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Outline

• Context & Objectives
• Numerical modelling
• Optimal control
• System identification
• Velocity tracking 
• Cost of transport minimization
• Future work & challenges
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Self-propelled undulatory swimmers

• Aquatic animals that propel 
themselves through the water 
by deforming their spines and 
propagating deformation waves 
through the body

• 3D simulation of snake 
swimming
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Undulatory swimming modes

Anguilliform: 
• Entire body participates in the 

waveform
• Amplitude relatively large along 

the entire length
• e.g: Eels, snakes, tadpoles

Connaboy, Chris, Simon Coleman, and Ross H. Sanders. 2009. 
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Undulatory swimming modes

Carangiform:
• e.g: Salmon

Subcarangiform:
• e.g: Trout

Thunniform:
• e.g: Tuna

Connaboy, Chris, Simon Coleman, and Ross H. Sanders. 2009. 

Undulation 
confined in 
the 
posterior 
regions of 
the body
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Objectives

• Present the numerical methods used to simulate undulatory 
swimmers
• Present a simple framework to solve trajectory optimization 

problems applied to undulatory swimming
• Trajectory optimization: process of designing a trajectory that 

minimizes (or maximizes) some measure of performance while 
satisfying a set of constraints. 
• E.g: find the swimming kinematics that minimizes the energy spent 

moving from point A to point B
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Undulatory swimming kinematics

• For all swimming modes the 2D kinematics of the backbone can be 
approximated by a backward travelling wave:

𝑦 𝑥, 𝑡 = 𝑎 𝑥 sin 𝑘𝑥 − 𝜔𝑡
Kinematic parameters:
• Wavenumber: 𝑘 = !"

#
   (wavelength 𝜆)

• Angular frequency: 𝜔 = 2𝜋𝑓 (frequency 𝑓)

• Curve envelope : 𝑎 𝑥 = 𝑐$ + 𝑐%𝑥 + 𝑐!𝑥! (depends on the swimming 
mode)
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Carangiform Anguilliform

𝑓 = 2 𝐻𝑧  

𝑎 𝑥 = 0.02 − 0.12𝑥 + 0.2𝑥!

𝑓 = 2 𝐻𝑧 
 

𝑎 𝑥 = 𝑥 + 0.1
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Swimming kinematics for control

• 2 control parameters added to swimming law:

𝑦 𝑥, 𝑡 = 𝑏 𝑡 𝑎 𝑥 sin 𝑘𝑥 − 𝜙 𝑡

• Amplitude gain, 𝑏 𝑡 : to allow the swimmer to modify its amplitude

• Instantaneous phase, 𝜙 𝑡 = 2𝜋 ∫!!
! 𝑓 𝑡 𝑑𝑡 : to allow frequency 

modulation
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2D swimmer shape
Karman trefftz transform

𝑧 = 𝑛𝑏
𝜁 +𝑚 - + 𝜁 −𝑚 -

𝜁 + 𝑚 - − 𝜁 −𝑚 -

𝑏 = 0.87
Shape defined by the 
following parameters: 

𝜂1, 𝜃1, 𝑛, 𝑏,𝑚, 𝑙

𝑧 = 𝑥𝑖 + 𝑦 𝜁 = 𝜂𝑖 + 𝜃
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2D deformation

�⃗�" 𝑡 = 𝑅 𝛼 𝑡 �⃗�# − �⃗�$# + �⃗�$ 𝑡

𝑅 𝛼 = cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

𝛼: Local deformation angle
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High-fidelity numerical simulation

• Computational fluid dynamics
• Incompressible flow 
• Volume penalization method to account for body
• Uniform Cartesian grid / Finite difference / Chorin projection 

method

3
𝜕𝑢
𝜕𝑡
+ 𝑢 ⋅ ∇ 𝑢 = −

1
𝜌
∇p + 𝜈∆𝑢 +

𝜒 �⃗�, 𝑡
𝑘

𝑢 − 𝑢+,-.

∇ ⋅ 𝑢 = 0
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Trajectory optimization strategy

Dynamical system

High-fidelity simulation / 
experiment 

nonlinear system identification

Model predictive 
control

High-fidelity 
simulation / plant

control inputstate

Closed loop control

Direct methods for 
optimal control

open loop control input
𝑠. 𝑡:

𝑑�⃗�
𝑑𝑡 = 𝑓 �⃗�, 𝑢

ℎ �⃗�, 𝑢 = 0

𝑔 �⃗�, 𝑢 ≤ 0

min
% &

𝐽 �⃗�, 𝑢 = B
&!

&"

𝑙 �⃗�, 𝑢 𝑑𝑡 + 𝜓 �⃗�
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Optimal control problem

min
! "

𝐽 �⃗�, 𝑢 = 5
"!

""

𝑙 �⃗�, 𝑢 𝑑𝑡 + 𝜓 �⃗�

𝑠. 𝑡:
𝑑�⃗�
𝑑𝑡

= 𝑓 �⃗�, 𝑢

�⃗� 𝑡 = 𝑡# = �⃗�#
�⃗� 𝑡 = 𝑡$ = �⃗�%

�⃗�&' ≤ �⃗�(𝑡) ≤ �⃗�!'
𝑢&' ≤ 𝑢(𝑡) ≤ 𝑢!'

ℎ �⃗�, 𝑢 = 0
𝑔(�⃗�, 𝑢) ≤ 0

Continuous time optimal control

Hamilton-Jacobi-
Bellman 
equation:

Tabulation in state-
space

Indirect methods, 
Pontryagin 

maximum principle:
Solve boundary value 

problem

Direct methods:
Transform into 

Nonlinear program

Direct single 
shooting:

Only discretized 
controls in NLP 

(sequential)

Direct collocation:
Discretized controls 
and states in NLP 

(simultaneous)

Direct multiple 
shooting:

Controls and node 
start values in NLP 

(simultaneous)
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Direct multiple shooting
NLP:

min
(#,*#

E
+,#

-./

𝑙+ 𝑠+, 𝑞+ + 𝜓 𝑠-

𝑠. 𝑡: 𝑠# = 𝑥#
𝑠- = 𝑥%

𝑠+0/ = 𝐹 𝑠+, 𝑞+

12 3/5

𝑥+&' ≤ 𝑠+ ≤ 𝑥+!'
𝑢+&' ≤ 𝑞+ ≤ 𝑢+!'

ℎ 𝑠+, 𝑞+ ≤ 0
𝑔 𝑠+, 𝑞+ = 0 Optimization problem solved with an 

interior point method (ipopt library)
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Model predictive control

min
! "

𝐽 �⃗�, 𝑢 = 5
"$

"$06"%

𝑙 �⃗�, 𝑢 𝑑𝑡 + 𝑉 �⃗�

𝑠. 𝑡:
𝑑�⃗�
𝑑𝑡

= 𝑓 �⃗�, 𝑢

�⃗� 𝑡 = 𝑡7 = �⃗�7 89:(!;9<

�⃗�&' ≤ �⃗�(𝑡) ≤ �⃗�!'
𝑢&' ≤ 𝑢(𝑡) ≤ 𝑢!'

ℎ �⃗�, 𝑢 = 0
𝑔(�⃗�, 𝑢) ≤ 0 Δ𝑡': Prediction horizon

yields
𝑢∗ �⃗� :     Closed loop solution 
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Sparse identification of nonlinear 
dynamics

𝑿 = �⃗�) ⋯ �⃗�*# 𝒀 = 𝑢) ⋯ 𝑢*#

𝒟 ≔ �⃗�+ ,
𝑑�⃗�+
𝑑𝑡 , 𝑢+

+,)

*#

�̇� = 𝑑�⃗�)
𝑑𝑡 ⋯

𝑑�⃗�*#
𝑑𝑡 Data

𝑑�⃗�
𝑑𝑡 = 𝑓 �⃗�, 𝑢 ⇒ 𝑓 �⃗�, 𝑢 ≈ 𝚵Θ �⃗�, 𝑢

Θ �⃗�, 𝑢 =
𝜃) �⃗�, 𝑢

⋮
𝜃*" �⃗�, 𝑢

𝚵 =
⋮
𝜉-
⋮

Library of candidate basis functions

min
.$

�̇�- − 𝜉-Θ 𝑿, 𝒀 ! + 𝑅 𝜉-

Sparse optimization 

Brunton, Steven L., Joshua L. Proctor, and J. Nathan 
Kutz. 2016. 

𝑓 �⃗�, 𝑢 ≈ X
𝑎) + 𝑎!𝑥) + 𝑎/𝑥! + 𝑎0𝑥)𝑥! + 𝑎1𝑢
𝑏) + 𝑏!𝑥) + 𝑏/𝑥! + 𝑏0𝑥)𝑥! + 𝑏1𝑢Θ �⃗�, 𝑢 =

1
𝑥)
𝑥!
𝑥)𝑥!
𝑢
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Velocity tracking

OCP solved with MPC:

min
I"
!:$% ,J⃗!:$%&'

𝑢K
L% − 𝑢MNO

L%
P
+ B

QRS

L%TU

𝑢KQ − 𝑢MNOQ P
+ ∆𝑐QV 𝑅 ∆𝑐Q

s.t:    𝑢KQWU = 𝐹 𝑢KQ , 𝑐Q  
    𝑢KS = 𝑢K XQYX OQ-NZQ!.

    𝑐[Q\ ≤ 𝑐Q ≤ 𝑐[]^
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• Data generated by 5 high fidelity 
simulations of constant 
frequency

• SINDy model:

𝑑𝑢2
𝑑𝑡 = 0.403𝑢2! − 0.095𝑓!

• 𝑢345 𝑡 = 1.0 𝑚/𝑠

𝑓 = 1.0 1.5 2.0 2.5 3.0
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• Same sindy model

𝑣345 𝑡 = X0.5, 𝑡 < 3.0
1.0, 𝑡 ≥ 3.0

• Model predictive control 
anticipates the change in 
reference
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𝑢345 𝑡 = X0.5, 𝑡 < 3.0
1.0, 𝑡 ≥ 3.0

• Data generated by 15 
high fidelity simulations 
of constant frequency

• SINDy model:

𝑑𝑢6
𝑑𝑡
= −0.209𝑢6 − 0.276𝑢2! − 0.436𝑢2/
− 0.067𝑓𝑏 − 0.109𝑓!𝑏! + 0.148𝑢2𝑓𝑏
− 0.261𝑢2!𝑓𝑏 − 0.071𝑢2𝑓!𝑏
− 0.344𝑢2𝑓𝑏!

𝑏 = 0.5 1.0 1.5
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Proportional control

𝑓 𝑡c = 𝑓 𝑡cde + 𝐾f𝑒 𝑡c

𝑏 𝑡c = 𝑏 𝑡cde + 𝐾f𝑒 𝑡c

𝑒 𝑡c = 𝑢ghi 𝑡c − 𝑢j 𝑡c
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Cost of transport

𝑃-NO = max −J𝑢-NO ⋅ 𝑑�⃗� , 0

𝐶𝑜𝑇 𝑡 =
∫!!
! 𝑃-NO𝑑𝑡

∫!!
! 𝑢K𝑑𝑡

=
𝑒(𝑡)

𝑥 𝑡 − 𝑥(𝑡S)

𝑑�⃗� = −𝑝Ι + 𝜏 ⋅ T𝑛𝑑𝑆

𝑢"45

𝑑�⃗�
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Cost of transport minimization

OCP:

min
_⃗!:$( ,J⃗!:$(&'

𝑤U𝑒 𝑡O + B
QRS

L(TU

∆𝑐QV 𝑅∆𝑐Q

s.t:    𝑠QWU = 𝐹 𝑠Q , 𝑐Q  
    𝑐[Q\ ≤ 𝑐Q ≤ 𝑐[]^
    𝑠S = 0 0 0
    𝑥!]MYN! − 𝜖 ≤ 𝑥L( ≤ 𝑥!]MYN! + 𝜖
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Open loop solution
• Same data as previous test case
• SINDy model:

𝑑𝑒
𝑑𝑡
= 0.073𝑓𝑏 − 0.068𝑓l𝑏 − 0.050𝑓l𝑏l
+ 0.017𝑓m𝑏 + 0.031𝑒𝑓𝑏 + 0.013𝑒l𝑓𝑏
− 0.018𝑒𝑓l𝑏 − 0.018𝑒𝑓𝑏l

• 𝑇i = 12 𝑠 𝑥nogphn = 4
• Solution like burst and coast 

swimming
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Model mismatch – Open loop control
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Comparison with continuous swimming

• Second continuous swimming case slightly 
lower cost of transport

• Burst and coast solution is an optimum for 
the optimal control problem with the SINDy 
model.

• Different than that of the high-fidelity 
simulation due to model errors
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Thank you
Questions ?


