
[10-A-03]

Keywords:

©Retained by Authors 

 ICCFD12 

Oral presentation | Numerical methods

Numerical methods-VI 
Thu. Jul 18, 2024 10:45 AM - 12:45 PM  Room A

 
A new subgrid-scale model for large eddy simulations of
incompressible turbulent flows within the lattice
Boltzmann framework 

*Heng Zhang1, Haibao Hu （1. NorthWestern Polytechnical University）
Lattice Boltzmann method, turbulence, large eddy simulations 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

 1 

A new subgrid-scale model for large eddy 

simulations of incompressible turbulent flows 

within the lattice Boltzmann framework 
Heng Zhang*, Haibao Hu* 

Corresponding author: huhaibao@nwpu.edu.cn 

* School of Marine Science and Technology, Northwestern Polytechnical University, 

Xi’an, Shaanxi 710072, People’s Republic of China 

 

Abstract: Turbulent flow is an important and difficult problem in fluid mechanics because 

of its high-dimensional, random, multi-scale, and nonlinear characteristics[1]. Among 

many numerical research methods, large eddy simulations (LES) are a popular method for 

turbulent simulations because of their accuracy and efficiency. Here, A new coupling 

model is proposed that combines non-equilibrium moments and the subgrid-scale model 

was proposed within the framework of the lattice Boltzmann method (LBM)[2]. The new 

model establishes a relation between the non-equilibrium moments and the eddy viscosity 

by using a special calculation form of the subgrid-scale model and Chapman-Enskog 

analysis. The coupling model is validated in three typical three-dimensional (3D) flow 

cases: freely decaying homogeneous isotropic turbulence, homogeneous isotropic 

turbulence with body forces[3] and incompressible turbulent channel flow at 𝑅𝑒𝜏=180 

according to the half height of the channel. Under the 3D Cartesian coordinate system, 

D3Q19 discretization scheme is applied in the core numerical solver for momentum 

evolution in the LBM. The results show that the new model is accurate and efficient when 

compared with the results of direct numerical simulations (DNS). While in the turbulent 

channel flow, the new model has lower numerical dissipation close to the wall. Using 

calculation format of the eddy viscosity, a uniform calculation format is used for each grid 

point of the flow field during the modeling process. The modeling process uses only the 

local distribution function to obtain the local eddy viscosity without any additional 

processing on the boundary, while optimizing the memory access process to fit the 

inherent parallelism of the LBM. The efficiency of computation is improved by about 20% 

compared to the central difference method (CDM) approach for obtaining the eddy 

viscosity. 

 

Keywords:    Lattice Boltzmann method, large eddy simulations, incompressible turbulent 

flows. 

 

1     Introduction 
The numerical simulation of turbulence is an important and difficult problem in 

computational fluid mechanics. At present, there are three numerical simulation methods for 
turbulent flow, namely direct numerical simulations (DNS), large eddy simulations (LES), and 
Reynolds Average Navier-Stokes (RANS), according to the different methods for solving Navier–
Stokes equations. The LES uses a spatial filtering method, which divides the vortices in the flow 
field into large and small scale vortices [4]. The large scale vortices are directly solved, and the 
small scale vortices are modeled by subgrid-scale model. Compared with the other two methods, 
LES can take into account both the computation amount and the computation accuracy. Therefore, 
LES have gradually become a popular method and has been applied in numerical simulation of 
turbulent flow [5]. 

In recent years, as a rapidly developed numerical simulation method, LBM has attracted a 
large number of researchers. Different from the traditional finite volume method (FVM) and finite 
element method (FEM), LBM mainly realizes the time and space evolution process of the flow 
field based on the distribution function of mesoscopic scale. In the LBM, the processing of 
distribution function is mainly divided into two processes: collision and streaming processes [6]. 
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In process of collision, the calculation of each point in the flow field is independent of the variables 
of the surrounding grid points, which is also the main reason for the good parallelism of LBM. 
Another obvious difference from the traditional method is that LBM can obtain the shear strain 
rate tensor through the non-equilibrium distribution functions (or non-equilibrium moments), 
rather than directly from the macroscopic velocity. In addition, LBM has many advantages such 
as simple boundary processing, clear physical meaning and has been widely used in computational 
fluid mechanics [7-10].  

LES for the turbulence is also an important direction in the LBM community[11, 12]. Some 
common subgrid-scale models are like Smagorinsky model [13], the Vreman model [14], and the 
dynamic Vreman model [15], as well as the wall-adaptive local eddy (WALE) model [16], the σ 
model [17], volumetric strain-stretching (VSS) model [18]. Smagorinsky model is the first 
proposed subgrid-scale model, which has achieved satisfactory results in the homogeneous 
turbulent flow, but in the wall-bounded turbulent flow, Smagorinsky model is overdissipative near 
the wall. 

It should be noted that all of the subgrid-scale models described above, except the 
Smagorinsky model, require a complete calculation of the velocity gradient tensor. However, the 
newly proposed VSS model this year only needs to calculate the shear strain rate tensor to 
complete the calculation of eddy viscosity. So far, the VSS model has been applied to the 
simulation of isotropic homogeneous turbulence and compressible/incompressible wall-bounded 
turbulence [18]. As far as we know, there is little research of combining non-equilibrium 
distribution function with VSS model.  

Based on this, we propose an algorithm that combines the VSS model with the LBM non-
equilibrium distribution function to achieve large eddy simulation of turbulence, and we use three 
typical flow problems to verify our newly proposed algorithm, they are freely decaying 
homogeneous isotropic turbulence, homogeneous isotropic turbulence with body forces and 
incompressible turbulent channel flow at 𝑅𝑒𝜏 = 180 according to the half height of the channel. 

 

2     Numerical Methods 

2.1     Subgrid-scale modeling 
The governing equations of the incompressible LES can be written as 

 {
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where �̅�𝑖 , �̅�, and �̅�𝑖  represent the resolved velocity, pressure, and force in the fluid field, 

respectively, 𝜌0  is the density of the fluid, ν0  represents the molecular viscosity. 𝜏𝑖𝑗 =

𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − �̅�𝑖�̅�𝑗, represents the SGS stress. Base on the eddy-viscosity assumption, 

 𝜏𝑖𝑗 −
1

3
𝛿𝑖𝑗𝜏𝑘𝑘 = −2νt𝑆�̅�𝑗 (2) 

where νt is the eddy viscosity, and it can be obtained by the local velocity gradient tensor. 𝑆�̅�𝑗 =

(𝜕𝑖�̅�𝑗 + 𝜕𝑗�̅�𝑖)/2 is the strain tensor. For the νt, different SGS models have different algorithms, 

but can be represented using a general formula,  

 

 νt = (C𝑣𝑖𝑠∆̅)
2𝑓(∇𝐮) (3) 

where C𝑣𝑖𝑠  is a constant coefficient. ∆̅ is the filter scale, and 𝑓(∇𝐮) is a function of the 

velocity gradient tensor. The classical Smagorinksy model can be written as  

 νt = (C𝑣𝑖𝑠∆̅)
2|𝑆̅| (4) 

where C𝑣𝑖𝑠 takes values in the range of 0.1-0.2, |𝑆̅| is the mode of the 𝑆�̅�𝑗 and |𝑆̅| = (2𝑆�̅�𝑗𝑆�̅�𝑗)
1/2. 

The VSS model, 

 𝑅𝑖𝑗 = (
𝑆23𝑆11 𝑆23𝑆22 𝑆23𝑆33
𝑆13𝑆11 𝑆13𝑆22 𝑆13𝑆33
𝑆12𝑆11 𝑆12𝑆22 𝑆12𝑆33

) (5) 
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where C𝑣𝑖𝑠 is a constant and the recommended value is 1.3 [18]. 

2.2     Coupling algorithm of LBM and VSS model 
The LBM equation based on the multiple-relaxation time model can be written as 

 𝒇(𝐱 + 𝐞iδt, t + δt) − 𝒇(𝐱, t) = −(𝐌
−1𝚲𝐌)[𝒇(𝐱, t) − 𝒇eq(𝐱, t)] + [𝐌−1(𝐈 −

𝚲

𝟐
)𝐌]𝐒 (7) 

 S𝑖 = ω𝑖(
𝐞i∙𝐅

𝑐𝑠
2 −

(𝐮𝐅+𝐅𝐮):(𝐞i𝐞i−𝑐𝑠
2𝐈)

2𝑐𝑠
4 ), (8) 

where 𝒇(𝐱, t) is the distribution function, 𝐞i is the discrete lattice vectors, M is the transformation 

matrix. 𝚲 is the diagonal matrix. 

The relationship between shear strain rate tensor and non-equilibrium moments can be 

obtained by using the Chapman–Enskog expansion. 

 𝐦neq = −𝛿𝑡𝚲
−𝟏 ∙ 𝐌 ∙ 𝐃t ∙ 𝐌

−1 ∙ 𝐦eq + (𝚲−𝟏 −
1

2
𝐈)𝐌𝐒 (9) 

where 𝐦neq = 𝐦−𝐦eq +𝐌𝐒/2  are the non-equilibrium moments, 𝐃t = diag(𝜕𝑡 , 𝜕𝑡 + 𝐞𝟎 ∙
𝛁,… , 𝜕𝑡 + 𝐞𝟏𝟖 ∙ 𝛁). 

From Eq.(9) and the relationship between the shear strain rate tensor and non-equilibrium 

moments can be obtained as 
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So, the the S𝑖𝑗, 
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3     Results and Discussion 

3.1     Taylor-Green vortex 

Firstly, we choose Taylor-Green vortex as a validation example at Re=1600. Figure 

1 and Figure 2 is the instantaneous kinetic energy and the kinetic energy dissipation rate of 

Taylor-Green vortex. It can be seen that the present results are in good agreement with the 

reference [19]. 
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Figure 1 The Taylor-Green vortex instantaneous kinetic energy. 
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Figure 2 The Taylor-Green vortex instantaneous kinetic energy dissipation rate. 

 

3.2     ABC forcing flow 

In addition, we have carried out the verification on the isotropic homogeneous 

turbulent flow with the body forces in the Arn’old-Beltrami-Childress (ABC) format. Figure 3 

presents the results of the turbulent energy spectrum distribution at different Re. The present 

results of VSS model are basically consistent with those of Smagorinsky model. 
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Figure 3 The turbulent energy spectrum distribution at different Re. 

 

3.3     Incompressible turbulent channel flow 
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The friction Reynolds number is 180. Figure 4 is the mean streamwise velocity profile. The 

present results of VSS model are in good agreement with the DNS results[20, 21]. 
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Figure 4 The mean streamwise velocity profile. 

4     Conclusion 

In this paper, we proposed a new coupling model that combines non-equilibrium moments 

and the subgrid-scale model was proposed within the framework of the LBM. The coupling model 

is validated in three incompressible flow cases: Taylor-Green vortex, ABC forcing flow, and the 

channel flow. The new model is validated by these cases, and the results are good in with the 

references and the DNS results. 
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