
Nonlinear Stability, Algorithm Optimization, 
and Monolithic Methods

David W. Zingg

University of Toronto Institute for Aerospace Studies


ICCFD11 Presentation


15 July 2022



Outline

• Examples of my research


- aerodynamic shape optimization, turbulent flow control via synthetic jets


• Nonlinearly stable methods


- multidimensional summation-by-parts operators (Crean et al., JCP 2018)


• Designing an algorithm through numerical optimization


- implicit Runge-Kutta methods (Boom and Zingg, JCP 2018)


• Monolithic methods for multi-physics analysis and 
optimization


- aerostructural analysis and optimization (Zhang and Zingg, AIAA J. 2018)



Aerodynamic Shape Optimization of a 
Regional-Class Strut-Braced Wing Aircraft

• 7.6% block fuel reduction relative to conventional aircraft for 500 nm mission


- conventional fuselage and empennage reduces risk and development costs



Aerodynamic Shape Optimization of a 
Regional-Class Hybrid Wing-Body Aircraft

• Substantial improvement in energy efficiency relative to conventional aircraft 


- 11-16% block fuel burn improvement for 500 nm mission



Simulation of Synthetic Jet in Crossflow
Vortex Structure of a Synthetic Jet Issuing into a TBL Results

Vortical Structures in Crossflow – St1 = 0.1

r = 0.3

r = 0.6

r = 0.9

Quasi-steady streamwise vortices far downstream

Double and single declined vortex rings with increasing r

Penetrate deeper than St = 0.05 only at r = 0.9

Randy Belanger (UTIAS) SciTech 2020 January 9, 2020 20 / 24



CFD in Aeronautics: Future Needs

• Extensive use of multidisciplinary analysis and optimization in 
design and development


- requires efficient and robust methods for solving the steady Reynolds-
averaged Navier-Stokes equations coupled to FEM structural model


- increasing need for time-accurate simulations for off-design conditions such as 
buffet and flutter


- scale-resolving simulations needed for some conditions


• Increasing need for scale resolving simulations for research into 
advanced concepts such as active flow control


- intriguing drag reduction results have been obtained at low Reynolds numbers


- scale-resolving simulations of comparable physical phenomena at flight 
Reynolds numbers requires substantial improvements in algorithms



Nonlinear stability, algorithm optimization, and monolithic 
methods

• Nonlinear stability


- potential for improved robustness of algorithms for CFD


- particularly relevant for high-order methods and scale-resolving 
simulations


• Algorithm optimization


- enables improvements in efficiency


- enables trade-off studies and tailoring of algorithms to application classes


• Monolithic methods


- enable improved robustness and efficiency for coupled multi-physics 
problems in analysis and optimization



Nonlinear Stability: Importance of Provable Stability

• Most numerical algorithms for CFD today are not provably 
stable for the problems to which they are applied


• When a solution diverges it can be difficult to ascertain 
why


• Numerical dissipation is typically added to overcome any 
instabilities


• The amount of dissipation needed can be difficult to 
ascertain - hence excessive dissipation is often used


• Provably stable methods have the potential to improve 
reliability & robustness and reduce the degree of user 
expertise needed to solve complex problems



Nonlinear Stability — Entropy Stability

• Entropy stability provides one approach to developing nonlinearly stable schemes


- Second Law of Thermodynamics


• Numerous researchers have contributed to the development of entropy stable methods 
(Tadmor, Carpenter, Fisher, Chan, and many more)


• Considerable progress has been made, but further advances are needed:


- completely general boundary conditions


- positivity preservation


- convergence


- time-marching methods (relaxation Runge-Kutta methods)


• Entropy stability is not a panacea


- does not directly address monotonicity preservation (oscillations)


- importance to solution of steady problems not yet clear


- balance between robustness and cost



Linear Stability  - Continuous PDE

Linear 
convection
equation:



Linear Stability - Semi-Discrete Form 
Summation-by-Parts Property

With a SAT to 
enforce the boundary 
condition (a > 0):

Consistent with 
continuous 
result



Inviscid Burgers Equation 

= 0 for  
periodic boundary
conditions

SBP discretization of 
conservative form:

U and Q do not commute so stability cannot be proven

conservative 
form:



Inviscid Burgers Equation 
Skew-Symmetric (Split) Form

for  periodic 
boundary conditions

SBP discretization of 
skew-symmetric form:

Mimics continuous result and provably stable

with suitable SAT



Euler Equations - Entropy Conservation 
(Smooth Solutions)

thermodynamic entropy:

mathematical entropy:

entropy variables:

entropy fluxes:

smooth solutions:



Entropy Conservation and Entropy Stability

in general
including shock waves
(physically relevant 
solutions):

A bound on entropy ensures an L2 bound on the solution given that density, 
pressure, and temperature are all positive (Dafermos, Svard).

An entropy-conservative scheme ensures that entropy is conserved in the 
interior of the domain, e.g. with periodic boundary conditions.

An entropy-stable scheme ensures that the mathematical entropy is 
nonincreasing in the interior of the domain, e.g. with periodic boundary conditions.

Ingredients of entropy-conservative and entropy-stable schemes (Fisher & 
Carpenter, Crean et al.):

      - SBP property 
      - dyadic or two-point entropy-conservative flux functions (e.g. Ismail & Roe)



Entropy-Stable Schemes for Unstructured 
Grids (Crean et al. 2018)

Extended the work of Fisher and Carpenter to general curved elements
building on the multidimensional SBP operators of Hicken et al. (2016)

Entropy-conservative scheme gives (with periodic boundary conditions):

Entropy-stable scheme provides (through dissipative interior penalties):

Caveat: requires positivity of thermodynamic quantities



Entropy-Stable Schemes on General Curved 
Elements: Inviscid Taylor-Green Vortex

Entropy-conservative 
scheme

Entropy-stable 
scheme



“Designing” an Algorithm  
Through Numerical Optimization

• In engineering design, we typically attempt to find the product that is 
best in some sense subject to many constraints


- consequently numerical optimization can play an important role in engineering design, for 
example in aircraft design


-the use of optimization enables rigorous trade-off studies


• Why not apply the same approach to the “design” of numerical 
methods?


- apply numerical optimization to determine any undetermined coefficients with objective 
and constraints tailored to a particular application area


- trade-offs associated with various properties of an algorithm can be evaluated


• From Kennedy and Carpenter’s 2019 review of DIRK methods for ODEs:


- “Arguably, what is needed are methods that are optimized over a broad spectrum of 
characteristics. Invariably, requiring one attribute may preclude another; hence, priorities 
must be established.”



“Designing” an Algorithm  
Through Numerical Optimization

• Examples


- “Optimal Diagonal-Norm SBP Operators,” Mattsson, Almquist, Carpenter 2013


- Runge-Kutta methods: Ketcheson, Parsani, Kennedy/Carpenter, Tsitouras, Vermeire, 
Bogey/Bailly, Boom/Zingg


- various authors have chosen undetermined coefficients in spatial schemes to minimize 
spectral radius


- Marchildon and Zingg optimized multidimensional SBP operators


• Boom, P.D., and Zingg, D.W., Optimization of High-Order Diagonally-
Implicit Runge-Kutta Time-Marching Methods, J. Comp. Phys., 2018


- presented constrained numerical optimization of linearly and algebraically stable 
diagonally-implicit Runge-Kutta methods


- found several methods with advantageous properties 



Boom & Zingg: Optimization of High-Order DIRK Methods

•  In the construction of high-order implicit Runge-Kutta methods, several coefficients will 
often remain undetermined after solving the desired order and stability conditions


• At lower orders, optimization of coefficients can be done analytically, but as order is increased 
the size and complexity of the expressions grow and analytical solution becomes intractable


• Parameters include


-  order of the method (p), number of stages (s), stage order of individual stages (qi), 
stiff accuracy (Y/N)


• Objective function combines


- L2 principal error norm, spacing of abscissa values (affects numerical solution 
efficiency), violation of internal and algebraic stability conditions


• Constraints can be selected from


- A stability, L stability, algebraic stability, internal stability



Boom & Zingg: Optimization of High-Order DIRK Methods

• SDIRK[p,(qi)](s)X_SA_i


-  order of the method (p), number of stages (s), stage order of individual stages (qi), X = A/L/
Algebraic (stability), SA = stiffly accurate, i = identifier


- relative efficiency measure: error norm * number of stages^p


• SDIRK[3,(1,2,2)](3)L_14


- good balance of properties with slightly reduced error norm compared to comparable 3-stage 
methods in the literature


• SDIRK[3,1](4)L_SA_5


- most efficient 3rd-order stiffly accurate method found with error norm less than 50% of that of 
the reference method 


• SDIRK[5,1](5)L_02


- 40% lower error norm than reference method, which is not L stable, but gives up a small 
increase in violation of algebraic stability conditions and some stage order compared to 
reference method



Optimization of High-Order DIRK Methods: 
Lessons Learned

• Efficient new methods have been found


- despite long history of research on implicit Runge-Kutta methods


- benefits realized in simulations


• Design space has many local optima


- virtually impossible to prove that the global minimum has been found


• Optimization approach can be applied to many aspects 
of numerical methods, including both time-marching 
methods and spatial discretizations


- whenever there are a significant number of undetermined coefficients 



Monolithic Approach to  
Aerostructural Analysis and Optimization

• Aerostructural analysis


-  evaluate the performance of a wing under steady turbulent flow conditions, 
including loads and deflections


-  external shape determines aerodynamic performance (RANS equations)


-  structural layout and sizing determines deflections (FEM model)


-coupling via load and displacement transfer


• Aerostructural optimization


-  determines external shape and sizes structural components to minimize an 
objective function (typically drag while accounting for the impact of weight on the 
drag) while satisfying constraints (such as lift, maximum stress constraint)


-  drag is generally minimized at cruise conditions, while the structure is sized under 
critical loading conditions



Partitioned and Monolithic Approaches to Analysis

• Partitioned approach


- solve the flow and structural equations alternately until a self-
consistent solution is obtained


- straightforward to implement (“black box”, “nonintrusive”)


- straightforward to use a different flow or structural solver


• Monolithic approach


- solve the multiple disciplines in a fully coupled manner


- more complex to program, but potentially more efficient and robust


- advantageous to retain specialized solvers for each discipline (how?)



Aerostructural Optimization Problem

• high-dimensional - gradient-based optimization algorithm preferred


• many more design variables than constraints - adjoint method 
preferred


- structural stress constraints are aggregated



Aerostructural Analysis Problem

aerostructural residual, including 
aerodynamics, mesh movement, and 
structures

- inexact Newton method


- solve linear system with 
FGMRES

coupled Jacobian matrix



Preconditioning of Linear System

point-Jacobi preconditioner

where

- use the efficient linear solution technique associated with each 
discipline as the preconditioner for the associated portion of the 
system


- the specialization is achieved at the preconditioner level


- Gauss-Seidel approach also possible



Comparison with Partitioned Approach: Analysis

- benefit of monolithic approach increases as the 
flexibility parameter (coupling) increases



Monolithic Coupled Adjoint Solution

adjoint system

- again reuse the 
efficient linear solution 
technique associated 
with each discipline


- Gauss-Seidel variant 
shown



Comparison with Partitioned Approach: Adjoint Solution

- benefit of monolithic approach again increases as the flexibility 
parameter (coupling) increases


- monolithic approach is more robust as well



Concluding Remarks

•Nonlinearly stable schemes


-can potentially greatly improve the robustness of flow solvers


-many open questions remain to be addressed


•Algorithm optimization


- can be applied in many contexts to design algorithms for specific 
properties and to find new and improved algorithms


•Monolithic approach to coupled analysis and optimization problems


- apply the discipline-specific methods in the preconditioning of the 
linear system


- very effective for tightly coupled problems


