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~ Resolution vs Cost
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% Different Flavors of LES

>Hybrid RANS/LES
= Normally RANS used in the boundary layer

= LES used outside the boundary layer

= Transition not predicted

= Near wall eddies modeled while outer boundary

>Wall-modeled LES 0

layer eddies captured

hWM

= Transition not predicted

>Wall-resolved LES

= Near wall eddies captured.

= Laminar/turbulent transition part of the solution

= High cost 1
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< LES - the Challenges

»Cost!

= 3D time accurate simulations

= Disparate turbulent length and time scales at high
Reynolds numbers

= \Wall Modeled LES ~ Re'3

11 = Wall Resolved LES ~ Re25 o
»Other challenges N
= Complex geometries £ x\"m

= Wall and subscale stress models
= Scalable and efficient time integration schemes
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- How We Address the Challenges

»Cost
= High-order methods in space

= Implicit time integration approaches on CPU/GPU clusters
= Wall-modeled LES

»Other challenges
= Complex geometries
oHigh-order unstructured meshes
= Robustness
oExplicit (Vreman model)/implicit LES
> Vision
= High-order methods + GPU computing for industrial LES

o KU KANSAS
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" KU KANSAS

~ FR/CPR Method

»Flux reconstruction developed by Huynh in 2007. It is a differential formulation
like “finite difference” for

L oW _,

ot ox
> The DOFs are solutions at a set of “solution points”

acgyh%Q:O, U(x)eP*, F(x)eP"
X
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< FR/CPR (cont)

>~Find a flux polynomial £ (x)one degree higher than the solution, which minimizes

|- o)

> The use the following to update the DOFs

LJ

dt dx

du. . dF.(x, .
U N ’(x”]):O

o KU KANSAS

Scalable Time Integration Schemes

o QU KANSAS
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- Need for Low Memory Implicit Schemes

»Explicit schemes
= Good performance demonstrated for Runge-Kutta schemes with 1 element per core if p is
reasonably high
= Time step limited by the smallest cell with global time-stepping
= Time accurate local time-stepping viable alternative, but not trivial to parallelize

>Implicit schemes
= Time discretization
oBDF2, optimized BDF2, DIRK, IRK, ...

= Linear (non-linear) solvers
ﬁ oGMRES with various preconditioners (memory depends on the preconditioner)
oBlock LU-SGS approach (but memory ~ p6)

w KU KANSAS

S Experience with Various Time Integration Schemes

Largest Most (CPUs)
GMRES + ILU(n) ~Atgpysical ~ pb
) Large Medium (CPUs)
GMRES + Block Jacobi ~0.1 Atpysica ~ pb
Medium Medium (CPUs)
BLU-SGS ~10-1 0OAteprici'( - p6
Medium Little
GMRES + No Precond ~10-100Ateypici (CPUs + GPUs)
Small Least
RK3 ~Mospicit (CPUs + GPUs)

2 QU KANSAS
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s QU KANSAS
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- Basic Steps in a Wall Model (WM)

~Obtain WM data from the interface between 1stand © Solution points

ond glement B \WM data pqint
= Efficiency and accuracy = Ul el
= Wall parallel velocity, density, viscosity and distance to o °
wall
~Compute t,, based on a wall function (SA Model) . .
=Need an iterative Newton solver
~Use the wall stress in the boundary condition °® ®
= The viscous flux at the wall flux point needed P
| = Turbulence in the first element not resolved! e e
L A

Larsson, J., Kawai, S., Bodart, J., and Bermejo-Moreno, 1., “Large-eddy simulation with modeled wall-stress: Recent progress and future
directions,” Mechanical Engineering Reviews, Vol. 3, No. 1, 2016, pp. 15—418. doi:10.1299/mer.15-00418.
14 IQJ KANSAS
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Study of Vortex-Dominated Flows
Using hpMusic

(hp-adaptive MUIti-physics Simulation Code)

15

KU KANSAS

~Key features

= Mixed meshes in CGNS or Gmsh format

= Explicit and implicit time integration schemes
= High-order accuracy (up to 6t order)

= Overset and sliding meshes for moving grids
= Wall-resolved or wall modeled

= Explicit (Vreman SGS) or implicit LES

= Highly scalable on CPU and GPU clusters
including Summit and Frontier

16
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< WMLES and WRLES of CRM-HL Configuration

»Flow conditions
=Mach: 0.2

= Reynolds number: 5.49 million (based on MAC)

= AOAs: 19.57 degrees

v KU KANSAS

~Mesh for WMLES (~ 2M)
= |sotropic tetrahedral mesh
= Fuselage: 10 - 25 inches

=Wing & Nacelle: 2.5 - 5 inches

=Flap & Slat: 2.5 inches

>Mesh for WRLES (143M)
= Hybrid prism/tet mesh
= Wall normal: 0.008 inches
= Fuselage: 2 inches
= Bottom of wing: 1 inches
= Top of wing: 0.5 inches

WMLES mesh generated by Barcelona Supercomputing Center and WRLES mesh generated by Cadence

b, " LTATATA
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S Comparison of Volume Meshes - Cutting Plane

WRLES ~ 143M

WMLES ~ 2M

dt~ 1.e-6

dt~1.e-5
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% 0-Criterion Colored by Streamwise Velocity - WMLES
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- P-Refinement Study at AOA of 19.57°
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< Oil Flows at AOA of 19.57° (WMLES)
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< Comparison of Gp Profiles at AOA of 19.57° (WMLES)
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»Details
= 14 billion DOFs/equ

< WRLES - P3 Simulation at AOA 0f 19.57°

= 1000 Summit nodes used (6,000 V100s)
= Averaging done between 20 — 35 convection times

A
=
LI B g e e e

S
T

T

1 L 1 L 1 L 1 L 1 L

IR I (ST Y NI I |

15 20
Time*U/MAC

w
S
w
&

24

ICCFD12




- Flow Field Visualization (P5) at AOA = 19. 57° (WRLES)

18 B elements and 14 B points for visualization (subdivided)

Q_CRITERIA 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

25

< Comparison of Oil-Flows (AOA-19.57°)
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% Comparison of Velocity Profiles (WRLES vs WMLES)
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L Research Summary and Outiook

~Progress in the last decade has enabled high-order LES to be used more in
industry, especially in turbomachinery (WRLES) and HL-CRM (WMLES)

>GPU computing is the game changer for high-order LES in real-world
applications

~>WRLES is at least 3 orders more expensive than WMLES but does agree better
with the experiment in oil flows and pressure coefficient
»Future work
= Improved wall-models,
= Multi-physics (combustion, FSI, coupled CFD/flight dynamics and control, ...)

w QU KANSAS
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