
[10-A-01]

Keywords:

©Retained by Authors

 ICCFD12

Oral presentation | Numerical methods

Numerical methods-VI
Thu. Jul 18, 2024 10:45 AM - 12:45 PM Room A

Shock Capturing via Limiting for Discontinuous Galerkin
and Flux Reconstruction Methods

*H.T. Huynh1 （1. NASA Glenn Research Center）
Shock Capturing, Limiting, Discontinuous Galerkin, Flux Reconstruction Methods

 ICCFD12

1

Shock Capturing via Limiting for High-Order Methods

including Discontinuous Galerkin and Flux Reconstruction

H. T. Huynh

NASA Glenn Research Center

Cleveland, OH 44135, USA

huynh@grc.nasa.gov

Abstract

High-order methods, such as discontinuous Galerkin (DG), spectral, and flux reconstruction (FR),

are prone to generating unwanted oscillations near shocks and discontinuities. Conventional limiting

techniques, while effective in suppressing oscillations near shocks, often compromise accuracy near

extrema, where the solution is only first-order accurate. This paper introduces a novel limiting technique

for these high-order schemes, aimed at effectively managing shocks while preserving accuracy. The

key idea is to expand the standard monotonicity limits to provide “room” near smooth extrema, ensuring

that limiting has no effect and thus accuracy is preserved. Near a discontinuity, these expanded limits

effectively reduce to the original monotonicity limits, suppressing oscillations. Additional motivation

is drawn from a formula for the derivative of Radau polynomials, which depicts the behavior of

oscillations resulting from discontinuities. This behavior leads to a simplification by applying the limits

to the sum of magnitudes of all modes, linear and higher degree. Unlike typical approaches, which rely

on successful detection to activate limiting, our limiter depends continuously on the data, thereby

avoiding potential issues if detection fails. To reduce computing time, efficient criteria for detecting

smooth regions where limiting is unnecessary are presented. Combined with detection, the continuous

dependence on the data is lost, but the method is more economical. A notable characteristic of the entire

process is its simplicity in both concept and implementation. Numerical tests for advection and Euler

equations are conducted to demonstrate the effectiveness of the proposed method.

1 Introduction

As is well-known, popular high-order methods such as discontinuous Galerkin (DG), spectral, and

flux reconstruction (FR), tend to produce oscillations near shocks and discontinuities. These oscillations

cause a loss of accuracy and can result in negative pressure and/or density, leading to code break down.

To mitigate these oscillations, nonlinear stabilization techniques, often referred to as shock-

capturing methods, have been developed. They can be broadly categorized into one of four groups:

limiting (Van Leer 1977, Cockburn et al. 1990, Hoteit et al. 2004, Krivodonova et al. 2004,

Krivodonova 2007, Yang and Wang 2009, Park et al. 2010, Park and Kim 2012, 2014, 2016, Moe et al.

2015, You and Kim 2018, Lu et al. 2019), filtering (Hesthaven and Warburton 2008, Asthana et al.

2015), artificial viscosity (Persson and Peraire 2006, Haga and Kawai 2013, Park et al. 2014), or method

modification (Dumbser et al. 2015), each with a substantial body of literature (see the references given

therein). These approaches differ in accuracy, robustness, computational cost, and difficulty of

extensions. More recent works with promising results include (Yang et al. 2016, Li and Wang 2017,

Dzanica et al. 2022, Fu et al. 2022, You et al. 2023, Kim et al. 2024).

Among shock capturing methods, we narrow our focus to limiting type, which is arguably the most

popular. For standard piecewise linear schemes, the limiting approach imposes constraints on the

calculated slopes to prevent excessive steepness, based on Van Leer’s (1977) concept of preserving

monotonicity: when the data are monotone, the limited slopes yield a monotone solution. The main

drawback of limiting is that it causes a loss of accuracy near smooth extrema where the solution is

mailto:huynh@grc.nasa.gov

 ICCFD12

2

somewhat flattened and only first-order accurate. Such a reduction in accuracy undermines the inherent

high-order nature of the methods employed here.

Concerning higher order (quadratic and higher) methods, the key idea for limiting is the following.

First, a solution is obtained using the base scheme. Next, a detection method is employed, marking a

cell as “troubled” if, for example, high frequency or high modal components are significant, indicating

the presence of oscillations and the necessity for limiting. For such cells, a constraint or a nonlinear

reconstruction is applied to reduce steepness and suppress oscillations in the solution. Conversely, if

the cell is deemed “good”—that is, not “troubled”—then the base solution is not altered.

Such DG-type limiters rely heavily on the detection technique, and detection can fail: occasionally,

a good cell can be marked troubled, and vice versa. If a good cell in smooth regions is marked troubled,

limiting may cause a loss of accuracy, and if a troubled cell is marked good, oscillations may take place.

The detection methods must also balance between either marking too many cells as troubled resulting

in more computing time or marking too few resulting in oscillations. Some of these methods also rely

on user specified parameters which must be recalibrated for different data.

In this paper, we introduce a limiting technique designed to mitigate oscillations near shocks while

maintaining accuracy for high-order methods such as DG, spectral, and FR. This technique extends the

method proposed in (Huynh 1995) and (Suresh and Huynh 1997) for traditional interpolation-type

schemes. The key idea is to expand the standard monotonicity limits to provide “room” so that near

smooth extrema, limiting has no effect, thereby preserving accuracy. Near a discontinuity, the expanded

limits effectively reduce to the original monotonicity limits, suppressing oscillations. Our limiter

depends continuously on the data, in contrast to typical limiting methods, which rely heavily on the

success of detection to activate or deactivate limiting. The algorithm is further simplified by two

observations: (a) near a discontinuity, the magnitudes of the high order modes in the solution become

excessively large, but their signs are consistent with the direction of the jump, thus limiting only needs

to reduce their magnitudes; and (b) the limiting bounds can be applied to the sum of magnitudes of all

modes, linear and higher order. Thus, our limiting shares the reduction of higher-order modes with

filtering techniques. The key difference is that our approach can reduce even the linear mode and/or

nullify all higher-order modes. These large reductions, however, occur only near a discontinuity, unlike

in standard filtering, where a moderate reduction is applied everywhere.

To reduce computing time, we also present efficient criteria for identifying smooth regions where

limiting is unnecessary. The main criterion among the three for our detection relies on comparing the

jumps at the interfaces to the quadratic content within the cell. The resulting algorithm typically marks

one to three cells near a shock as troubled. For a contact discontinuity, after it is dissipated over a few

cells, the detection can result in no troubled cells, indicating that the data is sufficiently smooth to be

managed by the base method with no limiting. Together with detection, the combined method no longer

depends continuously on the data, but it is more economical. A notable characteristic of the entire

process is its simplicity in both concept and implementation.

Our approach, along with its motivations and associated discussions, is strongly influenced by the

behavior of the DG method at a discontinuity. To illustrate this behavior, we need to formulate the DG

method for advection from an interpolation viewpoint using the FR approach. In essence, projection in

the DG formulation is equivalent to interpolation at the Radau points. Here, the oscillations resulting

from a discontinuity are given by the derivative of the Radau polynomial. While Radau quadratures are

well known, Radau polynomials are not widely recognized. These polynomials, which approximate a

unit jump at a cell interface, are defined by averaging the Legendre polynomials. Hence, providing a

description of DG in the FR framework, along with discussions on Radau polynomials and DG solutions

at a discontinuity, becomes necessary and is detailed below.

The paper is essentially self-contained and organized as follows. Section 2 presents the preliminaries

including the Radau polynomials and their derivatives. Section 3 describes the DG method in the FR

framework for advection. Section 4 shows the behavior of the DG solution for a jump discontinuity.

Our limiting and detection methods are presented in Section 5. Numerical examples are provided in

Section 6. Finally, conclusions and discussions can be found in Section 7.

 ICCFD12

3

2 Preliminaries

For any nonnegative integer 𝑚, let 𝑷𝑚 be the space of polynomials of degree 𝑚 or less.

For any two functions 𝑣 and 𝑤 on 𝐼 = [−1, 1], denote (𝑣, 𝑤) = (𝑣,𝑤)𝐼 = ∫ 𝑣(𝜉)𝑤(𝜉) 𝑑𝜉
1

−1
.

We need the Legendre polynomials to define the Radau polynomials. Let the Legendre polynomial

𝐿𝑘 on 𝐼 be defined as the unique polynomial of degree 𝑘 that satisfies 𝐿𝑘(1) = 1 and 𝐿𝑘 is orthogonal

to 𝑷𝑘−1 (or 𝐿𝑘 ⏊ 𝑷𝑘−1), i.e., (𝐿𝑘 , 𝜉
𝑚) = ∫ 𝐿𝑘(𝜉)𝜉

𝑚 𝑑𝜉
1

−1
= 0, for 𝑚 = 0, 1, … , 𝑘 − 1. The first few

Legendre polynomials are

 𝐿0 = 1, 𝐿1 = 𝜉, 𝐿2 =
3𝜉2 − 1

2
, 𝐿3 =

5𝜉3 − 3𝜉

2
, and 𝐿4 =

35𝜉4 − 30𝜉2 + 3

8
. (2.1)

The zeros of 𝐿𝑘 are the 𝑘 Gauss points.

Fig. 2.1(a) shows the graphs of the above Legendre polynomials; the dots, which represent the zeros

of 𝐿4, are the 4 Gauss points.

(a) Legendre polynomials

(b) Left Radau polynomials

Fig. 2.1: (a) The graphs of the Legendre polynomials 𝐿𝑘, 𝑘 = 0,… , 4; the dots represent the 4 Gauss

points. (b) The graphs of the left Radau polynomials 𝑅𝐿, 𝑘, 𝑘 = 1,… , 4; the dots represent the 4 left

Radau points. The left Radau polynomials approximate a unit jump (up) at the right boundary.

The Radau quadrature formulas are well-known, but the Radau polynomials are not. For any 𝑘 ≥ 1,

let the left and right Radau polynomials of degree 𝑘 be defined respectively by

 𝑅𝐿, 𝑘 =
1

2
(𝐿𝑘 + 𝐿𝑘−1), and 𝑅𝑅, 𝑘 =

(−1)𝑘

2
(𝐿𝑘 − 𝐿𝑘−1). (2.2a,b)

Note that 𝑅𝐿, 𝑘 and 𝑅𝑅, 𝑘 are reflections of each other: 𝑅𝑅, 𝑘(𝜉) = 𝑅𝐿, 𝑘(−𝜉). At the two boundaries, for

the left Radau polynomial,

 𝑅𝐿, 𝑘(−1) = 0, and 𝑅𝐿, 𝑘(1) = 1. (2.3a,b)

For the right Radau polynomial,

 𝑅𝑅, 𝑘(−1) = 1, and 𝑅𝑅, 𝑘(1) = 0. (2.4a,b)

The first few 𝑅𝐿, 𝑘’s are

𝑅𝐿, 1 = (1 + 𝜉)/2, 𝑅𝐿, 2 = (−1 + 2𝜉 + 3𝜉
2)/4,

𝑅𝐿, 3 = (−1 − 3𝜉 + 3𝜉
2 + 5𝜉3)/4, and 𝑅𝐿, 4 = (3 − 12𝜉 − 30𝜉

2 + 20𝜉3 + 35𝜉4)/16.

Fig. 2.1(b) shows the graphs of these left Radau polynomials. The dots corresponding to the zeros

of 𝑅𝐿, 4 represent the 4 left Radau points, which include 𝜉 = −1.

The corresponding 𝑅𝑅, 𝑘 can easily be obtained by 𝑅𝑅, 𝑘(𝜉) = 𝑅𝐿, 𝑘(−𝜉).

 ICCFD12

4

Since both 𝐿𝑘 and 𝐿𝑘−1 are orthogonal to 𝑷𝑘−2, both Radau polynomials also have this property:

 𝑅𝐿, 𝑘 ⏊ 𝑷𝑘−2, and 𝑅𝑅, 𝑘 ⏊ 𝑷𝑘−2. (2.5a,b)

Let the step-down function 𝑆𝐷 and step-up function 𝑆𝑈 on 𝐼 be defined respectively by

 𝑆𝐷(𝜉) = {
1 for 𝜉 = −1
0 for − 1 < 𝜉 ≤ 1

 and 𝑆𝑈(𝜉) = {
0 for − 1 ≤ 𝜉 < 1
1 for 𝜉 = 1.

 (2.6a,b)

On 𝐼, 𝑆𝐷 represents a unit jump (down) at 𝜉 = −1, and 𝑆𝑈 represents a unit jump (up) at 𝜉 = 1.

The right Radau polynomial 𝑅𝑅, 𝑘 can be considered as an approximation to the step-down function

𝑆𝐷 since 𝑅𝑅, 𝑘(−1) = 1, 𝑅𝑅, 𝑘(1) = 0, and 𝑅𝑅, 𝑘 approximates 0 on (−1, 1] in the sense that

𝑅𝑅, 𝑘 ⏊ 𝑷𝑘−2, i.e., (𝑅𝑅, 𝑘 , 𝜉
𝑚) = 0 for 𝑚 = 0, 1,… , 𝑘 − 2. In other words, except for the two conditions

at the boundaries, namely (2.4a,b), 𝑅𝑅, 𝑘 utilizes the rest of the conditions (𝑘 − 1 of them) to

approximate 0 in the sense of orthogonality or projection: 𝑅𝑅, 𝑘 ⏊ 𝑷𝑘−2.

Similarly, the left Radau polynomial 𝑅𝐿, 𝑘 approximates 𝑆𝑈.

The above discussion implies that the left and right Radau polynomials can be employed to

approximate the jumps at the cell interfaces for the DG method as will be discussed below.

The zeros of 𝑅𝐿, 𝑘 are the 𝑘 left Radau points, and the zeros of 𝑅𝑅, 𝑘 are the 𝑘 right Radau points.

Next, we present simple formulas for 𝑅𝐿, 𝑘+1
′ and 𝑅𝑅, 𝑘+1

′, which approximate the derivative of a

jump at the boundaries, and show the behavior of the DG solution at a discontinuity:

 𝑅𝐿, 𝑘+1
′ =

1

2
 ∑ (2𝑚 + 1)𝐿𝑚

𝑘

𝑚=0

=
1

2
{𝐿0 + 3𝐿1 + 5𝐿2 + 7𝐿3 +⋯+ (2𝑘 + 1)𝐿𝑘}, (2.7a)

and

𝑅𝑅, 𝑘+1
′ =

1

2
 ∑ (−1)𝑚+1(2𝑚 + 1)𝐿𝑚

𝑘

𝑚=0

=
1

2
{−𝐿0 + 3𝐿1 +⋯+ (−1)

𝑘+1(2𝑘 + 1)𝐿𝑘}. (2.7b)

Note the pattern 1, 3, 5, … , 2𝑘 + 1. For the proof of (2.7), see Appendix A. The above imply

 𝑅𝐿, 𝑘+1
′ = 𝑅𝐿, 𝑘

′ +
2𝑘 + 1

2
𝐿𝑘 , and 𝑅𝑅, 𝑘+1

′ = 𝑅𝑅, 𝑘
′ + (−1)𝑘+1

2𝑘 + 1

2
𝐿𝑘 . (2.8a,b)

The values at the boundaries, employed later, are also straightforward:

 𝑅𝐿, 𝑘+1
′(1) = −𝑅𝑅, 𝑘+1

′(−1) =
1

2
{1 + 3 + 5 −⋯+ (2𝑘 + 1)} =

(𝑘 + 1)2

2
, (2.9)

and

 𝑅𝐿, 𝑘+1
′(−1) = −𝑅𝑅, 𝑘+1

′(1) =
1

2
{1 − 3 + 5 +⋯+ (−1)𝑘(2𝑘 + 1)} = (−1)𝑘

𝑘 + 1

2
. (2.10)

Fig. 2.2 shows the plots of (a) the first few right Radau polynomials and (b) their derivatives. In (b),

consistent with (2.9), the values 𝑅𝑅, 𝑘+1
′(−1), for 𝑘 = 0,… , 3, respectively, are: −1/2, −4/2, −9/2,

and −16/2; and consistent with (2.10), the values 𝑅𝑅, 𝑘+1
′(1) are −1/2, 1, −3/2, and 2.

Denote the 𝑘 + 1 left and right Radau points in increasing order by 𝜉𝐿, 𝑚 and 𝜉𝑅, 𝑚 respectively, 𝑚 =

1,… , 𝑘 + 1. Then, while 𝑅𝑅, 𝑘+1 vanishes at the 𝑘 + 1 right Radau points, its derivative 𝑅𝑅, 𝑘+1
′

vanishes at the 𝑘 interior points of the 𝑘 + 1 left Radau points: for 𝑙 = 2,… , 𝑘 + 1,

 𝑅𝑅, 𝑘+1
′(𝜉𝐿,𝑙) = 0. (2.11)

The exception is at the left boundary 𝜉 = −1 where 𝑅𝑅, 𝑘+1
′(−1) = −(𝑘 + 1)2/2 by (2.9). The proof

of (2.11) can be found in Appendix B.

A similar statement holds for the left Radau polynomial with appropriate changes.

 ICCFD12

5

(a) Right Radau polynomials

(b) Derivatives of Right Radau polynomials

Fig. 2.2: (a) Graphs of the right Radau polynomials 𝑅𝑅, 𝑘, 𝑘 = 1,… , 4, alongside dots corresponding

to the zeros of 𝑅𝑅, 4 representing the 4 right Radau points; (b) graphs of 𝑅𝑅, 𝑘
′, note the different scales.

Consistent with (2.11), for each 𝑘, the 𝑘 − 1 zeros of 𝑅𝑅, 𝑘
′ together with 𝜉 = −1 form the 𝑘 left Radau

points represented by the dots in (b) for 𝑘 = 4.

3. Discontinuous Galerkin method for advection via interpolation

For advection, by casting the DG method in the flux reconstruction (FR) framework, projection, the

key idea in the DG formulation, turns out to be equivalent to interpolation at the Radau points.

Consider the advection equation

 𝑢𝑡 + 𝑎𝑢𝑥 = 0 (3.1)

with initial condition

 𝑢(𝑥, 0) = 𝑢0(𝑥) (3.2)

where 𝑡 is time, 𝑥 space, and 𝑎 the advection speed, a positive constant (we can set 𝑎 = 1). By assuming

that 𝑢0 is periodic, boundary conditions are trivial and thus omitted. The exact solution at time 𝑡 is

obtained by shifting the data curve to the right a distance 𝑎𝑡: 𝑢exact(𝑥, 𝑡) = 𝑢0(𝑥 − 𝑎𝑡).

Let the domain of calculation Ω be divided into (possibly non-uniform) cells 𝐸𝑗, 𝑗 = 1, 2, … Denote

the center of 𝐸𝑗 by 𝑥𝑗 and its width by ℎ𝑗. Set ℎ = max (ℎ𝑗), 𝑗 = 1, 2, … Using the reference frame, with

𝜉 varying on 𝐼 = [−1, 1] and 𝑥 on 𝐸𝑗, the linear function mapping 𝐼 onto 𝐸𝑗 and its inverse are

 𝑥(𝜉) = 𝑥𝑗 + 𝜉
ℎ𝑗

2
, and 𝜉(𝑥) =

2

ℎ𝑗
(𝑥 − 𝑥𝑗). (3.3)

Thus, 𝑑𝑥 = ℎ𝑗𝑑𝜉/2. A function 𝑟𝑗(𝑥) on 𝐸𝑗 results in a function on 𝐼 denoted by, for simplicity of

notation, 𝑟𝑗(𝜉) with 𝑟𝑗(𝜉) = 𝑟𝑗(𝑥(𝜉)). By the chain rule, 𝑑𝑟𝑗/𝑑𝑥 = (2/ℎ𝑗)(𝑑𝑟𝑗/𝑑𝜉).

Let 𝑝 be a nonnegative integer. At time 𝑡, let the solution 𝑢(𝑥, 𝑡) be approximated on each cell 𝐸𝑗

by a polynomial of degree 𝑝 in 𝑥 denoted by 𝑢𝑗(𝑥, 𝑡). For each fixed 𝑡, the collection of all polynomials

{𝑢𝑗(. , 𝑡)} as 𝑗 varies forms a function denoted by 𝑢ℎ, which is generally discontinuous across cell

interfaces. In the reference description for 𝐸𝑗, the solution 𝑢𝑗(𝜉, 𝑡) can be expressed in modal form as

 𝑢𝑗(𝜉, 𝑡) = ∑𝑢𝑗, 𝑘(𝑡) 𝐿𝑘(𝜉)

𝑝

𝑘=0

. (3.4)

For each 𝑘, 0 ≤ 𝑘 ≤ 𝑝, the value 𝑢𝑗, 𝑘 is called the 𝑘-th mode (or 𝑘-th moment) of the solution in cell 𝑗,

and 𝑢𝑗 of degree 𝑝 is determined by the 𝑝 + 1 modes 𝑢𝑗, 𝑘.

Assume that the data 𝑢𝑗, 𝑘(𝑡
𝑛) = 𝑢𝑗, 𝑘 are known for all cells. We wish to calculate (𝑢ℎ)𝑥 or

equivalently (𝑢ℎ)𝜉. The initial condition 𝑢0(𝑥) can be discretized by using the values at the 𝑝 + 1

Gauss points in each cell. The resulting nodal data can easily be transformed into modal form (3.4).

 ICCFD12

6

As is routine, to involve data interaction among cells, at each interface 𝑗 + 1/2, we define a value

common for the two adjacent cells 𝑗 and 𝑗 + 1 by upwinding: using the reference frame,

 𝑢𝑗+1/2
upw

= 𝑢𝑗(1). (3.5)

The DG method can be cast as follows (for the proof, see Appendix C). In each cell 𝑗, we reconstruct

the solution by a polynomial of degree 𝑝 + 1, one degree higher than that of 𝑢𝑗, denoted by 𝑈𝑗, and

defined by 𝑝 + 2 conditions. At the two interfaces, 𝑈𝑗 takes on the common (upwind) values,

 𝑈𝑗(−1) = 𝑢𝑗−1/2
upw

= 𝑢𝑗−1(1)
and 𝑈𝑗(1) = 𝑢𝑗+1/2

upw
= 𝑢𝑗(1). (3.6a,b)

For the remaining 𝑝 conditions, we require that 𝑈𝑗(𝜉) approximates 𝑢𝑗(𝜉) as closely as possible through

projection:

 (𝑈𝑗 − 𝑢𝑗)⏊ 𝑷𝑝−1. (3.7)

The degree 𝑝 + 1 for 𝑈𝑗 serves the purpose that (𝑈𝑗)𝜉
, which yields (𝑢ℎ)𝜉, matches the degree of 𝑢𝑗.

Focussing on cell 𝑗, at the left interface, we have the following jump denoted by 𝐽𝐿:

 𝑈𝑗(−1) − 𝑢𝑗(−1) = 𝑢𝑗−1/2
upw

− 𝑢𝑗(−1) = 𝑢𝑗−1(1) − 𝑢𝑗(−1) = 𝐽𝐿 . (3.8)

(A more complete notation would be 𝐽𝑗,𝐿.) On the other hand, at the right interface, 𝐽𝑅 = 0,

 𝑈𝑗(1) − 𝑢𝑗(1) = 𝑢𝑗+1/2
upw

− 𝑢𝑗(1) = 𝐽𝑅 = 0. (3.9)

Eqs. (3.7)–(3.9) provide 𝑝 + 2 conditions defining 𝑈𝑗 − 𝑢𝑗. The 𝑝 + 1 conditions of (3.7) and (3.9) for

𝑈𝑗 − 𝑢𝑗 are identical to those for 𝑅𝑅, 𝑝+1, namely, (2.5b) and (2.4b) with 𝑘 = 𝑝 + 1. Thus, by

multiplying 𝑅𝑅, 𝑝+1 by the constant 𝐽𝐿, we can also match condition (3.8) at the left boundary, i.e.,

 𝑈𝑗 − 𝑢𝑗 = 𝐽𝐿𝑅𝑅, 𝑝+1. (3.10)

Equivalently,

 𝑈𝑗 = 𝑢𝑗 + 𝐽𝐿𝑅𝑅, 𝑝+1. (3.11)

Hence, by adding the “correction” 𝐽𝐿𝑅𝑅, 𝑝+1 to 𝑢𝑗, we obtain 𝑈𝑗 that matches the common values at the

interfaces, namely, 𝑈𝑗(−1) = 𝑢𝑗−1/2
upw

 and 𝑈𝑗(1) = 𝑢𝑗+1/2
upw

, and (𝑈𝑗)𝜉 yields the desired (𝑢ℎ)𝜉.

In short, (𝑈𝑗)𝜉 yields the desired (𝑢ℎ)𝜉 by the DG method for the following reasons. The DG

solution is of degree 𝑝, therefore, 𝑈𝑗 needs to be of degree 𝑝 + 1. The DG formulation involves

integration by parts to enforce the upwind value 𝑢𝑗−1/2
upw

 and 𝑢𝑗+1/2
upw

 at the two interfaces, consistent with

𝑈𝑗 matching these values by (3.8) and (3.9). To define 𝑈𝑗, we need 𝑝 additional conditions. These are

provided by—using the key DG idea—requiring that 𝑈𝑗 approximates 𝑢𝑗 as closely as possible via

projection: (𝑈𝑗 − 𝑢𝑗)⏊ 𝑷𝑝−1 as in (3.7).

The polynomial 𝑢𝑗 of degree 𝑝 can be defined by its values at the 𝑝 + 1 right Radau points, and 𝑈𝑗

can defined by the 𝑝 + 2 conditions that it interpolates 𝑢𝑗 at these Radau points and 𝑈𝑗(−1) = 𝑢𝑗−1/2
upw

.

Fig. 3.1 depict (a) piecewise quadratic data, and (b) the cubic polynomials 𝑈𝑗 and 𝑈𝑗+1, which

interpolate 𝑢𝑗 and 𝑢𝑗+1, respectively, at the 3 right Radau points; (𝑈𝑗)𝜉 yields the DG spatial derivative.

Thus, for advection, loosely put, projection in the DG method is equivalent to interpolation at the

right Radau points (between 𝑈𝑗 and 𝑢𝑗).

On the other hand, the left Radau points play an important role in the interpolation between (𝑈𝑗)𝜉

and (𝑢𝑗)𝜉. At the left boundary 𝜉 = −1,

 ICCFD12

7

 (𝑈𝑗)𝜉
(−1) = (𝑢𝑗)𝜉

(−1) − 𝐽𝐿
(𝑘 + 1)2

2
.

However, at the 𝑝 interior points of the 𝑝 + 1 left Radau points, by (2.11), (𝑈𝑗)𝜉
 equals (𝑢𝑗)𝜉

. Thus, at

the left Radau points, the “correction” to (𝑢𝑗)𝜉
, in the form (𝑈𝑗)𝜉

, is lumped to the left boundary. This

fact also relates to the sign changes of the oscillations across the left Radau points in Fig. 4.1(b) later.

(a) Piecewise quadratic data

(b) Cubic polynomials 𝑈𝑗 and 𝑈𝑗+1

Fig. 3.1: Piecewise quadratic DG method in the FR framework for advection: (a) piecewise

quadratic data; (b) cubic polynomial 𝑈𝑗(𝑥), which matches the upwind value at the left interface and

interpolates 𝑢𝑗 at the 3 right Radau points; (𝑈𝑗)𝑥 yields (𝑢ℎ)𝑥 for the DG method.

In passing, if there is also a jump at the right boundary of cell 𝑗, (e.g., the speed 𝑎 changes sign in

the cell, or the centered common value is used instead of the upwind value in (3.5)), then to match the

common values at both boundaries, (3.11) must be modified to 𝑈𝑗 = 𝑢𝑗 + 𝐽𝐿𝑅𝑅, 𝑝+1 + 𝐽𝑅𝑅𝐿, 𝑝+1.

With 𝑈𝑗 by (3.11), the advection equation can then be discretized in semi-discrete form as

𝜕

𝜕𝑡
𝑢𝑗(𝜉, 𝑡) = −

2

ℎ𝑗
𝑎(𝑈𝑗)𝜉

. (3.12)

This completes the description of the DG method in the FR framework.

For convenience, the DG method of degree 𝑝 is abbreviated to DGp. We also denote 𝑢𝜉 by 𝑢′.

The time stepping discussed below corresponds to an Euler forward method of size Δ𝜏 (by one stage

of the Runge-Kutta method) with a CFL number of 𝜎 = 𝑎Δ𝜏/ℎ𝑗. For convenience, it is referred to as a

time step corresponding to 𝜎. The DG solution �̃�𝑗 under such a time step is given by, using the above,

 �̃�𝑗 = 𝑢𝑗 − 2𝜎𝑈𝑗
′. (3.13)

(The wave travels a distance 2𝜎 in the reference frame.) Hence, with 𝑈𝑗 by (3.11),

 �̃�𝑗 = 𝑢𝑗 − 2𝜎𝑢𝑗
′−2𝜎𝐽𝐿𝑅𝑅, 𝑝+1

′. (3.14)

Therefore, by (2.7b), the DGp solution is

 �̃�𝑗 = 𝑢𝑗 − 2𝜎𝑢𝑗
′ + 𝜎𝐽𝐿[𝐿0 − 3𝐿1 + 5𝐿2 +⋯+ (−1)

𝑝(2𝑝 + 1)𝐿𝑝]. (3.15)

In (3.14) and the above, 𝑢𝑗 − 2𝜎𝑢𝑗
′ represents the advection of 𝑢𝑗 with no interaction, while

−2𝜎𝐽𝐿𝑅𝑅, 𝑝+1
′ and 𝜎𝐽𝐿[…] represent the effect of the interaction among cells due to the jump 𝐽𝐿.

The next discussion on accuracy is essential for the limiting procedure. At 𝜉 = 1, since 𝐿𝑘(1) = 1,

𝑢𝑗−1(𝑥)

𝑈𝑗(𝑥)

𝑈𝑗+1(𝑥)

𝑢𝑗(𝑥)

𝑢𝑗+1(𝑥)

𝑢𝑗−1/2
upw

𝑢𝑗+1/2
upw

𝐽𝐿

 ICCFD12

8

 𝑢𝑗(1) = ∑𝑢𝑗, 𝑘

𝑝

𝑘=0

= 𝑢𝑗, 0 +⋯+ 𝑢𝑗, 𝑝 .

(3.16)

At smooth regions, the 𝑘-th mode 𝑢𝑗, 𝑘 is of size 𝑂(ℎ𝑘), decreasing like ℎ𝑘 for small ℎ. Each successive

𝑢𝑗, 𝑘 contributes to an estimate ∑ 𝑢𝑗, 𝑚
𝑘
𝑚=0 for 𝑢(𝑥𝑗+1/2) accurate to order 𝑘, i.e., with an error 𝑂(ℎ𝑘+1).

In particular, the 𝑝-th mode 𝑢𝑗, 𝑝 is 𝑂(ℎ𝑝), and 𝑢𝑗(1) above approximates 𝑢(𝑥𝑗+1/2) with an error

𝑂(ℎ𝑝+1). A similar statement holds for 𝑢𝑗(−1). Therefore, at all interfaces in smooth regions,

 |𝑢𝑗+1(−1) − 𝑢𝑗(1)| = 𝑂(ℎ
𝑝+1). (3.17)

Thus, if cell 𝑗 is in a smooth region, both 𝐽𝐿 and 𝐽𝑅 are 𝑂(ℎ𝑝+1), and (3.15) results in small

corrections for all modes in the solution.

At a discontinuity, however, the jump 𝐽𝐿 is 𝑂(1), and the term −2𝜎𝐽𝐿𝑅𝑅, 𝑝+1
′ in (3.15) leads to

higher modes of successively larger magnitudes, resulting in oscillations.

4. Behavior of solutions at a discontinuity

Oscillatory DG solutions for step data.

The following example demonstrates the nature of the oscillations generated by the DG method at a

discontinuity. Let the domain Ω = [0, 1] be divided into 3 uniform cells denoted by 𝑗 − 1, 𝑗, and 𝑗 + 1.

With 𝜉 on 𝐼, consider the case of a step-down data where 𝑢𝑗−1(𝜉) = 1, and 𝑢𝑗(𝜉) = 𝑢𝑗+1(𝜉) = 0 as

shown in Fig. 4.1(a). Thus, the data are monotonically decreasing. Under a time step corresponding

to 𝜎, since 𝑢𝑗 = 0, and 𝐽𝐿 = 1, by (3.14),

 �̃�𝑗 = −2𝜎𝑅𝑅, 𝑝+1
′. (4.1)

Or, by (2.7b),

 �̃�𝑗 = 𝜎[𝐿0 − 3𝐿1 + 5𝐿2 +⋯+ (−1)
𝑝(2𝑝 + 1)𝐿𝑝]. (4.2)

Note that the magnitude of the mode increases like 2𝑘 + 1 as the mode order 𝑘 increases.

Since 𝐿𝑘(−1) = (−1)
𝑘, the above yields the following solution value at the left interface:

 �̃�𝑗(−1) = 𝜎{1 + 3 + 5 +⋯+ (2𝑝 + 1)} = 𝜎(𝑝 + 1)
2. (4.3)

At the right interface,

 �̃�𝑗(1) = 𝜎{1 − 3 + 5 +⋯+ (−1)
𝑝(2𝑝 + 1)} = 𝜎(−1)𝑝(𝑝 + 1). (4.4)

Thus, for the step-down data, as 𝑝 increases, at the left interface, �̃�𝑗(−1) increases as 𝜎(𝑝 + 1)2, and

at the right interface, �̃�𝑗(1) has alternating signs and its magnitude increases as 𝜎(𝑝 + 1).

Denote the DG solution of degree 𝑝 under a time step corresponding to 𝜎 by [�̃�𝑗]
(𝑝). It follows from

(4.2) for our step-down example that the DGp solutions satisfy the recurrence relation

 [�̃�𝑗]
(𝑝) = [�̃�𝑗]

(𝑝−1) + 𝜎(−1)𝑝(2𝑝 + 1)𝐿𝑝. (4.5)

Fig. 4.1 shows (a) the step data and (b) the cubic DG solution (red curve) under a time step with

𝜎 = 0.05. In Fig. 4.1(b), the cubic solution equals ∑ 𝑢𝑗, 𝑚𝐿𝑚
3
𝑚=0 where, for 𝑚 = 0,… , 3, respectively,

the modes are 𝑢𝑗,𝑚 = 𝜎, −3𝜎, 5𝜎, and −7𝜎. For 0 ≤ 𝑘 ≤ 2, each ∑ 𝑢𝑗, 𝑚𝐿𝑚
𝑘
𝑚=0 is identical to the

DGk solution, whose plots are also shown. For 𝑚 = 0,… , 3, the modal values 𝑢𝑗, 𝑚 𝐿𝑚(−1), are 𝜎, 3𝜎,

5𝜎, and 7𝜎 respectively; they result in solution values [�̃�𝑗]
(𝑚)(−1) of 𝜎, 4𝜎, 9𝜎, and 16𝜎 represented

by the dots on the vertical line 𝑥 = 1/3. Thus, the modes 𝑢𝑗, 𝑚’s have the “correct” sign in the sense

that they result in solution values increasing toward 1 at the interface corresponding to the jump (this

 ICCFD12

9

observation holds for small 𝜎; a large 𝜎 can result in values larger than 1). At the right boundary,

[�̃�𝑗]
(𝑚)(1) equals 𝜎, −2𝜎, 3𝜎, and −4𝜎. Consistent with (2.11) for 𝑅𝑅, 𝑝+1

′, the DG solutions also

cross the 𝑥-axis at the corresponding interior left Radau points.

(a) Step-down data

(b) Corresponding cubic DG solution

Fig. 4.1: (a) Step data and (b) cubic DG solution under a time step with 𝜎 = 0.05 (red curve). The

cubic solution equals ∑ 𝑢𝑗, 𝑚𝐿𝑚
3
𝑚=0 where 𝑢𝑗,𝑚 = 𝜎,−3𝜎, 5𝜎,−7𝜎 for 𝑚 = 0,… , 3, or 𝑢𝑗,𝑚 =

(−1)𝑚(2𝑚 + 1)𝜎. Each ∑ 𝑢𝑗, 𝑚𝐿𝑚
𝑘
𝑚=0 , 0 ≤ 𝑘 ≤ 2, is identical to the DGk solution.

For our step-down example, at the left interface, by (4.3), all solution modes contribute to increasing

the value toward 1 as discussed above. That is, they exhibit the “correct” sign (a wrong sign would lead

to a decrease in value). Thus, for each mode, we can limit only its magnitude and leave its sign

unchanged.

At the right interface, however, by (4.4), �̃�𝑗(1) has alternating signs with magnitude increasing as

𝜎(𝑝 + 1). Thus, near a discontinuity, to assure that the solution lies within the range [0,1], for modes

𝑢𝑗,2 and above, zeroing them out is a reasonable option.

The filtering approach suppresses oscillations by reducing the magnitudes of the high modes

everywhere. Various functions have been devised for this purpose (Hesthaven and Warburton 2008).

However, determining an appropriate reduction for each mode remains challenging. Additionally, a

significant drawback is that reducing mode sizes at smooth regions causes a loss of accuracy.

Our approach is different from standard filtering: for the above example, our limiting amounts to

reducing even the linear mode and zeroing out all higher modes. Since our limiting has effect only at a

few cells near discontinuities and has nonexistent or negligible effect at smooth regions, accuracy

remains intact while oscillations are suppressed.

Given the oscillatory DG solutions, the question is what should the solution be for the step-down

example above? Since the step data exhibits two essential properties—monotonicity and values within

the range [0, 1]—it is reasonable to require the solution to also possess these properties.

Monotone solutions for step data.

The following is the FR generalization (Huynh 2007, 2009, Huynh, Wang, and Vincent 2014) of the

DG method: for advection, set

 𝑈𝑗 = 𝑢𝑗 + 𝐽𝐿𝑔 (4.6)

where 𝑔, called a “correction function”, is of degree 𝑝 + 1 and determined by 𝑝 + 2 conditions. It must

approximate the step-down function in some sense. At the two boundaries, 𝑔 is required to satisfy

 𝑔(−1) = 1, 𝑔(1) = 0, (4.7)

with 𝑝 additional conditions to be prescribed. Here, condition 𝑔(−1) = 1 serves to match the upwind

value at the left boundary, while condition 𝑔(1) = 0 serves to leave the value 𝑢𝑗(1) unchanged.

𝑢𝑗−1(𝑥)

Cell 𝑗

𝑢𝑗(𝑥)

𝑢𝑗+1(𝑥)

Cell 𝑗

 ICCFD12

10

If 𝑔 = 𝑅𝑅, 𝑝+1 in (4.6), the result is the DGp method. The 𝑝 + 1 zeros of this 𝑔 are the right Radau

points. To obtain a monotone 𝑔, we can push all the zeros to 𝜉 = 1 by requiring that 𝜉 = 1 is a zero of

multiplicity 𝑝 + 1. Equivalently, for 1 ≤ 𝑘 ≤ 𝑝, all derivatives to degree 𝑘 vanish: 𝑔(𝑘)(1) = 0. Thus,

𝑔 = (

1 − 𝜉

2
)
𝑝+1

. (4.8)

Consequently,

 𝑔′ = −
1

2
(𝑝 + 1) (

1 − 𝜉

2
)
𝑝

. (4.9)

With 𝑈𝑗 by (4.6) and 𝑔 by (4.8), the FR solution after a time step corresponding to 𝜎 is given by

 �̃�𝑗 = 𝑢𝑗 − 2𝜎𝑢𝑗
′ + 𝜎𝐽𝐿 [(𝑝 + 1) (

1 − 𝜉

2
)
𝑝

]. (4.10)

Hence, for our example of step-down data,

 �̃�𝑗 = 𝜎(𝑝 + 1) (
1 − 𝜉

2
)
𝑝

. (4.11)

For 𝑝 = 0, �̃�𝑗 = 𝜎, a constant function. For 𝑝 = 0, 1, 2, …, at the left boundary, the solution values are

𝜎, 2𝜎, 3𝜎, … as opposed to 𝜎, 4𝜎, 9𝜎, … of the DG methods, i.e., 𝜎(𝑝 + 1) as opposed to 𝜎(𝑝 + 1)2.

At the right boundary, for all 𝑝 ≥ 1, �̃�𝑗(1) = 0 and, for 1 ≤ 𝑘 ≤ 𝑝 − 1, �̃�𝑗
(𝑘)(1) = 0.

Fig. 4.2 shows (a) the graphs of monotone correction functions (4.8) of degree 𝑘 = 𝑝 + 1, where

𝑝 = 0,… , 3, and (b) the corresponding FR solutions (4.11) for the step-down data, which are

monotonically decreasing in the cell.

(a) Monotone correction functions

(b) Corresponding monotone FR solutions

Fig. 4.2: (a) Graphs of monotone correction functions (4.8) of degree 𝑘 = 𝑝 + 1 where 𝑝 = 0,… , 3,

and (b) the corresponding monotone FR solutions (curves) of degree up to 3 with time step 𝜎 = 0.2.

Regarding the monotone correction function 𝑔 of (4.8), it can be shown via Fourier analysis that

with 𝑝 = 1, the resulting linear FR scheme is stable. However, for 𝑝 > 1, the schemes are unstable.

It appears reasonable to set the goal that for the step-down example above, limiting converts the

oscillatory DGp solution in Fig. 4.1(b) into the monotone solution (4.11) shown in Fig. 4.2(b). Such

methods remain to be explored.

Here, we focus on limiting methods associated with the linear case 𝑝 = 1 in (4.11) and apply them

to higher-order modes. The main reason is that even with linear functions, a discontinuity can still be

sharply resolved (in 2 to 4 cells). Additionally, our focus is on simple methods for the moment.

Cell 𝑗

 ICCFD12

11

5. Limiting

As is well-known and discussed above, second and higher-order methods generate oscillations near

discontinuities. One way to mitigate these oscillations is to limit the data so that it is not too steep.

However, limiting can lead to a loss of accuracy near smooth extrema. Below, we present a limiting

method capable of suppressing oscillations near discontinuities while preserving accuracy near extrema.

Our limiting procedure can be viewed as an extension of the techniques introduced in (Huynh 1995)

for piecewise linear and (Suresh and Huynh 1997) for higher order methods. It turns out that with DG-

type methods of degree 𝑝 ≥ 1, we can differentiate a discontinuity from a smooth extremum by a three-

cell stencil, as opposed to the five-cell stencil required in finite-difference or finite-volume schemes.

Hence, the limiting procedure here utilizes a three-cell stencil, like typical limiting processes.

We employ the standard 3-stage Runge-Kutta (RK) time-stepping method. The solution after each

stage is given by (3.13): �̃�𝑗 = 𝑢𝑗 − 2𝜎𝑈𝑗
′. Using the ODE notation 𝑘𝑖 for stage 𝑖, �̃�𝑗 = 𝑢𝑗 + 𝜎(𝑘𝑖)𝑗. In

the presence of discontinuities, the solution �̃�𝑗 might be oscillatory. To suppress oscillations, we apply

the limiting process below to �̃�𝑗 resulting in the limited solution �̃�𝑗
LTD. Then, since 𝑘𝑖 might be used in

later stages, it should be updated by (𝑘𝑖)𝑗 = (�̃�𝑗
LTD − 𝑢𝑗)/𝜎.

Given a high-order solution, we first convert it into modal form. As is routine, we limit the 𝑘-th

mode, 𝑘 ≥ 1, but not the zero-th mode. The cell average quantities 𝑢𝑗,0’s are fundamental for the

scheme to be conservative and should not be altered.

Limiting methods in the literature often constrain 𝑢𝑗, 𝑘 for 𝑘 = 𝑝,… , 1 in that order, i.e., the highest

mode is constrained first. Here, we employ a reverse order, namely, 𝑘 = 1,… , 𝑝, i.e., we limit the linear

mode 𝑢𝑗,1 first. The reason is that in smooth regions, limiting has nonexistent or minimal effect, so the

mode order is irrelevant. Near a discontinuity, as shown in Fig. 4.1(b), high modes amplify with

increasing mode order. If limiting already effects the linear mode, then the large higher-order modes

are all suspects, and even zeroing them out seems reasonable.

To prepare, for any real numbers 𝑥 and 𝑦, let minmod(𝑥, 𝑦) be the median of 𝑥, 𝑦, and 0, or

 minmod(𝑥, 𝑦) =
1

2
[sign(𝑥) + sign(𝑦)]min(|𝑥|, |𝑦|). (5.1)

That is, minmod(𝑥, 𝑦) equals 0 if 𝑥 and 𝑦 are of opposite sign and equals the value with smaller

modulus if 𝑥 and 𝑦 are of the same sign. Denote the smallest interval containing numbers 𝑥1, …, 𝑥𝑚 by

 𝐼[𝑥1, … , 𝑥𝑚] = [min(𝑥1, … , 𝑥𝑚) ,max(𝑥1, … , 𝑥𝑚)].

For any numbers 𝛼, 𝛽, and 𝑦, the constraint that 𝑦 lies in the interval 𝐼[𝛼, 𝛽] can be enforced by

 median(𝑦, 𝛼, 𝛽).

We can express the above in minmod form, e.g., using 𝛼 as pivot,

 median(𝑦, 𝛼, 𝛽) = 𝛼 + median(𝑦 − 𝛼, 0, 𝛽 − 𝛼) = 𝛼 +minmod(𝑦 − 𝛼, 𝛽 − 𝛼). (5.2)

Monotonicity bounds

Consider first the linear case. Focusing on cell 𝑗, using the average value 𝑢𝑗,0 as a pivot, to preserve

monotonicity, at interface 𝑥𝑗+1/2, we require 𝑢𝑗,1 to lie between 0 and 𝑢𝑗+1,0 − 𝑢𝑗,0, or 𝑢𝑗,1 ∈

𝐼[0, 𝑢𝑗+1,0 − 𝑢𝑗,0]. Similarly, at interface 𝑥𝑗−1/2, we require −𝑢𝑗,1 to lie between 0 and 𝑢𝑗−1,0 − 𝑢𝑗,0, or

equivalently, 𝑢𝑗,1 ∈ 𝐼[0, 𝑢𝑗,0 − 𝑢𝑗−1,0]; see Fig. 5.1. To combine these conditions, set

 𝑢mm = minmod[𝑢𝑗+1,0 − 𝑢𝑗,0, 𝑢𝑗,0 − 𝑢𝑗−1,0]. (5.3a)

The constraint that 𝑢𝑗,1 must be between 0 and 𝑢mm yields MUSCL (Monotone Upstream-Centered

Schemes for Conservation Laws) limiting (Van Leer 1977). It is enforced by

 ICCFD12

12

 𝑢𝑗,1 ← minmod[𝑢𝑗,1, 𝑢
mm]. (5.3b)

In smooth regions of the solution with a nonzero slope, the above constraint provides ample “room”

so that the limited 𝑢𝑗,1 resulting from (5.3b) remains identical to the original 𝑢𝑗,1, meaning limiting has

no effect; see Fig. 5.1(b). However, a significant drawback arises near extrema, where 𝑢mm can

become 0 or very small, leading to 𝑢𝑗,1 = 0 or very small after limiting, thus reducing accuracy to first

order. We will discuss methods to expand the range 𝐼[0, 𝑢𝑗+1,0 − 𝑢𝑗,0] to alleviate this issue later.

Eqs. (5.3a,b) represent Van Leer’s MUSCL constraint (1977): “… in order to preserve the

monotonicity of a sequence of mesh averages, the linear function (12) must not take values outside the

range spanned by the neighboring mesh averages.” Here, “the linear function (12)” corresponds to a

linear solution in cell 𝑗. An error in the DG literature misidentifies (5.3a,b) as the total variation

diminishing (TVD) constraint and erroneously assigns essentially the minmod slope (5.3a) as the final

MUSCL slope or final 2𝑢𝑗,1, resulting in an overly dissipative MUSCL outcome (e.g., p. 150, Hesthaven

and Warburton 2008, Hoteit et al. 2004).

As depicted in Fig. 4.1(b), the modes exhibit the “correct” signs. Thus, we can simplify the above

constraint by limiting only the magnitudes, which also facilitates the limiting of higher-order modes.

Note that reducing the modal magnitude is also employed in the filtering approach; however, the extent

of reduction and the underlying reasons differ completely between limiting and filtering.

For simplicity of notation, we sometimes drop the subscript 𝑗, e.g., we use the notation 𝑢𝐿
Lim where

the superscript “Lim” stands for “Limit”, subscript “L” for “left”, and subscript 𝑗 is implied. All

quantities defined in (5.4)–(5.7) are positive (≥ 0). Set

 𝑢𝐿
Lim = |𝑢𝑗−1,0 − 𝑢𝑗,0|, 𝑢𝑅

Lim = |𝑢𝑗+1,0 − 𝑢𝑗,0|. (5.4)

and

 𝑢Lim = min(𝑢𝐿
Lim, 𝑢𝑅

Lim). (5.5)

Denote 𝑢Lim by 𝑢1
Lim where the subscript 1 represents “linear” (𝑢𝑘

Lim will be defined later). We require

 |𝑢𝑗,1| ≤ 𝑢1
Lim. (5.6)

The above constraint is enforced by replacing 𝑢𝑗,1 by the limited quantity 𝑢𝑗,1
Ltd,

 𝑢𝑗,1
Ltd = sign(𝑢𝑗,1) min(|𝑢𝑗,1|, 𝑢1

Lim). (5.7)

Fig. 5.1(a) shows 𝑢𝐿
Lim, 𝑢𝑅

Lim, 𝑢Lim = 𝑢1
Lim = 𝑢𝑅

Lim, the original linear data (thin blue line), and the

limited slope corresponding to 𝑢𝑗,1
Ltd (thick purple line). Here, for ease of observation, 𝜎 = 0.2.

Fig. 5.1(b) shows the ample “room” provided by 𝑢Lim at smooth regions with a nonzero slope.

Constraints like (5.6) and (5.7) are typically employed to limit slope quantities. Higher-order modes

are then limited by employing neighboring higher-order modes in a similar manner.

Our approach is different: we use 𝑢Lim = 𝑢1
Lim to constrain all modes by requiring that

 ∑|𝑢𝑗,𝑘|

𝑝

𝑘=1

≤ 𝑢Lim. (5.8)

With 𝑢1
Lim = 𝑢Lim by (5.5) and 𝑢𝑗,1

Ltd by (5.7), we define 𝑢2
Lim = 𝑢1

Lim − |𝑢𝑗,1
Ltd|, which is, loosely put,

the remainder of the limit. We then require |𝑢𝑗,2| ≤ 𝑢2
Lim, and the process continues. In other words, to

limit the 𝑘-th mode for 2 ≤ 𝑘 ≤ 𝑝, with the limited quantity 𝑢𝑗,𝑘−1
Ltd , let the remainder of the limit be

 𝑢𝑘
Lim = 𝑢𝑘−1

Lim − |𝑢𝑗,𝑘−1
Ltd |. (5.9)

We require

 ICCFD12

13

 |𝑢𝑗,𝑘| ≤ 𝑢𝑘
Lim. (5.10)

The above constraint is satisfied by replacing 𝑢𝑗,𝑘 by the limited quantity 𝑢𝑗,𝑘
Ltd:

 𝑢𝑗,𝑘
Ltd = sign(𝑢𝑗,𝑘) min(|𝑢𝑗,𝑘|, 𝑢𝑘

Lim). (5.11)

This completes the limiting procedure except that we still need to enlarge 𝑢Lim to provide “room” near

extrema as will be discussed below.

Note that for any 𝑘 ≥ 1, if |𝑢𝑗,𝑘| ≥ 𝑢𝑘
Lim, then |𝑢𝑗,𝑘

Ltd| = 𝑢𝑘
Lim, and the remaining limit 𝑢𝑘+1

Lim =

𝑢𝑘
Lim − |𝑢𝑗,𝑘

Ltd| is zero, resulting in the vanishing of all 𝑘 + 1 and higher modes after limiting.

(a) Limiting alters 𝑢𝑗,1

(b) Limiting provides ample “room”

Fig. 5.1: (a) Quantities 𝑢𝐿
Lim (dashed red vertical line), 𝑢𝑅

Lim (thick red vertical line), 𝑢1
Lim = 𝑢𝑅

Lim,

the original linear data (thin blue line), and the limited linear data (thick purple line); (b) at a smooth

region with a nonzero slope, 𝑢Lim (red thick vertical line) provides ample “room” so that limiting has

no effect.

For the step-down example in Fig. 4.1(b), the limiting process reduces the cubic solution to a limited

linear solution: all modes of order 𝑘 ≥ 2 vanish after limiting. At first glance, the lack of higher-order

modes might suggest that condition (5.8) dissipates a discontinuity. However, as illustrated later in Fig.

6.2, this limit yields a relatively sharp transition at a discontinuity (spanning from 2 to 4 cells).

At smooth regions with a nonzero slope (away from extrema), for a uniform mesh, up to an error of

𝑂(ℎ2), we have (𝑢𝑗,0 − 𝑢𝑗−1,0) ≈ (𝑢𝑗+1,0 − 𝑢𝑗,0) ≈ 2𝑢𝑗,1. Therefore, the limit 𝑢1
Lim ≈ 2𝑢𝑗,1 provides

ample “room” so that limiting has no effect on all 𝑢𝑗,𝑘, 𝑘 ≥ 1. This fact is depicted in Fig. 5.1(b).

At a smooth extremum, however, 𝑢Lim can become 0, causing a loss of accuracy as shown in

Fig. 5.2(a).

Limiting near smooth extrema

To address this loss of accuracy, we enlarge 𝑢Lim in a manner that allows more “room” near a

smooth extremum so that limiting has no effect, and thus, accuracy is preserved. At a discontinuity, the

enlarged limit essentially reduces to the original limit 𝑢Lim in (5.5). In fact, for the case of the step-

down data in Fig. 4.1(b) above, the enlarged limit is identical to the original limit.

We deal with real numbers below. For cell 𝑗, consider the quadratic defined by the first three modes:

 𝑞𝑗(𝜉) = 𝑢𝑗,0 + 𝑢𝑗,1𝐿1(𝜉) + 𝑢𝑗,2𝐿2(𝜉) = 𝑢𝑗,0 + 𝑢𝑗,1𝜉 + 𝑢𝑗,2(3𝜉
2 − 1)/2,

where the expressions for 𝐿1 and 𝐿2 are given in (2.1). Therefore,

 𝑞𝑗(−1) = 𝑢𝑗,0 − 𝑢𝑗,1 + 𝑢𝑗,2, 𝑞𝑗(0) = 𝑢𝑗,0 − 𝑢𝑗,2/2, and 𝑞𝑗(1) = 𝑢𝑗,0 + 𝑢𝑗,1 + 𝑢𝑗,2. (5.12)

We can now enlarge 𝑢𝑅
Lim for cell 𝑗. At interface 𝑥𝑗+1/2, using the neighboring cell averages, set

𝑢𝑅
Lim = 𝑢1

Lim

𝑢𝐿
Lim

𝑢Lim

Original linear data

Limited slope

Cell 𝑗

𝑢𝐿
Lim

 𝑢𝑗,0

 𝑢𝑗−1,0

 𝑢𝑗+1,0

 𝑢𝑗,0

 𝑢𝑗−1,0

 𝑢𝑗+1,0

 ICCFD12

14

 𝑣11 =
1

2
 (𝑢𝑗,0 + 𝑢𝑗+1,0). (5.13)

For cell 𝑗, consider the quadratic 𝑞𝑗 in the local frame 𝐼 = [−1, 1]. The line joining (−1, 𝑞𝑗(−1)) and

(0, 𝑞𝑗(0)) intersects the right boundary 𝜉 = 1 at 𝑣12 = 2𝑞𝑗(0) − 𝑞𝑗(−1). By (5.12),

 𝑣12 = 𝑢𝑗,0 + 𝑢𝑗,1 − 2𝑢𝑗,2. (5.14)

Note that whereas 𝑞𝑗(1) in (5.12) has the term 𝑢𝑗,2, the above contains the term −2𝑢𝑗,2, which serves

to provide the extra room so that limiting has minimal effect in smooth regions. By reflection, for cell

𝑗 + 1, the line joining (1, 𝑞𝑗+1(1)) and (0, 𝑞𝑗+1(0) intersects the line 𝜉 = −1, i.e., the left cell

boundary, at 𝑣13 = 2𝑞𝑗+1(0) − 𝑞𝑗+1(1). By using (5.12) with appropriate change in indices,

 𝑣13 = 𝑢𝑗+1,0 − 𝑢𝑗+1,1 − 2𝑢𝑗+1,2. (5.15)

At interface 𝑗 + 1/2, denote by 𝑣14 the median of 𝑣11, 𝑣12, and 𝑣13:

 𝑣14 = 𝑣11 +minmod(𝑣12 − 𝑣11, 𝑣13 − 𝑣11). (5.16)

To the right of cell 𝑗, we enlarge the range 𝐼[𝑢𝑗,0, 𝑢𝑗+1,0] to 𝐼[𝑢𝑗,0, 𝑢𝑗+1,0, 𝑣14]. To simplify the process,

we replace 𝑢𝑅
Lim by the extended limit 𝑢𝑅

XLim where, using 𝑢𝑗,0 as the pivot for cell 𝑗,

 𝑢𝑅
XLim = Max(|𝑢𝑗+1,0 − 𝑢𝑗,0|, |𝑣14 − 𝑢𝑗,0|).

 (5.17)

Note that near a smooth extremum with a nonzero curvature, i.e., 𝑢𝑗,2 ≠ 0, the quantities 𝑣12 and

𝑣13 are close to each other and the median 𝑣14 used in 𝑢𝑅
XLim provides room so that limiting has no

effect as can be seen in Fig. 5.2(b). The use of minmod function for 𝑣14 also assures that for the case

of a step-down data in Fig. 4.1(b), the extended limit 𝑢𝑅
XLim reduces to the original limit 𝑢𝑅

Lim.

(a) Monotonicity limit 𝑢𝑅
Lim near a maximum

(b) Extended limit 𝑢𝑅
XLim near a maximum

Fig. 5.2: (a) 𝑢𝑅
Lim reduces to 0, and limiting causes a loss of accuracy; (b) near a smooth maximum

with a nonzero curvature, the extended limit 𝑢𝑅
XLim provides ample room so limiting has no effect.

The extension for the left limit is similar. At the interface 𝑥𝑗−1/2, set

 𝑣21 =
1

2
 (𝑢𝑗,0 + 𝑢𝑗−1,0). (5.18)

The line joining (1, 𝑞𝑗(1)) and (0, 𝑞𝑗(0)) intersects the left boundary at 2𝑞𝑗(0) − 𝑞𝑗(1) = 𝑣22, where

 𝑣22 = 𝑢𝑗,0 − 𝑢𝑗,1 − 2𝑢𝑗,2. (5.19)

For cell 𝑗 − 1, the line joining (−1, 𝑞𝑗−1(−1)) and (0, 𝑞𝑗−1(0)) intersects the right boundary 𝑥𝑗−1/2 at

2𝑞𝑗−1(0) − 𝑞𝑗−1(−1) = 𝑣23, where

 𝑣23 = 𝑢𝑗−1,0 + 𝑢𝑗−1,1 − 2𝑢𝑗−1,2. (5.20)

Cell 𝑗

𝑢𝑅
Lim = 0

𝑢𝐿
Lim

𝑢𝑅
XLim

Cell 𝑗 + 1

Cell 𝑗

𝑣11

𝑣12

𝑣13

 ICCFD12

15

Set

 𝑣24 = 𝑣21 +minmod(𝑣22 − 𝑣21, 𝑣23 − 𝑣21). (5.21)

Thus, the extended limit 𝑢𝐿
XLim is given by

 𝑢𝐿
XLim = Max(|𝑢𝑗−1,0 − 𝑢𝑗,0|, |𝑣24 − 𝑢𝑗,0|). (5.22)

Combining both sides, like (5.5), the extended limit is

 𝑢XLim = min(𝑢𝐿
XLim, 𝑢𝑅

XLim). (5.23)

The rest of the algorithm for all modes is identical to (5.5)–(5.11) with 𝑢Lim replaced by 𝑢XLim. This

completes the limiting process.

We summarize the limiting algorithm below.

Let the solution after one stage of Runge-Kutta (i.e., after an Euler forward step) be denoted by

{𝑢𝑗, 𝑘}, which might be oscillatory. For each index (or at cell) 𝑗, set 𝑣11, … , 𝑣14, and 𝑢𝑅
XLim by (5.13)–

(5.17), and set 𝑣21, … , 𝑣24, and 𝑢𝐿
XLim by (5.18)–(5.22). Set 𝑢XLim by (5.23). Then with 𝑢1

Lim = 𝑢XLim,

for 𝑘 from 1 to 𝑝, set

 𝑢𝑗,𝑘
Ltd = sign(𝑢𝑗,𝑘) min(|𝑢𝑗,𝑘|, 𝑢𝑘

Lim). (5.24)

and

 𝑢𝑘+1
Lim = 𝑢𝑘

Lim − |𝑢𝑗,𝑘
Ltd|. (5.25)

Finally, for the standard 3-stage RK method, with the ODE notation 𝑘𝑖 for stage 𝑖, and with 𝑢𝑗,𝑘 replaced

by 𝑢𝑗,𝑘
Ltd, we update (𝑘𝑖)𝑗 accordingly. This completes the algorithm.

The above limiting algorithm contains no “if” or “max” statements; furthermore, “sign” is

exclusively combined with “min” statements. Clearly, its outcome depends continuously on the data.

For coding purpose, the algorithm can be shortened, e.g., (5.13)–(5.16) can be combined into the

quantity 𝑣14 − 𝑢𝑗,0 in (5.17), resulting in

𝑣14 − 𝑢𝑗,0 = 0.5(𝑢𝑗+1,0 − 𝑢𝑗,0) + 𝑣15

where

𝑣15 = minmod(𝑢𝑗,1 − 2𝑢𝑗,2 + 0.5𝑢𝑗,0 − 0.5𝑢𝑗+1,0 , −𝑢𝑗+1,1 − 2𝑢𝑗+1,2 + 0.5𝑢𝑗+1,0 − 0.5𝑢𝑗,0).

Note that from a filtering point of view, our limiting technique corresponds to occasionally filtering

even the first mode 𝑢𝑗,1 and nullifying all higher modes (near a discontinuity). The technique has the

advantage of providing ample room so that limiting has nonexistent or minimal effect at smooth regions,

and it only takes effect at a few cells near a discontinuity.

Detecting “good” cells at smooth regions where limiting has no effect

While the above algorithm is relatively straightforward, for fluid flow equations, the costs add up.

Therefore, as is commonly practiced in the literature albeit for different reasons, it is prudent to detect

“good” cells at smooth regions where limiting does not alter the data and therefore is not needed. We

present here a detection method with three criteria. For each cell, if any one of the criteria is met, the

cell is flagged as good, and no limiting is required. The criteria are effective, as only a few cells near a

discontinuity are flagged “troubled”, indicating the need for limiting. However, even at those cells,

limiting may still leave the data unaltered. Typically, each discontinuity has four or fewer troubled cells.

The first criterion relates to the jumps or gaps at the two interfaces of the cell. At smooth regions,

by (3.17), this gap is a small quantity of order 𝑂(ℎ𝑝+1). Denote the quadratic content for cell 𝑗 by

 𝑐𝑗
𝑄 = |𝑢𝑗,1| + |𝑢𝑗,2|. (5.26)

 ICCFD12

16

We do not include higher modes because at a discontinuity, these modes can be very large and may

result in false detection in (5.27) below. The cell 𝑗 is considered to be good if the gaps at the two

interfaces are both smaller than 𝑐𝑗
𝑄/5:

 Max[|𝑢𝑗−1(1) − 𝑢𝑗(−1)|, |𝑢𝑗+1(−1) − 𝑢𝑗(1)|] ≤
1

5
𝑐𝑗
𝑄 + 10−3. (5.27)

Here, we allow a noise of level 10−3. The factor 1/5 works well in the numerical examples below. For

fluid flow equations, we apply detection only to density and not to momentum or energy. Therefore,

when prudence is required, this factor can be reduced, for example, to 1/10.

Note that if the gaps are small, then the correction to the solution, namely −2𝜎𝐽𝐿𝑅𝑅, 𝑝+1
′ in (3.14)

or (3.15), is relatively small compared to the quadratic content.

The second criterion relates to the second modes, or equivalently, the curvature terms (Huynh 1995),

at the cell and its two neighbors being close to each other. Cell 𝑗 is considered to be good if

4

5
≤
𝑢𝑗−1,2

𝑢𝑗,2
≤
5

4
 and

4

5
≤
𝑢𝑗+1,2

𝑢𝑗,2
≤
5

4
 . (5.28)

For coding, denote 𝑐 = 4/5. (Here, 𝑐 < 1, and the closer 𝑐 is to 1, the more stringent the criterion.) The

left expression above can be stated as 𝑢𝑗−1,2 lies between 𝑐𝑢𝑗,2 and 𝑐−1𝑢𝑗,2, which can be written as

 (𝑢𝑗−1,2 − 𝑐𝑢𝑗,2)(𝑢𝑗−1,2 − 𝑐
−1𝑢𝑗,2) ≤ 0. (5.29)

Thus, (5.28) can be expressed as, with a noise level of 10−5 (due to the product terms),

 Max[(𝑢𝑗−1,2 − 𝑐𝑢𝑗,2)(𝑢𝑗−1,2 − 𝑐
−1𝑢𝑗,2), (𝑢𝑗+1,2 − 𝑐𝑢𝑗,2)(𝑢𝑗+1,2 − 𝑐

−1𝑢𝑗,2)] ≤ 10
−5. (5.30)

Finally, the third criterion relates to the slopes. Cell 𝑗 is considered good if |𝑢𝑗,1| is well within 𝑢Lim:

 |𝑢𝑗,1| ≤
3

4
 𝑢Lim + 10−4. (5.31)

If any of the criteria (5.27), (5.30), or (5.31) is met, the cell is flagged as good; otherwise, the cell is

troubled, and limiting is necessary. This completes the detection algorithm.

Typically, at each discontinuity, the detection method above yields three or fewer troubled cells, and

sometimes even zero troubled cells after the discontinuity has dissipated.

Concerning noise levels, a tighter (smaller) level results in more troubled cells.

6. Numerical Results

The effectiveness of our limiting is demonstrated by the following numerical tests using the DG

schemes. The standard 3-stage RK method is employed for time stepping resulting in the CFL limits of

approximately 0.209, 0.130, and 0.089 for the DGp schemes with 𝑝 = 2, 3, and 4 respectively. The time

steps are chosen with CFL values close to these limits. In all figures, the dots represent the cell average

solutions, the blue curves the polynomial solutions, and the red curves the initial or exact solutions.

Advection

The first test involves advection on the domain [0, 1] with 100 cells and periodic boundary

conditions. The initial condition 𝑢0(𝑥) consists of three waves, each of half width 0.1, including a

Gaussian, a rectangular, and a semi-ellipse wave:

𝑢0(𝑥) =

{

 𝑒

−10(
𝑥−0.1
0.1

)
2

, 0 ≤ 𝑥 ≤ 0.2
1, 0.3 ≤ 𝑥 ≤ 0.5

 1 − (
𝑥 − 0.8

0.1
)
2

, 0.7 ≤ 𝑥 ≤ 0.9

0, otherwise.

 ICCFD12

17

Fig. 6.1 shows the DG2 solutions with no limiting and 𝜎 = 0.2. In Fig 6.1(a), the solution after 5

time steps (the wave travels a distance 1 cell width) is noisy at the rectangular wave, and a little noise

appears for the semi-ellipse wave. In Fig 6.1(b), after 10 time steps (2 cell widths), some of the noise is

dissipated due to the numerical dissipation of the DG method. In Fig 6.1(c), after 500 time steps

(1 period), the solution reaches a steady level of oscillations.

(a) 5 time steps (distance travelled: 1 cell width)

(b) 10 time steps (distance travelled: 2 cell widths)

(c) 500 time steps (distance travelled: 1 period)

Fig. 6.1. DG2 solutions with no limiting and CFL number 𝜎 = 0.2. The blue dots represent the cell

average solutions, the blue curves the polynomial solutions, and the red curves the exact solution.

Fig. 6.2 shows the DGp solutions with limiting for 𝑝 = 2, 3, 4. Fig. 6.2(a) depicts the DG2 solution

for 𝜎 = 0.2 after 5 time steps (1 cell width); similar to the unlimited case in Fig. 6.1(a), a little noise

appears for the semi-ellipse wave. Fig. 6.2(b) shows the DG2 solution with 𝜎 = 0.2 after 500 time steps

(1 period). Fig. 6.2(c) represents the DG3 solution for 𝜎 = 0.125 after 800 time steps (1 period); for

this case, each jump is resolved by only 2 cells. Note the improvement over the DG2 solution in

Fig. 6.2(b). Fig. 6.2(d) depicts the DG4 solution with 𝜎 = 1/12 after 1200 time steps (1 period); here,

the solution is very similar to the DG3 solution in Fig. 6.2(c). Note the Gaussian, including its

maximum, is well resolved in all cases demonstrating that our limiting preserves accuracy.

 ICCFD12

18

(a) DG2 solution with limiting and 𝜎 = 0.2 after 5 time steps (distance travelled: 1 cell width)

(b) DG2 solution with limiting and 𝜎 = 0.2 after 500 time steps (distance travelled: 1 period)

(c) DG3 solution with limiting and 𝜎 = 0.125 after 800 time steps (distance travelled: 1 period)

(d) DG4 with limiting and 𝜎 =
1

12
≈ 0.08333 after 1200 time steps (distance travelled: 1 period)

Fig. 6.2. DGp solutions with limiting for 𝑝 = 2, 3, and 4. The blue dots represent the cell average

solutions, the blue curves the polynomial solutions, and the red curves the exact solution. The magenta

dots with a value greater than 0.1 identify troubled cells where limiting is required.

 ICCFD12

19

Concerning the detection method, the (magenta) dots at level 𝑢 = 0.1 represent good cells where

limiting is not needed, and the dots at level 𝑢 > 0.1 represent troubled cells where limiting is required.

In the case of troubled cells, a dot at level 𝑢 = 0.15, as in Fig. 6.2(c), means limiting has no effect even

though the cell was marked as troubled. For Fig. 6.2(a), it appears that the cell just to the right of 𝑥 =
0.7 should be flagged as troubled due to the infinite slope at the foot of the wave. However, since the

second modes 𝑢𝑗,2 at the cell and its two neighbors are small, this cell is flagged as good due to the

noise level of 10−5 allowed in criterion (5.29) for detection. If we use a noise level of 10−6, this cell

would be flagged as troubled. Also note that there are no troubled cells in Fig. 6.2(d); here, the data has

become smooth enough and the polynomial solution is of a high enough order that the gaps at the

interfaces are small, and all cells are good.

Unlike the linear case of advection where it is possible to have no troubled cells near a discontinuity,

for the nonlinear case of a shock, the presence of troubled cells is nearly certain; this is due to the self-

sharpening mechanism at shocks resulting from the converging characteristics (for advection,

characteristics are parallel).

To illustrate that our detection method works well even with coarse meshes, we apply it to the

sin2𝜋𝑥 periodic initial data on the domain [0, 1]. The first case employs DG2 with 3 cells, 𝜎 = 0.15,

and 20 time steps, i.e., the wave travels 1 period. With such a coarse mesh, the detection still results in

no troubled cells, and limiting or no limiting yield identical solutions. If we use just 2 cells, then limiting

takes effect, and the solution is damped to essentially zero; the method considered this data as noise

and damps it out. The second case employs DG3 with only 2 cells, 𝜎 = 0.1, and 20 time steps,

or 1 period. For this case, the detection yields no troubled cells, and limiting has no effect.

Euler Equations in One-Spatial Dimension

The next set of tests deals with the Euler equations in one-spatial dimension (1D). Here, as is typical,

limiting is applied to the (conservative) characteristic variables of troubled cells.

The next test, used by Sod (1978), is the Riemann problem with the initial data

 (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1, 0, 1) and (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (0.125, 0, 0.1)

where the subscript 𝐿 represents the condition for 0 ≤ 𝑥 ≤ 0.5, and 𝑅 for 0.5 < 𝑥 ≤ 1. The 1D Euler

equations are solved on the domain [0, 1] with 100 cells. The final time is 0.2. Boundary conditions are

by simple extrapolation from the interior.

Fig. 6.3 shows the DG solutions with limiting for (a) 𝑝 = 2 after 200 time steps, each of size 0.001,

and (b) 𝑝 = 3 after 320 time steps, each of size 0.000625. Note that there are no oscillations, and

discontinuities are well resolved.

The third test, due to Shu and Osher (1989), has several extrema in the smooth regions. It is used to

test accuracy of methods near extrema in the presence of a shock. On the interval −5 ≤ 𝑥 ≤ 5, a shock

propagating at Mach 3 interacts with sine waves in density as described by the initial condition:

(𝜌, 𝑢, 𝑝) = {
(3.857, 2.629, 10.333), − 5 ≤ 𝑥 ≤ −4

(1 + 0.2 sin 5𝑥 , 0,1), otherwise.

Fig. 6.4 shows the solution with 200 cells for 𝑝 = 2 with a time step size of 0.002093 after 860

time steps. Figure 6.4(a) portrays the solution across the entire domain. At each discontinuity, only 2

or 1 cell is flagged as troubled. Figure 6.4(b) provides a close-up view of the solution on the domain

[0, 2.4]. For comparison, the standard second-order solution using the Van Albada limiter with the same

number of degrees of freedom, meaning 600 cells, are shown as red dots. Note that on this domain,

there are no troubled cells, and the extrema are well resolved by the DG2 solution even after the shock

passes through.

 ICCFD12

20

(a) DG2 solution

(b) DG3 solution

Fig. 6.3: Solution densities. (a) DG2 solution after 200 time steps, each of size 0.001; there are 2

troubled cells at the shock and zero troubled cells at the contact discontinuity. (b) DG3 solution after

320 time steps, each of size 0.000625; there are 3 troubled cells at the shock and zero troubled cells at

the contact discontinuity. The blue dots represent the cell average solutions, the blue curves the

polynomial solutions, and the red curves the exact solution. The magenta dots with a value greater than

0.04 represent troubled cells where limiting is required.

(a) DG2 solution on whole domain

(b) DG2 solution (in blue) on domain [0, 2.4]

Fig. 6.4: Solution densities with 200 cells, 𝑝 = 2, time step size of 0.002093, after 860 time steps.

(a) Solution on the whole domain; only 2 or 1 troubled cells are detected at each discontinuity.

(b) Close-up view of solution on the domain [0, 2.4]; for comparison, the standard second-order

solution using the Van Albada limiter with 600 cells are represented by red dots.

7. Conclusions and Discussion

In conclusion, we introduced a new high-order limiting technique capable of managing shocks while

preserving accuracy in smooth regions without relying critically on a detection method. Initially, we

described the DG method within the FR framework, where the solution is formulated via interpolation

rather than standard projection, with the Radau polynomials and their derivatives playing a crucial role.

We illustrated the behavior of the DG solution at jump discontinuities, which partially motivates our

approach. Subsequently, we presented our limiting technique, where the key innovation lies in

expanding the standard monotonicity limits to provide ample “room” near smooth extrema, ensuring

that limiting has no effect. Near a discontinuity, these expanded limits essentially reduce to the original

𝑥

𝑥

 ICCFD12

21

limits, suppressing oscillations. The algorithm is simplified by applying the limiting bounds to the sum

of magnitudes of all modes, linear and higher order, successively. We also presented a detection method

identifying regions where limiting is unnecessary to reduce computing time. Numerical examples were

provided to demonstrate the effectiveness of the new limiter.

Additional tests, as well as 2D and 3D applications, particularly the extension to unstructured

(triangular) meshes, remain to be explored.

Acknowledgments

This research was sponsored by NASA’s Transformational Tools and Technologies (TTT) Project

of the Transformative Aeronautics Concepts Program under the Aeronautics Research Mission

Directorate.

Appendices

A. Proof of formulas (2.7a,b) for the derivatives of Radau polynomials.

The derivative of the Legendre polynomial is given by (see, e.g., Wikipedia):

 𝐿𝑘
′ = (2(𝑘 − 1) + 1)𝐿𝑘−1 + (2(𝑘 − 3) + 1)𝐿𝑘−3 + (2(𝑘 − 5) + 1)𝐿𝑘−5 +⋯

where the last term is 𝐿0 if 𝑘 is odd and 3𝐿1 if 𝑘 is even. That is, for odd 𝑘, or 𝑘 = 2𝑚 + 1,

 𝐿2𝑚+1
′ = 𝐿0 + 5𝐿2 + 9𝐿4…+ (2(2𝑚) + 1)𝐿2𝑚.

For even 𝑘, or 𝑘 = 2𝑚,

 𝐿2𝑚
′ = 3𝐿1 + 7𝐿3 + 11𝐿5…+ (2(2𝑚 − 1) + 1)𝐿2𝑚−1.

The above two equations imply (2.7a, b), thus completing the proof.

B. Proof of formula (2.11): the derivative of the right Radau polynomial, 𝑅𝑅, 𝑘+1
′, vanishes at the 𝑘

interior points of the 𝑘 + 1 left Radau points.

Indeed, denote the 𝑘 + 1 left Radau points by 𝜉𝐿, 𝑚, 𝑚 = 1,… , 𝑘 + 1, where 𝜉𝐿, 1 = −1. For each 𝑚,

let 𝜙𝐿, 𝑚 be the corresponding Lagrange polynomial (degree 𝑘) that takes on value 1 at 𝜉𝐿, 𝑚 and value

0 at all other 𝜉𝐿, 𝑙’s. Then for 𝑚 ≥ 2, 𝜙𝐿, 𝑚(−1) = 0. Thus, again for 𝑚 ≥ 2, using integration by parts,

since the boundary terms vanish due to 𝑅𝑅, 𝑘+1(1) = 0 and 𝜙𝐿, 𝑚(−1) = 0,

 (𝑅𝑅, 𝑘+1
′, 𝜙𝐿, 𝑚) = −(𝑅𝑅, 𝑘+1, 𝜙𝐿, 𝑚

′).

Note that 𝜙𝐿, 𝑚
′
 is of degree 𝑘 − 1. Recall that by (2.5b) with 𝑘 replaced by 𝑘 + 1, 𝑅𝑅, 𝑘+1 ⏊ 𝑷𝑘−1.

Therefore, (𝑅𝑅, 𝑘+1, 𝜙𝐿, 𝑚
′) = 0. Thus, for 𝑚 ≥ 2, by the above, (𝑅𝑅, 𝑘+1

′, 𝜙𝐿, 𝑚) = 0. Next, by

applying the left Radau quadrature to (𝑅𝑅, 𝑘+1
′, 𝜙𝐿, 𝑚), and since 𝜙𝐿, 𝑚(𝜉𝐿, 𝑙) = 0 for all 𝑙 ≠ 𝑚, we

obtain, for 𝑚 ≥ 2,

 𝑅𝑅, 𝑘+1
′(𝜉𝐿, 𝑚)𝜙𝐿, 𝑚(𝜉𝐿, 𝑚) = 𝑅𝑅, 𝑘+1

′(𝜉𝐿, 𝑚) = 0.

This completes the proof.

C. Proof that for advection, the DG method can be cast in interpolation form (3.11).

Indeed, focusing on cell 𝐸 = 𝐸𝑗, let 𝜙 be a test function, i.e., a polynomial of degree 𝑝 (independent

of 𝑡). The advection equation leads to the following requirement via projection,

 𝜕

𝜕𝑡
(𝑢ℎ, 𝜙)𝐸 + ((𝑢ℎ)𝑥, 𝜙)𝐸 = 0.

The above involves no interaction among cells. To account for interaction, we use integration by parts,

 ICCFD12

22

 𝜕

𝜕𝑡
(𝑢ℎ, 𝜙)𝐸 + (𝑢ℎ𝜙)𝜕𝐸 − (𝑢ℎ , 𝜙𝑥)𝐸 = 0.

For 𝑢ℎ in the boundary term (𝑢ℎ𝜙)𝜕𝐸, we employ the common values 𝑢𝑗+1/2
upw

 and 𝑢𝑗−1/2
upw

 defined

in (3.5). Thus, on cell 𝑗, the DG solution 𝑢ℎ = 𝑢𝑗 is required to satisfy, for any degree 𝑝 polynomial 𝜙,

 𝜕

𝜕𝑡
(𝑢ℎ , 𝜙)𝐸 + 𝑢𝑗+1/2

upw
𝜙(1) − 𝑢𝑗−1/2

upw
 𝜙(−1) − (𝑢ℎ, 𝜙𝑥)𝐸 = 0. (A.1)

Integrate by parts again, but this time, use the values just inside cell 𝑗 for the boundary terms,

 𝜕

𝜕𝑡
(𝑢ℎ , 𝜙)𝐸 + ((𝑢ℎ)𝑥, 𝜙)𝐸 + (𝑢𝑗+1/2

upw
− 𝑢𝑗(1))𝜙(1) − (𝑢𝑗−1/2

upw
− 𝑢𝑗(−1))𝜙(−1) = 0.

For advection, by (3.5), 𝑢𝑗+1/2
upw

= 𝑢𝑗(1), and by (3.8), (𝑢𝑗−1/2
upw

− 𝑢𝑗(−1)) = 𝐽𝐿. The above implies

 𝜕

𝜕𝑡
(𝑢ℎ , 𝜙)𝐸 + ((𝑢ℎ)𝑥, 𝜙)𝐸 − 𝐽𝐿𝜙(−1) = 0. (A.2)

Here, the term −𝐽𝐿𝜙(−1) accounts for data interaction among neighboring cells.

Next, we wish to eliminate 𝜙, i.e., we wish to express 𝜙(−1) in the form (𝛾, 𝜙) for some 𝛾 of

degree 𝑝. To this end, let ℝ be the real line. The mapping 𝐵 from 𝑷𝑝 to ℝ defined by, 𝐵(𝜙) = 𝜙(−1)

for any 𝜙 of degree 𝑝, is a linear functional on 𝑷𝑝. Thus, there exists 𝛾 in 𝑷𝑝 such that 𝐵(𝜙) = (𝛾, 𝜙).

That is,

 (𝛾, 𝜙) = 𝜙(−1).

In fact, 𝛾 = −𝑅𝑅, 𝑝+1
′. To prove this, using integration by parts,

 (𝑅𝑅, 𝑝+1
′, 𝜙) = 𝑅𝑅, 𝑝+1(1)𝜙(1) − 𝑅𝑅, 𝑝+1(−1)𝜙(−1) − (𝑅𝑅, 𝑝+1, 𝜙

′).

Next, we use (2.5b), namely, 𝑅𝑅, 𝑝+1 ⏊ 𝑷𝑝−1. Since 𝜙′ is of degree 𝑝 − 1, (𝑅𝑅, 𝑝+1, 𝜙
′) = 0. Moreover,

𝑅𝑅, 𝑝+1(1) = 0 and 𝑅𝑅, 𝑝+1(−1) = 1. Therefore, the above implies

 (𝑅𝑅, 𝑝+1
′, 𝜙) = −𝜙(−1),

Thus, by the above, (A.2) implies

 𝜕

𝜕𝑡
(𝑢ℎ , 𝜙)𝐸 + ((𝑢ℎ)𝑥, 𝜙)𝐸 + 𝐽𝐿(𝑅𝑅, 𝑝+1

′, 𝜙) = 0.

That is,

 𝜕

𝜕𝑡
(𝑢ℎ , 𝜙)𝐸 + ((𝑢ℎ + 𝐽𝐿𝑅𝑅, 𝑝+1)𝑥, 𝜙)𝐸 = 0.

Therefore, with 𝑈𝑗 = 𝑢𝑗 + 𝐽𝐿𝑅𝑅, 𝑝+1, the DG method leads to (𝑢ℎ)𝑥 = (𝑈𝑗)𝑥. This completes the proof.

References

[1] K. Asthana, M.R. López-Morales, and A. Jameson, “Non-linear stabilization of high-order Flux

Reconstruction schemes via Fourier-spectral filtering,” J. Comput. Phys., 303, pp. 269–294,

2015.

[2] B. Cockburn, S. Hou, and C.-W. Shu, “The Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws. IV. The multidimensional case,” Mathematics of

Computation, vol. 54, no. 190, pp. 545–581, 1990.

[3] T. Dzanica , W. Trojak, and F. D. Witherden, “Utilizing time-reversibility for shock capturing in

nonlinear hyperbolic conservation laws,” arXiv:2110.03653v2 [math.NA] 18 Apr 2022.

[4] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot, “A posteriori subcell limiting of the

discontinuous Galerkin finite element method for hyperbolic conservation laws,” J. Comput.

Phys., 278, 1, pp. 47-75, 2014.

 ICCFD12

23

[5] H. Fu, J. Xia, and X. Ma, “Shock capturing with the high-order flux reconstruction method on

adaptive meshes based on p4est,” Engineering Reports, Vol 4, Issue 10, e12501, 2022.

[6] T. Haga and S. Kawai, “Toward Accurate Simulation of Shockwave-Turbulence Interaction on

Unstructured Meshes: A Coupling of High-Order FR and LAD Schemes,” AIAA Paper 2013-

3065

[7] H. Hoteit, P. Ackerer, R. Mos´e, J. Erhel, and B. Philippe, “New two-dimensional slope limiters

for discontinuous Galerkin methods on arbitrary meshes,” International Journal for Numerical

Methods in Engineering, vol. 61, no. 14, pp. 2566–2593, 2004.

[8] J. S. Hesthaven and T. Warburton, “Nodal discontinuous Galerkin methods: algorithms, analysis,

and applications,” Vol. 54, Texts in Applied Mathematics, Springer New York, 2008.

[9] H. T. Huynh, “Accurate upwind methods for the Euler equations,” SIAM J. Numer. Anal. 32,

1565, 1995.

[10] H. T. Huynh, “A flux reconstruction approach to high-order schemes including discontinuous

Galerkin methods,” AIAA Paper 2007-4079.

[11] H.T. Huynh, “A reconstruction approach to high-order schemes including discontinuous

Galerkin for diffusion,” AIAA Paper 2009-403.

[12] H.T. Huynh, Z.J. Wang, and P.E. Vincent, “High-order methods for computational fluid

dynamics: A brief review of compact differential formulations on unstructured grids,” Computers

and Fluids, Vol 98, pp. 209-220, 2014.

[13] L. Krivodonova, “Limiters for high-order discontinuous Galerkin methods,” J. Comput. Phys.,

vol. 226, no. 1, pp. 879–896, 2007.

[14] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, and J. E. Flaherty, “Shock detection and

limiting with discontinuous galerkin methods for hyperbolic conservation laws,” Applied

Numerical Mathematics 48 (3-4) 323–338, 2004.

[15] J. Kim , H. You , and C. Kim, “Shock-capturing PID Controller for high-order methods with

data-driven gain optimization,” J. Comput. Phys., 508, 113015, 2024.

[16] Y. Li and Z.J. Wang, “A convergent and accuracy preserving limiter for the FR/CPR method”,

AIAA Paper 2017-0756.

[17] Q. Lu, G. Liu, P. Ming, and Z.J. Wang, “A parameter-free gradient-based limiter for the FR/CPR

method on mixed unstructured meshes,” AIAA 2019-3210.

[18] S.A. Moe, J.A. Rossmanith, and D.C. Seal, “A simple and effective high-order shock-capturing

limiter for discontinuous Galerkin methods,” arXiv:1507.03024 [math.NA], 2015.

[19] J.S. Park, C. Kim, “Multi-dimensional limiting process for finite volume methods on

unstructured grids,” Computers & Fluids, 65, 8–24, 2012.

[20] J.S. Park and C. Kim, “Higher-order multi-dimensional limiting strategy for discontinuous

galerkin methods in compressible inviscid and viscous flows,” Computers & Fluids 96, 377–396,

2014.

[21] J.S. Park and C. Kim, “Hierarchical multi-dimensional limiting strategy for correction procedure

via reconstruction,” J. Comput. Phys., 308, 57–80, 2016.

[22] J.S. Park, S.-H. Yoon, and C. Kim, “Multi-dimensional limiting process for hyperbolic

conservation laws on unstructured grids,” J. Comput. Phys., 229 (3) 788–812, 2010.

[23] J.S. Park, M. Yu, C. Kim, and Z.J. Wang “Comparative study of shock-capturing methods for

high-order CPR: MLP and artificial viscosity,” ICCFD8-2014-0067, 2014.

[24] P. Persson and J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods,” AIAA

Paper 2006-112.

[25] C.-.W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-

capturing schemes, II,” J. Comput. Phys., 83, pp. 32-78, 1989.

[26] G.A, Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic

conservation laws,” J. Comput. Phys., 27(1):1–31, 1978.

[27] A. Suresh and H. T. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge–Kutta

Time Stepping,” J. Comp. Phys., 136, pp 83-99, 1997.

[28] B. Van Leer, ‘Towards the ultimate conservative difference scheme: IV. A New Approach to

Numerical Convection,” J. Comput. Phys., 23, pp. 276–299, 1977.

[29] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with

strong shocks,” J. Comput. Phys., 54, pp. 115–173, 1984.

 ICCFD12

24

[30] J. Yang, B. Zhang, C. Liang, and Y. Rong, “A high-order flux reconstruction method with

adaptive mesh refinement and artificial diffusivity on unstructured moving/deforming mesh for

shock capturing,” Computers & Fluids, Vol. 139, pp. 17-35, 2016.

[31] M. Yang and Z.J. Wang, “A Parameter-Free Generalized Moment Limiter for High-Order

Methods on Unstructured Grids,” Adv. Appl. Math. Mech., Vol. 1, No. 4, pp. 451-480, 2009.

[32] H. You, J. Kim, and C. Kim, Deneb: An open-source high-performance multi-physical flow

solver based on high-order DRM-DG method, Computer Physics Communications 286, 108672,

2023.

[33] H. You and C. Kim, “High-order multi-dimensional limiting strategy with subcell resolution I.

Two-dimensional mixed meshes,” J. Comput. Phys., 375, 1005–1032, 2018.

