
[10-A-04]

Keywords:

©Retained by Authors

 ICCFD12

Oral presentation | Numerical methods

Numerical methods-VI
Thu. Jul 18, 2024 10:45 AM - 12:45 PM Room A

Implicit Preconditioning for Explicit Multigrid Solvers on
Cut-Cell Cartesian Meshes

*Jonathan Chiew1, Michael Aftosmis1 （1. NASA Ames Research Center）
Numerical Algorithms, Computational Fluid Dynamics, Preconditioning, Multigrid

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Implicit Preconditioning for Explicit Multigrid Solvers
on Cut-Cell Cartesian Meshes

J. Chiew* and M. Aftosmis*

Corresponding author: jonathan.j.chiew@nasa.gov
*NASA Ames Research Center, USA.

Abstract: This work assesses the effectiveness of linearized implicit Euler preconditioning for
multigrid solvers using an unpreconditioned, Jacobian-free Newton Krylov method to converge
the linear system of equations. Multigrid convergence rates improve to approximately 0.75 across
the cases tested including a Mach 2 supersonic wedge, transonic NACA 0012 airfoil, and ONERA
M6 wing. While larger Krylov subspaces increase the convergence rate, they also increase the
computational cost, such that 4-8 Krylov vectors often offers the fastest turnaround. Further
reductions in computational cost are achieved with a sequential hybrid preconditioner that begins
with the explicit multigrid solver before transitioning to the preconditioned algorithm later on.
In addition, a novel implementation of dual time stepping is extended to include both common
BDF methods as well as high-order implicit Runge-Kutta schemes. This particular formulation,
which uses A−1 preconditioning, is amenable to matrix-free solvers, and the L-stable methods are
especially suited for meshes with arbitrarily small cut-cells. Asymptotic order of convergence is
demonstrated for BDF1, BDF2, SDIRK2, and 3rd-order Radau IIA time integration with unsteady
2D vortex simulations.

Keywords: Numerical Algorithms, Computational Fluid Dynamics, Preconditioning, Multigrid.

1 Introduction
Automated and robust mesh generation and refinement are critical for simulation-based aerodynamic
shape optimization, making Cartesian methods particularly attractive for arbitrarily-complex real-world
vehicles. While these methods have historically been limited to inviscid flows because of the non-smooth
intersection with the wetted aerodynamic surface(s), recent developments [1, 2] have extended Cartesian
solvers to turbulent viscous flow. While explicit solvers have generally been sufficient for inviscid or scale-
resolving simulations, state-of-the-art aircraft design and optimization typically solves the deterministic
Reynolds-averaged Navier-Stokes (RANS) equations.

At high cell Reynolds numbers, converging the numerically-stiff RANS system of equations often re-
quires implicit solvers or preconditioning. Implicit residual smoothing is often used to increase the stable
CFL of an explicit multigrid method whether through a centered [3] or upwind [4] smoothing operator,
accelerating convergence to steady-state. Others have investigated block-Jacobi preconditioning where
the 5 × 5 (in 3D) cell-local flux Jacobian is inverted [5, 6] as an alternative, but for highly-stretched
meshes directional coarsening or smoothing were needed to achieve the desired convergence rates [7, 8].
In order to avoid these complexities and permit even larger CFL numbers, Rossow formulated a global
preconditioner based on the linearized implicit Euler method, replacing the existing residual smoothing
algorithm in the multigrid method [9]. Significant convergence improvements were achieved and only a
few symmetric Gauss-Seidel sweeps were needed for the linear preconditioning equations. In this work,
we seek to adapt this preconditioner so that it is more suited towards our existing flow solver data
structures.

Jameson [10] developed a modified version of this algorithm with similarly improved convergence
rates. In addition to efficiently addressing high Reynolds number steady flows, that work showed how
stronger solvers also benefitted implicit Runge-Kutta methods with their stiff, coupled stage equations.
These methods have the potential to significantly increase the order of accuracy for time-dependent
simulations but require the equations to be solved to much tighter tolerances at each timestep.

Considering these reasons, this work explores implicit preconditioning as a means to strengthen an
existing explicit multigrid solver on unstructured Cartesian cut-cell meshes. We begin with a review
of the governing equations before moving to the details of the numerical methods proposed and some
computational results on a few benchmark problems from the Cart3D test suite.

1

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

2 Governing Equations
In this work, we consider three-dimensional compressible flow of an inviscid perfect gas governed by
the Euler equations. For a control volume Ω enclosed by the boundary ∂Ω, the integral form of these
equations is given by

d

dt

∫∫∫
Ω

UdV +

∮
∂Ω

F · n̂ dS = 0 (1)

where U is the state vector of conserved variables,

U = [ρ, ρu, ρv, ρw, ρE]
T (2)

F is the flux density tensor,

F =

 ρu ρu2 + p ρuv ρuw u(ρE + p)
ρv ρuv ρv2 + p ρvw v(ρE + p)
ρw ρuw ρvw ρw2 + p w(ρE + p)

T

(3)

ρ is the fluid density, u, v, and w are the Cartesian velocity components, p is the fluid pressure, E is the
total energy per unit mass, and n̂ is the outward-facing unit normal vector. The differential volume is
dV = dx dy dz, and dS is the differential surface area. A simple equation of state is used to close the
system of equations:

p = ρ (γ − 1)
(
E − 0.5

(
u2 + v2 + w2

))
(4)

3 Numerical Methods
This work uses Cart3D, a simulation framework that solves the non-dimensionalized governing equations
using the finite-volume method on multilevel Cartesian meshes with embedded boundaries [11]. Each
mesh consists of regular Cartesian hexahedra throughout the computational domain, except for a layer
of cells that intersect the geometric surface(s) and are arbitrarily-shaped polyhedra [12]. The spatial
discretization employs a cell-centered, 2nd-order finite-volume method with a weak imposition of bound-
ary conditions, and all results presented in this work utilize the van Leer flux function [13]. Details of
temporal discretization and multigrid solver are presented in the following sections.

3.1 Steady Flow
For steady-state problems, the time-derivative term in Equation (1) is zero, leaving only the flux balance:∮

∂Ω

F · n̂ dS = 0 (5)

This equation defines the discrete (spatial) residual operator on the computational mesh:

R (U) =
∑
faces

FvL · n̂ dS = 0 (6)

where the subscript vL denotes the van Leer flux function. We begin with a description of the baseline
steady-state solver and then progress to the details of the implicit preconditioning employed in this work.

2

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

3.1.1 Baseline Steady-State Algorithm

The baseline solver utilizes local timestepping (τ) to iterate Equation (6) to steady-state using a K-stage
smoothing scheme with stage coefficients α = [α1, α2, . . . , αK].

U0 = Un (7)

∆Uk = −∆τn

V
R (Uk−1) , k = 1 . . .K (8)

Uk = U0 + αk∆Uk, k = 1 . . .K (9)

Un+1 = UK (10)

In Equation (8), both the local timestep (∆τ) multiplication and division by cell volumes (V) are element-
wise. The coefficients (α) are typically chosen for optimal smoothing on a single grid [14], although more
complex approaches incorporating the multigrid algorithm have been developed [15]. Three and five
stage schemes are commonly used (Table 1), with gradients computed only on the first stage. Both V

K=3 K=5
α1 0.1481 0.0695
α2 0.4 0.1602
α3 1. 0.2898
α4 0.5060
α5 1.0

Table 1: Standard multi-stage smoother coefficients for baseline algorithm.

and W multigrid cycles are supported with a recursive algorithm, and coarse meshes use a first-order
spatial discretization.

3.1.2 Implicitly-Preconditioned Steady-state Algorithm

Now consider implicit preconditioning of each stage update ∆Uk from Equation (8), for k from 1 to K,

P∆Uk = ∆Uk (11)

Uk = U0 + αk∆Uk (12)

with P taken to be the preconditioner of Swanson et al. [16]:

P =

[
I+ ϵimp

∆τ

V

∂R
∂U

]
(13)

where ϵimp is an implicit relaxation parameter, and I is the identity matrix. This preconditioner can
be seen as a linearized implicit Euler method, as derived by Rossow [17], or as Newton’s method with
pseudo-transient continuation. Rossow moved the off-diagonal Jacobian terms to the right-hand side
and solved the resulting linear system with a few Symmetric Gauss-Seidel (SGS) iterations. We choose
an alternative approach that does not require storing cell-face connectivity, solving Equation (12) with
an approach similar to that of Xu et al. [18] utilizing GMRES [19], however, this work uses a matrix-
free approach and forgoes the ILU(0) preconditioner. In order to maintain the solver’s low memory
requirement, we also employ the first-order Fréchet derivative to compute the Jacobian-vector product:

∂R
∂U

v ≈ R (U+ ϵv)−R (U)

ϵ
(14)

where the perturbation ϵ is
ϵ =

√
ϵmach ⟨U, v⟩ (15)

Using an implicit preconditioner enables much larger CFL numbers which are smoothly ramped with
the following equation:

CFLn = CFLmax tanh

(
κn CFL0

CFLmax

)
(16)

where CFL0 is the starting CFL, CFLmax is the maximum CFL, and κ is the CFL ramping parameter.

3

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

3.2 Unsteady Flow
Many flows of interest possess significant time-dependent features like moving shocks, rotating geometry,
or large regions of separated flow. One common method for simulating unsteady flow is the method
of lines, where the discrete spatial residuals are evaluated along lines of constant t, resulting in a semi-
discrete ODE in time. We use this framework and begin with a general review of time integration methods
before discussing the specific implementation details. High order implicit schemes are of particular
interest because they often require strong solvers and deeper convergence.

3.2.1 Review of Time Integration Methods

Time integration methods are often analyzed using the following scalar model equation:

u̇ = λu, λ ∈ C (17)

There are two main families of time integration methods: multi-step and multi-stage. Multi-step methods
store previous solutions (u) or function evaluations (λu) and combine them to advance the solution to
the next timestep. In contrast, multi-stage methods compute new solutions at each stage, rather than
store previous solutions (or function evaluations). These are typically computed partway into the time
interval [t, t+∆t], and then their time derivatives (i.e. function evaluations) are linearly combined to
advance the solution forward in time.

Cartesian meshes with embedded boundaries may contain cut-cells with arbitrarily small volumes,
which will impose serious numerical stability constraints on the timestep size with explicit methods. For
this reason, we only consider A-stable implicit methods which are stable for any λ in the left half of
the complex plane. Dahlquist [20] famously proved that no A-stable linear multi-step method can be
greater than second-order accurate. In contrast, multi-stage methods can achieve much higher orders of
accuracy while maintaining A-stability, given enough stage coefficients to satisfy the order conditions.

Researchers have developed several methods for generalizing families of time integration methods.
Beam & Warming [21] developed an approach for parameterizing two-step schemes, while the General
Linear form [22] essentially unifies all linear multi-step or multi-stage schemes into one formulation. In
this work, we develop a framework for two-stage, implicit time integration methods described in section
3.2.3 below and highlight some of the unique aspects of our implementation.

3.2.2 Baseline Dual Time Stepping Algorithm

The baseline algorithm uses the Beam-Warming generalization of two-step linear methods:

(1 + ξ)Un+1 = (1 + 2ξ)Un − ξUn−1 +
∆t

V

[
θR
(
Un+1

)
+ (1− θ + ϕ)R (Un)− ϕR

(
Un−1

)]
(18)

although in practice only the second-order backwards difference formula (BDF2) is used because of its
desirable L-stability property that ensures damping when large timesteps (∆t → ∞) are used. For the
initial startup procedure, one step of implicit Euler (θ = 1, ξ = ϕ = 0) is taken before switching to BDF2
(θ = 1, ξ = 0.5, ϕ = 0). The semi-discrete ODE is assumed to be autonomous for notational simplicity
but in practice often has an explicit dependence on t when unsteady source terms, boundary conditions,
or moving geometry are present. Dual time stepping [23] is used to converge the implicit equations to
steady state with a secondary iteration in pseudo-time (τ), resulting in the following system of equations
for BDF2:

VDτU+ V
3Un+1 − 4Un +Un−1

2∆t
+R

(
Un+1

)
= 0 (19)

where Dτ is an unspecified pseudo-temporal derivative operator. Defining an unsteady residual

R∗ = V
3Un+1 − 4Un +Un−1

2∆t
+R

(
Un+1

)
(20)

then extends a steady-state solver to time-dependent problems by simply replacing R with R∗. The time
derivative term is handled implicitly in the subiteration process to avoid issues with very small values of

4

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

∆t [24]. This results in the following baseline algorithm for unsteady problems integrated with BDF2:

U0 = Un (21)

∆Uk = −
(
1 +

3∆τ

2∆t
αk

)−1
∆τn

V

[
V

2∆t

(
3U0 − 4Un +Un−1

)
+R (Uk−1)

]
, k = 1 . . .K (22)

Uk = U0 + αk∆Uk, k = 1 . . .K (23)

Un+1 = UK (24)

where the prefactor on the RHS of Equation (22) comes from the implicit handling of the time derivative
term:

Uk = U0 − αk
∆τn

V

[
V

2∆t

(
3Uk − 4Un +Un−1

)
+R (Uk−1)

]
(25)(

1 +
3∆τ

2∆t
αk

)
Uk = U0 − αk

∆τn

V

[
V

2∆t

(
−4Un +Un−1

)
+R (Uk−1)

]
(26)

=

(
1 +

3∆τ

2∆t
αk

)
U0 − αk

∆τn

V

[
V

2∆t

(
3U0 − 4Un +Un−1

)
+R (Uk−1)

]
(27)

Notice how U0 replaces Uk in the time derivative term on the RHS. This will become important for the
preconditioned algorithm.

3.2.3 A−1-Preconditioned Formulation for Two-stage Runge-Kutta Methods

Having detailed the baseline unsteady dual time stepping algorithm in the previous section, we now
consider a new formulation to evaluate the preconditioned steady-state solver with implicit Runge-Kutta
schemes. Consider a general two-stage Runge-Kutta method for the model equation:

u1 = un +∆t (a11λu1 + a12λu2) (28)
u2 = un +∆t (a21λu1 + a22λu2) (29)

un+1 = un +∆t (b1λu1 + b2λu2) (30)

The stage coefficients aij are the entries of the Runge-Kutta matrix A. As mentioned above, we consider
only implicit RK methods where A is not strictly lower triangular, since explicit methods often impose
severe CFL restrictions on Cartesian cut-cell meshes. In addition, we require stiff accuracy, i.e. b1 =
a21, b2 = a22 for a more robust method. Jameson’s investigation into dual time stepping with fully-
implicit RK methods demonstrated that the solution update (Equation (30)), can be sensitive to the
depth of convergence of R∗. No constraints are imposed on a12, so both diagonally-implicit and fully-
implicit methods are considered.

Consistent with the matrix-free approach employed in this work, the stages are solved iteratively with
dual time stepping. A naïve dual time stepping implementation has been shown to be unstable for small
∆t [10]. In that work, preconditioning the algorithm with A−1 was shown to stabilize all of the schemes
analyzed, including the SDIRK2 and Radau IIA methods used in this present work.

Now consider two-stage Runge-Kutta methods with A−1-preconditioning in vector form using dual
time stepping:

Dτ
−→us = A−1

(−→
un −−→us

∆t
+Aλ−→us

)
(31)

= A−1

(−→
un −−→us

∆t

)
+ Iλ−→us (32)

where −→us is the concatenated vector of stage solutions, and the vector
−→
un consists of multiple copies of

uN , the solution at the previous timestep. One key result of the preconditioning is highlighted explicitly
in Equation (32) - choosing A−1 as the preconditioner decouples the stage function evaluations. This
means that while iterating to convergence, the only spatial residual required is that of the current stage,
significantly reducing the storage required. Of course the stage solutions are now coupled, but those
are always stored and their coupling does not impact the solver memory footprint. So now each stage

5

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

resembles a BDF method, with the exception that the other solutions used are converging simultaneously
rather than being previously computed constants from earlier timesteps.

The A−1 preconditioned first stage equation with dual time stepping is now:

Dτu1 = λu1 −
1

|A|∆t

(
a22u1 − a12u2 − (a22 − a12)u

n
)

(33)

where |A| is the determinant of the Runge-Kutta matrix. The second stage is of the same form with a
change in the coefficients

Dτu2 = λu2 −
1

|A|∆t

(
a11u2 − a21u2 − (a11 − a21)u

n
)

(34)

and since the scheme is stiffly-accurate, un+1 = u2.
We can include the two common BDF methods into this framework by carefully choosing the co-

efficients. BDF1 is simple to include as it is a single stage, first-order DIRK method. If we examine
Equation (33) and set |A| = 1, then we require a22 = 1 and a12 = 0 with the un coefficient satisfied
automatically by consistency: a22 − a12 = 1. A simple choice for the free coefficients to give a unit
determinant is a11 = 1 and a21 = 0.

For BDF2 we store the un−1 solution as u2 and again solve the Equation (33). Now a22 = 1.5,
a12 = −0.5, and a nice (but non-unique) choice for the remaining coefficients is a11 = a21 = 0.5 which
again gives |A| = 1. Special care must be taken to transfer un → u2 and un+1 → un as the solution
steps through time, but now we can compare the standard methods with more accurate IRK methods in
a unified framework. For completeness, the coefficients for these two BDF schemes as well as the 2-stage
IRK methods employed later in this work are given below:

A =

∣∣∣∣∣ 1 0
0 1

∣∣∣∣∣
BDF1 (1st-order accurate)

A =

∣∣∣∣∣ 1/2 -1/2
1/2 3/2

∣∣∣∣∣
BDF2 (2nd-order accurate)

A =

∣∣∣∣∣
√
2/2 0

1-
√
2/2

√
2/2

∣∣∣∣∣
SDIRK2 (2nd-order accurate)

A =

∣∣∣∣∣ 5/12 -1/12
3/4 1/4

∣∣∣∣∣
Radau IIA (3rd-order accurate)

While it is common practice to solve the SDIRK2 stage equations sequentially to avoid the com-
plications of stage coupling, we solve the equations in a fully-coupled manner no matter which time
integration method is utilized, giving the following update equation for a given Runge-Kutta stage:

∆Uk = −
(
1 +

c1
|A|

∆τ

∆t
αk

)−1
∆τn

V

[
V

|A|∆t
(c1U0 + c2Us + c3U

n) +R (Uk−1)

]
, k = 1 . . .K (35)

where Us is the most recent solution of the other stage and cj are the coefficients given in Table 3.2.3.
One multigrid smoothing cycle is performed for each Runge-Kutta stage every subiteration. Iterative
convergence is assessed by tracking the unsteady residual (R∗) of the second stage, since that is the
advancing solution.

Stage 1 Stage 2
c1 a22 a11
c2 a12 a21
c3 a22 − a12 a11 − a21

Table 2: Coefficients for the two-stage A−1-preconditioned dual time stepping algorithm.

3.2.4 Implicitly Preconditioned Subiteration Algorithm

We complete this section on numerical methods by describing the implicitly-preconditioned subiteration
algorithm. The time integration scheme from the previous section is kept identical including the pre-
conditioning of the dual time stepping procedure with the inverse of the Runge-Kutta matrix. In this

6

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

section specifically, “preconditioning” will refer to implicit preconditioning of the subiteration updates,
i.e. Equation (35), whereas “A−1-preconditioning” refers specifically to the stabilization of the dual time
stepping algorithm.

Consider the fully-explicit update of the dual time stepping algorithm:

∆Uk = −∆τn

V

[
V

|A|∆t
(c1Uk−1 + c2Us + c3U

n) +R (Uk−1)

]
, k = 1 . . .K (36)

The baseline algorithm modifies the fully-explicit form with an implicit treatment of the time derivative
term (c1Uk−1 → c1Uk). Now we consider a linearized implicit treatment of both the time derivative and
spatial discretization terms

∆Uk = −∆τn

V

[
V

|A|∆t
(c1 (Uk−1 +∆Uk) + c2Us + c3U

n) +R (Uk−1) +
∂R
∂U

∆Uk

]
, k = 1 . . .K

and then collect similar terms and add the implicit parameter ϵ as before[(
1 +

c1∆τn

|A|∆t

)
I+ ϵ

∆τn

V

∂R
∂U

]
∆Uk = −∆τn

V
R∗ (Uk−1,Us,U

n) , k = 1 . . .K

where
R∗ =

V

|A|∆t
(c1Uk−1 + c2Us + c3U

n) +R (Uk−1) (37)

We choose to explicitly include the dual time stepping terms on the LHS of Equation (37) rather than
compute the Fréchet derivative of R∗. This bypasses the work of adding constant terms to R∗ that will
cancel, e.g. Un, but still maintains a simple structure where the LHS matrix-vector product is easily
evaluated combining the Fréchet derivative for the flux Jacobian product with vector additions. Note
that since ∆τ is a local timestep, the pre-factor must be computed on a cell-by-cell basis.

4 Results
In this section, we verify the preconditioned algorithms, starting with two-dimensional steady-state ex-
amples. Then the baseline and preconditioned algorithms are compared while investigating the sensitivity
of the preconditioning to the input parameters before moving to a 3D problem. Finally, we conclude
with an unsteady case for verification of the time integration formulation with both the baseline and
preconditioned multigrid solvers.

4.1 Supersonic Wedge
We begin by simulating the flow over a supersonic wedge. Choosing M∞ = 2 and a half-angle of δ = 15◦

results in fully supersonic flow, so the boundary states are either fully specified by the farfield state
(inflow) or extrapolated from the interior (outflow). We rotate the problem so the x-direction is along
the wedge surface and use a uniform 256x256 mesh with 3 levels of multigrid on the domain x, y ∈ [0, 1].

From the classical oblique shock relations, we know that the wave angle β ≈ 45.3◦, so the shock
should be at a 30.3◦ angle to the mesh. In Figure 1, we see that the shock starts at the origin and exits
the domain at y ≈ tan 30.3◦. In addition, the density jump across the shock matches the expected value
of ρ2/ρ1 ≈ 1.729.

Figure 2 compares the convergence of the baseline method and the preconditioned algorithm when
run with nk = 8 Krylov vectors, demonstrating an improved multigrid convergence rate of 0.74 from 0.88
for this problem. While this problem converges without a limiter, most realistic geometries will not unless
the flow is fully subsonic, so we show convergence histories both with and without a limiter. We note
that limiter rattling prevents the baseline explicit multigrid scheme from achieving deep convergence,
which is typical of complex configurations, and decreases the multigrid convergence rate for both methods
consistent with previous work [17].

4.2 NACA 0012 Airfoil
Next, we consider the flow around a NACA 0012 airfoil modified to have a sharp trailing edge at
M∞ = 0.8 and α = 1.25◦. The mesh is generated with 7 adaptation cycles using Cart3D’s adjoint-

7

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 1: Density contours around a 15◦ super-
sonic wedge at Mach 2 using the van Leer limiter.
The oblique shock angle and post-shock density
match the analytic values of 30.3◦ and 1.729, re-
spectively.

Figure 2: Comparison of iterative convergence
for both the baseline (solid) and pre-conditioned
(dashed) algorithms. Both algorithms show con-
vergence degradation for this supersonic wedge
case due to the van Leer limiter.

based mesh refinement capability [25] seeking to minimize the error in lift-to-drag ratio. The final
adapted mesh contained ∼10k cells. One-dimensional Riemann invariant farfield boundaries were placed
40 chords away.

Figure 3 shows the adapted mesh and pressure coefficient contours around the airfoil. The mesh is
much more representative of typical cases as the mesh contains regular hexahedra, 2:1 interface cells,
and cut-cells along the airfoil surface, in contrast with the uniform grid used for the supersonic wedge.

The L1-norm of the density equation residual converges over 10 orders of magnitude in about 700
iterations, as demonstrated in Figure 4. After the full multigrid startup, the first few orders of magnitude
are reached rapidly before the convergence rate starts to slow down. Next, we study the convergence of

Figure 3: Adapted mesh showing pressure coeffi-
cient around a NACA 0012 airfoil at M∞ = 0.8
and α = 1.25◦.

Figure 4: Iterative convergence of the NACA
0012 airfoil (M∞ = 0.8, α = 1.25◦) with the base-
line 5-stage, 4-level multigrid solver.

the preconditioned algorithm for the same problem. Figure 5 shows how the convergence rate improves
as the number of Krylov subspace vectors is increased. There are diminishing returns after the first 6-8
vectors, which is similar to published results [9, 10, 16, 17] which used only a few SGS iterations. In
this case, GMRES isn’t quite as effective in the first few iterations, which is not surprising as it needs

8

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

to find a solution in the basin of attraction before it starts to quickly converge. Figure 6 shows how

Figure 5: Iterative convergence of the precondi-
tioned algorithm on the NACA 0012 airfoil with
varying number of Krylov subspace vectors. In-
creasing the number of Krylov vectors improves
the convergence rate but shows diminishing re-
turns beyond 6-8 vectors.

Figure 6: Iterative convergence of the precon-
ditioned algorithm on the NACA 0012 airfoil
with varying initial CFL numbers. Increasing the
starting CFL up to 5 slightly reduces the number
of iterations, but beyond that the coarse grids
don’t converge.

the convergence varies with the initial CFL number when using 8 Krylov vectors. Some reductions in
iteration count to convergence are seen up to a starting CFL of 5. Beyond that, larger initial CFL
numbers degrade the full multigrid startup procedure and increase the total time to solution.

Next, we study the effect of the implicit parameter ϵ in the preconditioned algorithm. Swanson et
al. [16] showed how lower values had improved damping for high wave numbers, but the scheme became
unstable when ϵ was too small. Figure 7 shows that this parameter has only a minor effect in the cases
studied, so it is held constant in the rest of this work at ϵ = 0.6.

The maximum CFL number had very little effect on the convergence history, as seen in Figure 8.
Apparently, once the CFL is large enough, the flux Jacobian term of the preconditioner dominates the
linear system of equations.

Figure 7: The implicit parameter ϵ has only a
small effect on the iterative convergence for the
NACA 0012 airfoil.

Figure 8: The maximum CFL number has al-
most no effect on the iterative convergence for
the NACA 0012 airfoil.

Finally, we examine the effect of the CFL ramping parameter κ from Equation (16). Figure 9
shows how the hyperbolic tangent function smoothly ramps the CFL from the starting value of 5 to the

9

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

maximum of 1000. At κ = 2, the CFL rapidly increases over just a few multigrid cycles, so values greater
than 2 were not considered.

Figure 9: The CFL number is plotted for various
values of the ramping parameter κ between 1.1
and 2.

Figure 10: The CFL ramping parameter κ has
only small effects on the iterative convergence for
the NACA 0012 airfoil.

As one might expect, it is clear that the key parameter for the convergence rate of the preconditioned
algorithm is the number of Krylov subspace vectors, Nk. Since the number of residual evaluations for
the preconditioned method scales as Nk × NRK , using fewer Krylov vectors can be more efficient even
with a degradation in the multigrid convergence rate. Based on the published literature [17], we only
use 3-stage smoothing schemes with the implicit preconditioner. This is depicted in Figure 11, which

Figure 11: Convergence history plotted against
total residual (flux) evaluations for various
Krylov subspace sizes (Nk). The fully-explicit
scheme is the most efficient unless deep conver-
gence is required since the improved convergence
rate offset by the increased computational work.

Figure 12: Convergence histories for hybrid
method starting with 200 iterations of the fully-
explicit scheme before enabling implicit precon-
ditioning, demonstrating a reduction in the to-
tal number of residual evalulations for moderate
Krylov subspace sizes.

shows how building a larger Krylov subspace drastically increases the amount of computational work,
not even accounting for the increased number of dot products or the solution of the larger Hessenberg
system. Given the faster initial convergence of explicit multigrid and better asymptotic convergence of
the GMRES preconditioned solver, a natural next step would be a sequential hybrid method starting
with explicit multigrid before adding in the implicit preconditioner.

10

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 12 demonstrates how this hybrid preconditioned method reduces the total number of flux
evaluations needed for convergence compared to the baseline 5-stage multigrid scheme. In these runs, the
first 200 iterations are performed with a fully-explicit 3-stage smoother before switching to the implicitly
preconditioned scheme. One could envision further optimizing this hybrid method by automating the
switching based on orders of residual reduction or convergence rate, and only after the full multigrid
startup is complete.

4.3 ONERA M6 Wing
Next, we evaluate the algorithm on the ONERA M6 wing. This is a standard example case with
M∞ = 0.54 and α = 3.06◦. As with the NACA 0012 case, we build an adapted mesh that minimizes the
error in lift-to-drag ratio. Far-field boundaries using 1D Riemann invariants are placed about 35 chords
away. The pressure contours and a cutting plane through the wing root can be seen in Figure 13. After
7 adaptation cycles, the mesh is refined in areas of high pressure gradients and contains approximately
450k cells. In addition, pressure isobars are shown along the mid-span as well as near the wingtip.

Figure 13: Pressure contours on an ONERA M6
wing at M∞ = 0.54 and α = 3.06◦. A cutting
plane along the wing root shows the L/D-adapted
mesh. Pressure isobars are also depicted on sev-
eral spanwise cutting planes.

Figure 14: Convergence history for the ONERA
M6 wing at M∞ = 0.54 and α = 3.06◦, com-
paring a 5-stage explicit smoother with the se-
quential hybrid implicit scheme using 100 ex-
plicit startup iterations for the 3-stage smoother.

We run this case with both the baseline and implicitly preconditioned solver, setting the solver’s free
parameters by the results on the NACA 0012 airfoil. The same 3-stage smoothing scheme is employed
with sequential preconditioning, starting with 100 explicit multigrid cycles. Figure 14 shows the improved
convergence rate with the implicit preconditioning for this case with κ = 1.25, and CFLmax = 1000.
When using 8 Krylov vectors, the multigrid convergence rate improves from 0.91 with the baseline
algorithm to 0.75.

With this implementation, we have a developed an implicit preconditioner for the steady-state solver
that significantly improves the multigrid convergence rate, without having to re-write the existing solver
or its existing datastructures. The preconditioning algorithm requires storage of Nk additional state
vectors for the GMRES linear solves and the computation of NRK ×Nk more residual evaluations. For
the simple inviscid problems used in the initial evaluation, run times generally increased by 20-40%. It is
likely that viscous cases with high cell Reynolds numbers and stiffer equations with a turbulence model
will require the improved convergence rate of the preconditioned steady-state solver.

4.4 Vortex Convection
For time dependent flows, we consider a simple two-dimensional vortex convection problem. The flow is
initialized to a Gaussian vortex centered at (0, 0):

11

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

f = egw(1−r2) (38)
u = M∞ − Γfy (39)
v = Γfx (40)

T = T∞ − gw
γ − 1

γ
Γ2f2 (41)

p =

(
T γ

S∞

) 1
γ−1

(42)

ρ =
p

RT
(43)

and the constants are chosen as M∞ = 0.5, Γ = 5/(2π), and gw = 0.5. γ = 1.4 is the ratio of specific
heats and r2 = x2 + y2. One-dimensional Riemann invariant boundary conditions are applied on the x
and y boundaries located 100gw away and symmetry is enforced in the z-direction. The initial condition
is translated by ∆x = −M∞∆t for BDF2 to alleviate the start-up problem with switching methods.
Figure 15 shows the contours of density at t=0 for the Gaussian vortex.

Figure 15: Density contours of the Gaussian
vortex initial condition.

Figure 16: Computational mesh showing refine-
ment along the vortex trajectory.

Since the spatial discretization is only 2nd-order accurate, a very fine mesh with over 35 pts per
characteristic length (gw) is used in the region x ∈ (−5, 15) , y ∈ (−5, 5). The entire computational
domain is shown in Figure 16 and contains approximately 1.1 million hexahedra. This was chosen so that
the temporal discretization error would dominate the spatial discretization errors, enabling verification
of the order of convergence for each method. Even so, an extra-fine mesh with twice as many points in
the x and y directions was needed for the Radau IIA simulation with the smallest ∆t.

In addition to the spatial error, dual time stepping also requires the iterative error be driven below
the temporal truncation error to demonstrate proper order of accuracy. For this initial verification of
the implementation, the unsteady residual was converged by 6 orders of magnitude for all schemes. This
was required for the implicit Runge-Kutta methods, but overly converged for the backwards difference
methods. A possible extension to this approach is to estimate temporal truncation error and drive R∗

to some factor below that tolerance, although in our experience this requires sharp error estimates for
robustness.

This vortex convection case was run with all four time integration methods using the unifying for-
mulation at several values of ∆t: 0.08, 0.1, 0.125, 0.2, and 0.25. At the final time t = 20, the vortex has
convected approximately 10 grid units downstream, and we compute the error by comparing the density
along the centerline (y = 0) to the exact solution over the interval x ∈ [−8, 18]. Figure 17 shows the
results from these runs along with reference lines for the expected orders of accuracy. As expected, the
implicit Euler solution has the most error and shows first-order convergence once ∆t is in the asymptotic
range. Moving to the 2nd order methods, BDF2 behaves quite similarly to BDF1 showing the largest
values of ∆t are outside the asymptotic range. It has more error than SDIRK2, due to its higher co-

12

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 17: Order of convergence for the various time integration schemes is shown by measuring error
in the centerline density (y=0) at t=20. Verification of this implementation is achieved as all methods
demonstrate their asymptotic order of accuracy.

efficient on the leading truncation error term (∆t3), but only requires the solution of a single stage at
each timestep. Finally, we are able to show formal 3rd order accuracy with the Radau IIA method with
significantly lower error than any of the other methods. In principle, this unified formulation also enables
a p-adaptive time integration approach with 1st-3rd order L-stable methods.

5 Outlook and Future Work
In this work, we formulated an implicit preconditioner for explicit multigrid solvers on cut-cell Cartesian
meshes. The linear preconditioner equations are solved with a Jacobian-free GMRES algorithm. The
preconditioning provides an improvement in multigrid convergence rate on our standard test problems
with as few as 2 Krylov subspace vectors. While better convergence rates are achieved with larger
subspaces, they also significantly increase computational cost since the Fréchet derivatives used for
the matrix-vector products require additional evaluations of the spatial residual operator on the entire
mesh. Limiters are shown to significantly degrade convergence and more effort is needed to ensure
realizable solutions without stalling convergence on challenging problems. We also plan to investigate
the performance of this approach on an RANS solver currently in development.

In addition, we extended Jameson’s implementation of dual time stepping with A−1-preconditioning
for fully-implicit Runge-Kutta methods. The present formulation only requires spatial residuals of the
current stage and was extended to include two BDF methods. The decoupling of the residuals greatly
simplifies the implementation on matrix-free solvers without significant increases in memory require-
ments. Asymptotic order of convergence was demonstrated for all 4 methods investigated. Further
evaluation of these methods is planned to assess their computational efficiency and performance on more
complicated problems.

13

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Acknowledgments
This work was supported by the Transformational Tools and Technologies (T3) project in NASA’s Aero-
nautics Research Mission Directorate’s Transformative Aeronautics Concepts program. Computer re-
sources for this work were provided by the NASA Advanced Supercomputing (NAS) Division at Ames
Research Center.

References
[1] Marsha Berger and Michael Aftosmis. Progress towards a Cartesian cut-cell method for viscous

compressible flow. In 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, 2012. AIAA 2012-1301.

[2] Marsha J Berger and Michael J Aftosmis. An ODE-based wall model for turbulent flow simulations.
AIAA Journal, 56(2):700–714, 2018.

[3] Antony Jameson. Origins and further development of the Jameson–Schmidt–Turkel scheme. AIAA
Journal, 55(5):1487–1510, 2017.

[4] Jiri Blazek, Norbert Kroll, Rolf Radespiel, and Cord-Christian Rossow. Upwind implicit residual
smoothing method for multi-stage schemes. In 10th Computational Fluid Dynamics Conference,
1991. AIAA 1991-1533.

[5] Carl F Ollivier-Gooch. Towards problem-independent multigrid convergence rates for unstructured
mesh methods I: Inviscid and laminar viscous flows. In Proceedings of the Sixth International
Symposium on Computational Fluid Dynamics, 1995.

[6] Niles Pierce and Michael Giles. Preconditioning compressible flow calculations on stretched meshes.
In 34th Aerospace Sciences Meeting and Exhibit, page 889, 1996. AIAA 1996-0889.

[7] Niles A Pierce and Michael B Giles. Preconditioned multigrid methods for compressible flow calcu-
lations on stretched meshes. Journal of Computational Physics, 136(2):425–445, 1997.

[8] Dimitri J Mavriplis. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes.
Journal of Computational Physics, 145(1):141–165, 1998.

[9] Cord-Christian Rossow. Convergence acceleration for solving the compressible navier-stokes equa-
tions. AIAA Journal, 44(2):345–352, 2006.

[10] Antony Jameson. Evaluation of fully implicit Runge Kutta schemes for unsteady flow calculations.
Journal of Scientific Computing, 73(2), 2017.

[11] Michael Aftosmis, Marsha Berger, and Gedas Adomavicius. A parallel multilevel method for adap-
tively refined Cartesian grids with embedded boundaries. In 38th Aerospace Sciences Meeting and
Exhibit, 2000. AIAA 2000-808.

[12] Michael J Aftosmis, Marsha J Berger, and John E Melton. Robust and efficient Cartesian mesh
generation for component-based geometry. AIAA Journal, 36(6):952–960, 1998.

[13] W Kyle Anderson, James L Thomas, and Bram Van Leer. Comparison of finite volume flux vector
splittings for the Euler equations. AIAA journal, 24(9):1453–1460, 1986.

[14] Bram van Leer, Chang-Hsien Tai, and Kenneth Powell. Design of optimally smoothing multi-stage
schemes for the Euler equations. In 9th Computational Fluid Dynamics Conference, 1989. AIAA
1989-1933.

[15] Robby Haelterman, Jan Vierendeels, and Dirk Van Heule. A generalization of the Runge–Kutta
iteration. Journal of Computational and Applied Mathematics, 224(1):152–167, 2009.

[16] R. Charles Swanson and Cord-Christian Rossow. An efficient solver for the RANS equations and a
one-equation turbulence model. Computers & Fluids, 42(1):13–25, 2011.

[17] Cord-Christian Rossow. Efficient computation of compressible and incompressible flows. Journal of
Computational Physics, 220(2):879–899, 2007.

[18] Shenren Xu, David Radford, Marcus Meyer, and Jens-Dominik Müller. Stabilisation of discrete
steady adjoint solvers. Journal of Computational Physics, 299:175–195, 2015.

[19] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869,
1986.

[20] Germund G Dahlquist. A special stability problem for linear multistep methods. BIT Numerical
Mathematics, 3(1):27–43, 1963.

[21] Richard Beam and Robert Warming. An implicit factored scheme for the compressible Navier-Stokes
equations. II-the numerical ODE connection. In 4th Computational Fluid Dynamics Conference,
page 1446, 1979.

14

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

[22] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

[23] Antony Jameson. Time dependent calculations using multigrid, with applications to unsteady flows
past airfoils and wings. In 10th Computational Fluid Dynamics Conference, Honolulu, HI, Jun 1991.
AIAA 1991-1596.

[24] John Ming-Jey Hsu. An implicit-explicit flow solver for complex unsteady flows. PhD thesis, Stanford
University, 2004.

[25] Marian Nemec and Michael J. Aftosmis. Adjoint error-estimation and adaptive refinement for
embedded-boundary Cartesian meshes. In 18th AIAA Computational Fluid Dynamics Conference,
2007. AIAA 2007-4187.

15

