
Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

A Large Time Step Numerical Method for the Euler
Equations using Deep Learning

O. Ovadia∗, A. Kahana∗ and E. Turkel∗,∗∗
Corresponding author: odedovadia@mail.tau.ac.il

Applied Mathematics Department, Tel Aviv University, Israel.

Abstract: In this work we present a large time step method to numerically approximate the Euler
equations using deep learning. Classical explicit numerical methods such as finite difference or finite
volume are heavily constrained in their choice of time step by the Courant–Friedrichs–Lewy (CFL)
condition. When the condition is violated, solutions can quickly “blow up” and exhibit severe
instability. We empirically show that convolutional neural networks (CNNs) are able to accurately
approximate the Euler equations and remain stable over time, even in such difficult cases that
would otherwise cause instability.

Keywords: Machine learning, deep learning, Euler equations, numerical stability.

1 Introduction
We present a large time-step numerical method to solve the one-dimensional Euler equations using deep
learning (DL). The Euler system of partial differential equations (PDEs) is one of the most well-studied
equations in the field of fluid dynamics. In this paper, we focus on the one-dimensional compressible case,
which describes the conservation of mass, balance of momentum, and balance of energy for an inviscid flow
[1, 2]. The Euler equations are a special case of the more general Navier-Stokes equations that are applicable
in practically all fluid dynamics applications [3].

It is often highly impractical or even impossible to find an exact solution for the Euler equations, except
for some well known cases such as Sod’s problem [4]. As a result, it is far more common to solve them
numerically, by finding an accurate approximation of the analytical solution. There is a plethora of different
numerical methods to model the Euler equations, including finite differences and finite volumes methods.
However, standard numerical methods often face difficulties due to the non-linear behavior of the equations.
Analytical solutions often involve discontinuous shock waves that are hard to model accurately. Moreover,
even smooth initial conditions can induce shocks [5] which increases the difficulty of the problem. Hence,
the Euler equations require special numerical methods, that are suited to these problems.

Most numerical methods are grid-based [6, 7]. It means that the approximation of the physical problem is
performed on a discrete set of points in space and time. For increased accuracy it is vital to refine the spatial
grid and use a large amount of nodes. This is often the case for the Euler equations with sharp discontinuities
or high wave speeds. However, refining the spatial grid without properly modifying the temporal one could
cause the solution of the numerical scheme to become unstable, and “blow up” after a few iterations. One
necessary condition to avoid that phenomenon, is the Courant–Friedrichs–Lewy (CFL) condition [8], which
is discussed in detail in this paper. This condition adds a bound on the choice of time-step in relation to the
spatial grid. Consequently, when using a very refined spatial grid it is necessary to increase the number of
time-steps as well to keep the scheme stable [9].

In recent years, the usage of machine learning (ML) and especially deep learning (DL) for PDEs has
become increasingly common. Powered by advances in hardware and computing capabilities, it has become
feasible to train models on large datasets, a task that was incredibly difficult before. In particular, the
new idea of Physics-Informed Neural Networks (PINNs) was proposed in [10], and since then evolved into

1

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

an area of research of its own. The main idea is to convert the PDE problem from a numerical one to a
data-driven one, and then combine DL architectures and physical domain knowledge to create powerful PDE
approximators. Standard PINNs have been applied to the Euler equations before. Some examples include
forward and inverse modelling [11], supersonic flows [12], and for conservation laws in general [13, 14].
Recently, approximating non-linear operators using DeepONets [15] has also been shown to be applicable to
the Euler equations [16].

In this work, we utilize the recent advances in the study of PDEs and DL to build an explicit non-linear
numerical solver for the Euler equations that is able to overcome violations of the CFL condition. We
generate numerical solutions synthetically from randomly chosen initial conditions using a stable scheme
and sub-sample them in such a way that they are unstable (the CFL condition is not met). We proceed by
training on this dataset a set of three neural networks corresponding to the three elements of the governing
Euler equations. After the training process is done, the model is ready to be used as a numerical solver.
While the training part can take a long time, inference is immediate (takes only milliseconds), making this
method applicable for real-time scenarios. Similar work has been done before for the wave equation [17], but
the transition to a system of non-linear equations is not trivial, due to the behavior of the Euler equations
described above.

The outline for the remainder of this paper is as follows. Section 2 discusses the physical problem and
classical numerical methods to approximate it. Section 3 reviews key concept of deep learning and describes
the model and its training process. Section 4 presents the numerical experiments conducted and the findings
using the proposed methods. Concluding remarks are found in section 5.

2 Numerical modelling

2.1 Mathematical model
The Euler equations for compressible flow describe the conservation of mass, momentum, and energy. Their
conservative formulation as an initial value problem with periodic boundary conditions in the one-dimensional
case of is given by [18]: 

∂tU + ∂xF (U) = 0 x ∈ Ω, t ∈ (0, T]

U(x, 0) = U0(x) x ∈ Ω

U(L, t) = U(R, t) t ∈ [0, T]

∇U(L, t) = ∇U(R, t) t ∈ [0, T]

, (1)

where Ω := [L,R] is the physical domain and T is the final time. U and F are given by:

U =

 ρ
ρu
E

 , F (U) =

 ρu
ρu2 + p
u(E + p)

 , (2)

where ρ is the density, p is the pressure, u is the velocity, and E is the total energy. For an ideal gas we also
have a closed form expression for the pressure p:

p = (γ − 1)(E − 1

2
ρu2) , (3)

where γ = 1.4 is the adiabatic index.

2.2 Numerical approximation
One of the most common methods to approximate the Euler equations is the finite volume method. When
discretizing the PDE it is often beneficial to use its integral form in order to admit discontinuous solutions.
This is given by:

2

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

∫ x2

x1

U(x, t2)dx =

∫ x2

x1

U(x, t1)dx+

∫ t2

t1

F (U(x1, t))dt−
∫ t2

t1

F (U(x2, t))dt (4)

for any [x1, x2]× [t1, t2] ∈ Ω× [0, T].
We discretize the spatial domain into Nx finite volumes, also called cells. Denote the i-th cell by Ii. It

is defined by:

Ii := [xi− 1
2
, xi+ 1

2
], i = 1...Nx (5)

where the cell boundaries xi− 1
2
, xi+ 1

2
and its center xi are given by:

xi− 1
2
:= (i− 1)∆x, xi+ 1

2
:= i∆x, xi := (i− 1

2
)∆x, i = 1...Nx, (6)

where the cell size is ∆x := |R−L|
Nx

.
Similarly, the temporal domain [0, T] is discretised using Nt parts [tn−1, tn], for n = 1, . . . , Nt. In the

constant time-step size case we have tn := n∆t and the time-step is defined by ∆t := T
Nt

. However, in practice
many methods use an adaptive step-size approach in time due to the time-varying nature of velocities in
non-linear PDEs.

Classical approaches, such as Godunov-type methods [19] define the cell-average as:

Un
i :=

1

∆x

∫ x
i+1

2

x
i− 1

2

U(x, tn)dx (7)

which means that U(x, tn) = Un
i , ∀x ∈ Ii. Using these notations, an explicit conservative numerical is given

by:

Un+1
i = Un

i +
∆t

∆x
[Fi− 1

2
+ Fi+ 1

2
] (8)

where Fi± 1
2

is called the numerical flux. There are many ways to calculate the numerical flux, and they
correspond to different numerical schemes. Among them are the original Godunov scheme by [19], and later
schemes by Osher [20], Roe [21], and Harten-Lax-van Leer (HLL) [22].

2.3 Numerical stability
To ensure stability, one must appropriately choose the discretization parameters ∆t and ∆x. Usually, ∆x is
determined by the physical problem, and ∆t is chosen in a way that allows the scheme to remain stable. A
necessary condition for stability of an explicit scheme is the Courant–Friedrichs–Lewy (CFL) condition [8]:∣∣∣∣∆t

∆x
Sn
max

∣∣∣∣ ≤ Cmax (9)

where Cmax is the maximal allowed value for the Courant number
∣∣∆t
∆xS

n
max

∣∣, and Sn
max is the maximal wave

speed at time tn, given by [6]:
Sn
max := max

i
{|un

i |+ ani }

where the speed of sound a for an ideal gas is a2 = γp
ρ .

Note, that due to the non-linearity of the Euler equations, the wave speed varies in time and space. Hence,
we take the maximal value in space in each time-step. Furthermore, the threshold Cmax is determined by
the choice of numerical scheme. For the scope of this paper, we use Cmax = 1, though for practical purposes
the more strict choice of Cmax = 0.9 is often used.

3

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

2.4 Data-driven formulation
The numerical problem can also be formulated as a supervised machine learning problem. In supervised
learning, each sample has a label and a chosen learning algorithm learns the connection between each data
sample and its label. In our case, both the samples and the labels are defined using solutions of the Euler
equations.

We create a dataset of accurate solutions of the Euler equations. We achieve this by choosing discretization
parameters for which the CFL condition holds. Then we pick a set of initial conditions and numerically evolve
each one of them until we reach the final time T using an accurate numerical scheme. Then, we subsample
each numerical solution in time by a constant factor, which amounts to increasing ∆t. Consequently, we
get the same set of solutions, only with a coarser temporal discretization. We choose a subsampling rate for
which the CFL condition does not hold. This is our final generated dataset. More details about the creation
of the dataset can be found in the results section 4.

We can then proceed to describe the numerical problem as a data-driven problem. Let Un be the
numerical solution obtained in the dataset creation process for some initial condition at time tn < T . Then
Un can be written as follows:

Un =

 ρn

(ρu)n

En

 =

 ρ(x1, tn) ρ(x2, tn) . . . ρ(xNx
, tn)

ρu(x1, tn) ρu(x2, tn) . . . ρu(xNx
, tn)

E(x1, tn) E(x2, tn) . . . E(xNx , tn)

 . (10)

For each sample Un our goal is to predict Un+1. Using standard ML notations, we divide the data into
samples X and corresponding targets (labels) Y . Let NIC be the number of generated initial conditions.
Let l < NIC be the index related to the l-th initial condition. We denote the relevant numerical solution at
time n < Nt by:

Un,l =

 ρn,l

(ρu)n,l

En,l

 .

Using this notation, we define the mapping between X and Y as pairs of the form (xnl, yn,l) where
xn,l = Un,l and yn,l = Un+1,l. The full mapping is given by:

{(xn,l, yn,l) : ∀l = 0 . . . NIC − 1, n = 0 . . . Nt − 1}. (11)

Thus, given some xn,l our goal is to predict yn,l. The main difficulty is that the Courant number induced
by the discretizations of xn,l and yn,l does not satisfy the CFL condition. We overcome this difficulty using
deep learning.

3 Deep Learning Approach
We use a deep learning approach to solve the data-driven problem formulated in section 2.4. We use a fully
convolutional neural-network [23]. Each layer has trainable parameters (weights and bias terms) that are
initialized randomly. All hidden layers are followed by a non-linear activation. To learn these parameters
we iterate using the Stochastic Gradient Descent (SGD) algorithm to minimize a predefined target function
(loss function). After experimenting with a variety of network architectures by varying the depth, number of
convolutions, size of convolution kernel, and more hyper-parameters, the chosen final architecture is described
below.

3.1 Network architecture
Convolutions are well known for their ability to capture spatial dependencies in datasets. Since each sample
in our dataset is a snapshot of (ρ, ρu,E) at different spatial locations, convolutions are the natural choice.
We use four one-dimensional hidden convolutional layers, followed by one last convolutional output layer.
Each hidden layer is composed of 32 trainable convolutional filters of size 5, followed by a non-linear ReLU

4

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

activation function. This leads to a very light model with about 16,000 weights. Having a low number of
weights is beneficial in terms of computational complexity of the optimization process and inference speed.

Due to the different nature of each component of the equations, we trained three separate neural networks.
Each neural network is trained to solve the equations for a different component: density, momentum, and
energy. Using one component exclusively for each neural network would not work, since they interact with
one another. We address this by using a shared input for all three networks. More specifically, the input
to all networks can be described as Un, while the three separate outputs are ρn+1, (ρu)n+1, and En+1. A
schematic of the model architecture is presented in figure 1.

3.2 Loss function
In the process of training the neural network, we aim to find the best weights that optimize a certain loss
function, depending on the problem at hand. In our case, we have a machine learning regression problem
where it is common to use the mean squared error (MSE) metric. We define it using the notation from
section 2.4. We write the prediction of the model for xn,l as

ŷn,l :=

 ρn+1,l
pred

(ρu)n+1,l
pred

En+1,l
pred

 .

Using this, we directly write the overall MSE in terms of yn,l and ŷn,l:

MSE :=
1

NICNt

NIC−1∑
l=0

Nt−1∑
n=0

∥yn,l − ŷn,l∥22, (12)

and we decompose it into the MSE for each variable:

MSEρ =
1

NICNt

NIC−1∑
l=0

Nt−1∑
n=0

(ρn+1,l − ρn+1,l
pred)

2
,

MSEρu =
1

NICNt

NIC−1∑
l=0

Nt−1∑
n=0

((ρu)n+1,l − (ρu)n+1,l
pred)

2
,

MSEE =
1

NICNt

NIC−1∑
l=0

Nt−1∑
n=0

(En+1,l − En+1,l
pred)

2
.

(13)

We train each network according to its relevant loss function.

3.3 Physics-informed simultaneous training
The architecture proposed in section 3.1 combined with the loss in section 3.2 yields three separate networks
that learn independently. We seek to improve this method by adding a physics-informed (PI) component
that utilizes physical knowledge about the Euler equations. We achieve this by adding a PI loss that enables
us to connect the three networks and form one unified model.

3.3.1 Simultaneous training

The most straightforward method to solve the Euler equations as a system with DL is to use a single model.
However, after running multiple experiments with different architectures we have seen that a single model
that outputs the three variables together does not produce good results. A more fitting solution would be
to train the three proposed models together.

In general, training a neural network requires a few well knows steps. We begin by dividing the data into
small random batches. For each batch we apply the model on the given samples. Then, we compare the
predicted outputs to the ground truth using a predefined loss function (MSE in our case). We continue by
computing the gradients of the loss function with respect to the weights of the model. Finally, we apply the

5

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

Figure 1: Neural networks architecture.

SGD optimization algorithm on these gradients. A full iteration on the entire data-set (iterating over all the
batches), is called an epoch. This process can be repeated for multiple epochs until convergence of the SGD
algorithm is reached.

We extend this process to include three separate models. The full flow can be seen in algorithm 1. Denote
the combined loss of all three networks by LU , and their combined weights by WU . Since the models are
independent from one another, we compute their gradients separately. In that case, computing SGD using
LU , w.r.t. WU has no additional value. Hence, while the models train on the same batch together, they still
do not affect one another. So, we need to find a way to connect their gradients. We achieve this by adding
a physics-informed (PI) loss function, described in the following subsection.

3.3.2 Physics-informed loss

We create a PI loss term to enhance the performance of the proposed method by adding iterative marching
steps into the loss, similar to the ones used to create the dataset. We achieve this by taking the three
outputs of the model, concatenating them together, and then applying the model on them again. Finally,
we compare the results to the ground truth of the next time-step. We formulate this process mathematically
using notation from section 2.4. Let Mρ,Mρu,ME be our three models. For some initial condition index l,
and time-step n < Nt we define the model predictions as:

ρn+1,l
pred := Mρ(U

n,l),

(ρu)n+1,l
pred := Mρu(U

n,l),

En+1,l
pred := ME(U

n,l),

Un+1,l
pred :=

 ρn+1,l
pred

(ρu)n+1,l
pred

En+1,l
pred

 .

(14)

6

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

Algorithm 1 Simultaneous training process
Require:

Three models Mρ,Mρu,ME with corresponding weights Wρ,Wρu,WE (initialized randomly).
Loss function L.
Dataset divided into {Bn := (Xn, Yn)}Nbatch

n=1 batches of equal size, where Yn can be decomposed as
Yn = (ρn, (ρu)n,En).
while n ≤ Nbatch do

Predict:
ρpred ←Mρ(Xn)
(ρu)pred ←Mρu(Xn)
Epred ←ME(Xn)

Compute loss:
Lρ ← L(ρpred,ρn)
Lρu ← L((ρu)pred, (ρu)n)
LE ← L(Epred,En)
LU ← Lρ + Lρu + LE

Compute gradients:
∇ρ ← ∂Lρ

∂Wρ

∇ρu ← ∂Lρu

∂Wρu

∇E ← ∂LE

∂WE

∇U ← ∂LU

∂W , where W = Wρ ∪Wρu ∪WE

Apply SGD on gradients
end while

Then, the iterative PI predictions are given by:

ρn+2,l
PI := Mρ(U

n+1,l
pred),

(ρu)n+2,l
PI := Mρu(U

n+1,l
pred),

En+2,l
PI := ME(U

n+1,l
pred).

(15)

We compare these values to the ground truth at time-step n+ 2 using a regular MSE loss, as in (13):

PIMSEρ :=
1

NICNt

NIC−1∑
l=0

Nt−2∑
n=0

(ρn+2,l − ρn+2,l
PI)

2
,

P IMSEρu :=
1

NICNt

NIC−1∑
l=0

Nt−2∑
n=0

((ρu)n+2,l − (ρu)n+2,l
PI)

2
,

P IMSEE :=
1

NICNt

NIC−1∑
l=0

Nt−2∑
n=0

(En+2,l − En+2,l
PI)

2
.

(16)

We set the overall loss of the model to be a linear combination of the regular MSEs and PIMSEs. It is possible
to give these losses different weights in the overall sum. However, in our case all the losses are roughly of
the same order of magnitude, so we choose to average them. It follows directly from these definitions that
each PIMSE is dependent on all three models, unlike the regular MSEs. With the addition of the PIMSE
loss terms it makes sense to use SGD on LU w.r.t. WU , since the gradients of the models are now connected
to one another.

7

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

3.4 Evaluation metric
After the model is done training, we need to evaluate its performance. As mentioned above, we are interested
in using the model as an iterative numerical scheme. It follows that using a standard MSE alone is not a
sufficient metric. Instead, we look at the average relative L2 error over time for each initial condition.

Let {Un}Nt
n=0 be an exact solution of the Euler equation. We define an iterative process starting from U0,

similarly to (15). We use U0 to predict Û1, and use the predicted value as input to make the next prediction
Û2, and so on. We repeat this iteratively until we reach the final time-step. We then compare the {Ûn}Nt

n=1

predicted values to the exact {Un}Nt
n=1 values. Let {ρ̂n}Nt

n=0, {ρn}
Nt
n=0 be the density values corresponding to

{Ûn}Nt
n=1, {Un}Nt

n=0. Then the average relative L2 error in after Nt time-steps is defined as:

1

Nt

Nt∑
n=1

∥ρ̂n − ρn∥2
∥ρn∥2

(17)

and the errors for ρu and E are defined equivalently. The average error is defined as the average of all three
errors.

4 Experiments and results
We tested the proposed method on multiple scenarios with different initial conditions. In each case we
generated accurate and stable solutions using CFL ≤ 0.9 and sub-sampled them in time. As a result, the
new coarse temporal discretization did not satisfy the CFL condition, as described in 2.4. All solutions
were generated by the Harten-Lax-van Leer-Contact numerical scheme (HLLC) [24] with periodic boundary
conditions in the physical domain Ω = [−1, 1]. The solver was implemented in the Python programming
language as part of the Clawpack software [25, 26, 27]. In each scenario we train two models: a regular
separately trained model, and a simultaneously trained PI model. We use the exact same architecture for
both models, described in 3.1. All models were trained for 500 epochs using a batch size of 32. Finally, we
compare the results of the two models as described in section 3.4.

4.1 Scenario I
We begin with a simple case where we have smooth solutions. We consider initial conditions of the form

ρ(x, 0) = 1 + c sin (πx)

ρu(x, 0) = 1 + c sin (πx)

E(x, 0) = 2.5 + 0.5(1 + c sin (πx))

(18)

where c ∈ [0.1, 0.5] is randomly uniformly sampled. We set the discretization parameters to Nt = 100,
Nx = 100, and the final simulation time to T = 4. For the HLLC scheme we used a refined temporal
discretization with Nt = 600. The resulting initial CFL in this case is CFL ≈ 4.5 > 1.

As presented in figure (2) and table (1), both the non-PI (separate training) model and the PI one
perform well here. However, the latter is more accurate by an order of magnitude, though in this simple
case the difference is barely noticeable to the human eye.

4.2 Scenario II
We now consider a slightly more difficult case. We still have smooth solutions, but we increase the frequencies
of the sines in the initial conditions. This creates a more diverse dataset, given by:

ρ(x, 0) = 1 + c1 sin (c2πx)

ρu(x, 0) = 1 + c1 sin (c2πx)

E(x, 0) = 2.5 + 0.5(1 + c1 sin (c2πx))

, (19)

8

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

where c1 ∼ Uniform(0.1, 0.5) and c2 is randomly sampled from [1, 2, ..., 6]. We keep the discretization
parameters Nt = 100 and Nx = 100, but increase the final simulation time to T = 5. For the HLLC
scheme we used a refined temporal discretization with Nt = 700. The resulting initial CFL in this case is
CFL ≈ 6 > 1.

Figure (3) and table 2 show that the difference between the two models is far more significant in this
case. The PI model remains close to the exact small time-step solution, while the non-PI model fails to
approximate the solution well. This is especially visible near the left boundary.

4.3 Scenario III
In this scenario we also test the capabilities of the proposed method for smooth initial conditions. However,
unlike the previous scenarios, we now set different initial conditions for the density and momentum. Now,
the solutions exhibit shock behavior at later time-steps. The initial conditions are given by:

ρ(x, 0) = 1 + c sin (2πx)

ρu(x, 0) = c sin (4πx)

E(x, 0) = 0.5 + c cos (2πx)

(20)

where c ∼ Uniform(0.1, 0.2). We increase the spatial discretization to Nx = 800, and keep Nt = 100. We
set the final simulation time as T = 1. For the HLLC scheme we used a refined temporal discretization with
Nt = 400. The resulting initial CFL in this case is CFL ≈ 3 > 1.

The sharp shock behavior is observed in (4). The non-PI model completely fails when trying to approx-
imate the solution. It creates non-physical oscillations while also completely missing the shock locations.
However, the PI model is able to accurately approximate the solution, even near the shocks.

Figure 2: A comparison of the solutions at final time T = 4 obtained by the models in scenario 4.1.

9

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

Density error Velocity error Energy error Average error
Non-PI model 7.00348E-03 6.99725E-03 1.16930E-03 5.05668E-03
PI model 1.55723E-03 1.57113E-03 2.53120E-04 1.12716E-03

Table 1: A comparison of relative L2 errors between the models in scenario 4.1.

Figure 3: A comparison of the solutions at final time T = 5 obtained by the models in scenario 4.2.

Density error Velocity error Energy error Average error
Non-PI model 6.02502E-02 6.05010E-02 1.14910E-02 4.40807E-02
PI model 6.74203E-03 6.34023E-03 1.05918E-03 4.71381E-03

Table 2: A comparison of relative L2 errors between the models in scenario 4.2.

10

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

Figure 4: A comparison of the solutions at final time T = 1 obtained by the models in scenario 4.3.

Density error Velocity error Energy error Average error
Non-PI model 2.56729E-01 1.02613E+00 3.37565E-01 5.40141E-01
PI model 1.53220E-02 5.36622E-02 1.46112E-02 2.78651E-02

Table 3: A comparison of relative L2 errors between the models in scenario 4.3.

5 Conclusions and Future Work
In this work we presented a numerical method to explicitly solve the Euler equations while violating the
CFL condition. We achieved this by building a deep learning model composed of three distinct neural
networks. We added a physics-informed loss that enabled us to simultaneously train the three connected
neural networks. Finally, we tested the model on different scenarios, and saw that the addition of the
physics-informed loss greatly increased the accuracy of our method.

We plan on expanding this method to other difficult scenarios that involve strong discontinuities, such as
Sod’s shock tube [4], the Shu-Osher problem [28], and Woodward-Colella blast wave [29]. Another expansion
plan is to reproduce similar results for the two-dimensional case.

References
[1] Richard Courant and Kurt Otto Friedrichs. Supersonic flow and shock waves, volume 21. Springer

Science & Business Media, 1999.
[2] Hans Wolfgang Liepmann and Anatol Roshko. Elements of gasdynamics. Courier Corporation, 2001.
[3] David J Acheson. Elementary fluid dynamics, 1991.
[4] Gary A Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conser-

vation laws. Journal of Computational Physics, 27(1):1–31, 1978.
[5] Constantine M Dafermos and Constantine M Dafermos. Hyperbolic conservation laws in continuum

physics, volume 3. Springer, 2005.

11

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

[6] Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction.
Springer, 2013.

[7] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,
2002.

[8] Richard Courant, K. Friedrichs, and Hans Lewy. Über die partiellen differenzengleichungen der mathe-
matischen physik. Mathematische Annalen, 100:32–74, 1928.

[9] Peter D Lax and Robert D Richtmyer. Survey of the stability of linear finite difference equations.
Communications on pure and applied mathematics, 9(2):267–293, 1956.

[10] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[11] Zhiping Mao, Ameya D. Jagtap, and George Em Karniadakis. Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

[12] Ameya D. Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-informed neural
networks for inverse problems in supersonic flows, 2022.

[13] Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear partial
differential equations. Communications in Computational Physics, 28(5):2002–2041, 2020.

[14] Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed neural
networks on discrete domains for conservation laws: Applications to forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020.

[15] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

[16] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

[17] Oded Ovadia, Adar Kahana, Eli Turkel, and Shai Dekel. Beyond the courant-friedrichs-lewy condition:
Numerical methods for the wave problem using deep learning. Journal of Computational Physics,
442:110493, 2021.

[18] Courant and Hilbert. Methods of mathematical physics, vol. ii. partial differential equations. Journal
of Applied Mechanics, 30, 1963.

[19] Sergei K. Godunov and I. Bohachevsky. Finite difference method for numerical computation of dis-
continuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(89)(3):271–306,
1959.

[20] Björn Engquist and S. Osher. One-sided difference approximations for nonlinear conservation laws.
Journal of Computational Physics, 36:321–351, 1981.

[21] P.L Roe. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Compu-
tational Physics, 43(2):357–372, 1981.

[22] Amiram Harten, Peter D. Lax, and Bram van Leer. On upstream differencing and godunov-type schemes
for hyperbolic conservation laws. SIAM Review, 25(1):35–61, 1983.

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, Los
Alamitos, CA, USA, 2015. IEEE Computer Society.

[24] E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann solver.
Shock Waves, 4(1):25–34, July 1994.

[25] Clawpack Development Team. Clawpack software, 2020. Version 5.7.1.
[26] Kyle T Mandli, Aron J Ahmadia, Marsha Berger, Donna Calhoun, David L George, Yiannis Had-

jimichael, David I Ketcheson, Grady I Lemoine, and Randall J LeVeque. Clawpack: building an open
source ecosystem for solving hyperbolic pdes. PeerJ Computer Science, 2:e68, 2016.

[27] David I. Ketcheson, Kyle T. Mandli, Aron J. Ahmadia, Amal Alghamdi, Manuel Quezada de Luna,
Matteo Parsani, Matthew G. Knepley, and Matthew Emmett. PyClaw: Accessible, Extensible, Scalable
Tools for Wave Propagation Problems. SIAM Journal on Scientific Computing, 34(4):C210–C231,
November 2012.

12

Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Barcelona,Spain, July 11-15, 2022

ICCFD11-2022-4202

[28] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. Journal of computational physics, 77(2):439–471, 1988.

[29] Paul Woodward and Phillip Colella. The numerical simulation of two-dimensional fluid flow with strong
shocks. Journal of computational physics, 54(1):115–173, 1984.

13

