models can also come from other factors:
(i) it could be due to the choice of input features, and/or (ii) from the strong approximation made to
compute the turbulence eddy viscosity Eq. (5), which is known to be inaccurate in flows presenting
separation. Therefore, a possible solution to correct the full resulting flow field would be to improve the
estimate of νt through data-assimilation for example. On the other hand, if the CFD engineer is only
interested in the skin-friction distribution, then approximation (5) and the ML models presented herein
are sufficient. In the next section, we propose an alternative to improve the capabilities of ML-based
models.
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Figure 6: Skin-friction distribution for case h42.

Figure 7: Velocity error computed for the baseline SA, NN and RF1 models (from top to bottom), case
42.
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Table 4: Set #3 of local input features.
Feature Description Formula

q1 Q-criterion
∥Ω∥2 − ∥S∥2

∥Ω∥2 + ∥S∥2

q2 fd function from [25] 1− tanh((8rd)
3)

q3 f
′

d function from [26] 1− tanh((rd)
0.5)

q4 Boundary-layer variable
1

1 + rd

q5 Viscosity ratio
νt

νt + 100ν

q6 SA ratio of production to destruction
cb1S̃ν̃∣∣∣cb1S̃ν̃∣∣∣+ cw1fw

(
ν̃
d

)2
q7 SA ratio of production to diffusion

cb1S̃ν̃∣∣∣cb1S̃ν̃∣∣∣+ cb2
σ

∂ν̃
∂xk

∂ν̃
∂xk

q8 Turbulence intensity
kqcr

kqcr +
1
2 ū

2
i

6 Mixed model
In the last sections, we saw that NN are more efficient in extrapolating the output quantity than RF.
The eddy-viscosity field predicted by the NN for case h42, for instance, was closer to reality than the one
given by the RF algorithm. On the other hand, the NN-based model presented non-physical oscillations
near the wall when analyzing the skin-friction profiles. In the near-wall region, the RF seemed to agree
better with the reference LES solution. Therefore, it is natural to think of a new model that combines
NN and RF and that incorporates the advantages of each method. To design this new model, it is
important to define a new set of input features that can be used by both algorithms. The new set 3
is composed of normalized features. The first feature is the ratio of excess rotation rate to strain rate
(Q-criterion). We included the fd-function used by [6] and originally proposed by [25] in the framework
of Detached Eddy Simulations, a modified f

′

d quantity proposed by [26] and a new quantity based on
rd = (ν̃ + ν)/(

√
ui,jui,jκ

2d2). In this expression, ν̃ is the modified eddy viscosity, ν the molecular
viscosity, ui,j the velocity gradients, κ the Kármán constant, and d the distance to the wall. We kept
the ratio of turbulence and laminar viscosities, the SA ratio of production to destruction, the SA ratio
of production to diffusion and the turbulence intensity based on kqcr = 3

2ccr2νt
√
2SijSij from [27]. The

normalized turbulence intensity (quantity q8 in 4) is not Galilean invariant. At the same time, the
turbulence kinetic energy is a statistical quantity, making it adequate to be used in the context of steady
RANS computations. In the last sections, we showed that kqcr was an important feature, and therefore
we kept it in the new list of input features. Input features of set 3 are summarized in Table 4. To blend
our NN and RF models we use a blending function that is based on rd:

νnewt = [tanh(αrβd )]ν
RF
t + [1− tanh(αrβd )]ν

NN
t . (7)

Parameter rd defines the boundary layer region. It equals 1 in the logarithmic layer, and falls to 0
gradually towards the edge of the boundary layer. Therefore, Equation (7) favors the RF model close to
the wall and the NN model far away from it. The shape of the blending function can be regulated by
adjusting the parameters α and β. Here, both are kept equal to unity.

Figure 8 shows the distribution of the pressure and skin-friction coefficients at the wall for simulations
based on the NN alone (NN3), the RF alone (RF3) and the mixed model (NNRF). We observe that the
pressure distribution is well predicted for simulation RANS-NN3. The skin friction was also much
improved. The strong oscillations previously observed disappeared, indicating that the set of inputs 3
improves the solution. With respect to simulation RANS-RF3, the Cf is well captured, but Cp is slightly
overpredicted in the separated region. The mixed RANS-NNRF model, on the other hand, manages to
improve consistently both skin-friction and pressure distribution if compared to the baseline SA model.

To further the analysis, we plot in Figure 9 the velocity error between the reference solution and the
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Figure 8: Pressure and skin-friction distribution (right) for testing case h42.

Figure 9: Velocity error computed for the NN3 (top), RF3 (middle) and mixed NNRF (bottom) models
for case h42.
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ones obtained using models NN3, RF3 and NNRF. We observe that the error indicator was drastically
reduced for simulation using NN3 (and consequently the mixed NNRF) model if compared to the ones
presented in Figure 7. The error did not change much for case based on the RF algorithm. Therefore, we
conclude that the new set of input features helps to enhance the neural-network predictions. The mixed
eddy-viscosity formulation using the blending function (7) takes the best of each ML method: close to
the wall boundary, the RF output dominates and far away from it the NN output does. Therefore, we
managed to create a new mixed RANS-NNRF model that takes advantages of each method, where it is
supposed to. The new mixed model is more universal, thanks to the new set of inputs, and outperforms
our previous model [1] in predicting the real mean quantities. Although not shown, we point out that
the new mixed model has good performances even when estimating the eddy-viscosity discrepancy, ∆νt,
which was discarded in the previous study.

Table 5 compares the errors between the baseline and the new ML-based models in terms of Cp and
Cf distributions. If the error ECp or ECf is less than unity, it indicates an improvement in predicting
these important quantities. Globally, the results are improved if compared to the baseline one. The only
exception is the RF2 model, which managed to improve considerably the skin-friction distribution but
degraded the pressure distribution in the region of separation. Models RF3 and NN3 both improved
RANS predictions. The advantage of the mixed model is that it improves both the Cp distribution with
respect to model RF3 and the Cf distribution with respect to model NN3.

Table 5: Cp error computed as ECp =
∫
(CML

p − CLES
p )2dx/

∫
(CSA

p − CLES
p )2dx and Cf error computed

as ECf =
∫
(CML

f − CLES
f )2dx/

∫
(CSA

f − CLES
f )2dx for case h42.

Model NN1 RF1 RF2 RF3 NN3 NNRF

ECp 0.742 0.737 1.896 0.833 0.460 0.574

ECf 0.668 0.673 0.589 0.668 0.674 0.671

Note that the objective of the models generated in this study was to accurately predict the flow field
around bumps. So, what happens if we apply the model on a different flow configuration? We tried to
employ the new ML-based model on the smooth backward-facing step simulated by [28] using DNS and
LES and by [29] using RANS. The result was a considerable degradation of the baseline RANS model
even on regions where it was accurate. Therefore, it is extremely important to keep in mind the limits of
validity of your new data-driven model. If the configuration is too far away from the training scenario,
we have high chances that it is not going to perform well. Machine-learning is not miraculous, and we
need to understand that we should try to predict only the types of flows learned during the training
phase. So, in this case, we do not have (and we are not aiming at having) a general model. Nevertheless,
a model designed for a specific need is also valuable. During the initial design phase and optimization
process of a wing, for example, the flow conditions (Mach and Reynolds numbers) and the type of flow
do not change; only the geometry does. The methodology developed here could be used to treat this
type of problem. Thus, a data-driven model should be built having in mind the final application.

7 Conclusion and perspectives
In this paper, we compared two types of supervised-learning methodologies to correct RANS simulations
of flows over a family of bumps. The ML-based models were trained in four configurations presenting
attached flow, incipient, small and moderate separation and curvature (cases h20, h26, h31 and h38
respectively) and tested in a configuration presenting large separation (case h42). The new models based
on artificial neural networks and random forest improved considerably the results if compared to the
baseline SA model, in terms of velocity field and skin-friction profiles. One of the goals of the paper was
to investigate which method outperforms the other, in other words, which method is better suited to
augment RANS turbulence models. We concluded that each strategy has its pros and cons, which need
to be taken into account when developing a data-driven model. We highlight that the conclusion here
does not only apply to RANS models, but can also be generalized to other fields. We learned that NN are
more efficient in interpolating and extrapolating the output quantity than RF. However, this technique
when used to predict the turbulence-eddy viscosity can display some oscillatory behavior especially close
to the wall boundaries (noticed by skin-friction profiles). We saw that the noise can be reduced by playing
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with the input features. Another way to overcome this issue is by taking advantage of the RF method.
We saw that this method does a good job learning the training cases. However, it was shown that RF
do not extrapolate well to configurations unseen during the training process. Nonetheless, the results
obtained with the RF model for case h42 are still in excellent agreement with the reference data. One of
the highpoints of the RF method is the fact that non-normalized inputs can be fed to the RF algorithm,
contrarily to NN. A new set of inputs was also derived based on a more generic ML framework. At the
end, instead of answering which method is better, we proposed to combine them to take the advantages
of each method where needed. We generated a new ML model based on both approaches (NN and RF).
We showed that the new NNRF model was able to improve the pressure and skin-friction profiles and
the velocity field with respect to the baseline SA model and other ML models already published in the
literature. ML-based turbulence models are still in early stages of development if compared to their
traditional RANS model counterparts that went through decades of adjustments and tunning. However,
as time goes by, more and more reference data will become available and taking into consideration this
additional information in a model seems natural.
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