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Abstract: Many engineering applications are still based on the solution of the Reynolds-Averaged
Navier-Stokes (RANS) equations that require the definition of mean flow quantities and the av-
eraging of the continuity and momentum equations. Most RANS turbulence models available in
the open literature have been developed for statistically steady flows, i.e. time-averaging is applied
to the flow variables and to the continuity and momentum equations. In external flows around
bluff bodies or large angles of incidence in streamlines bodies, wide wakes are generated due to
massive flow separation and vortex shedding will occur. In such conditions, time-averaging is not
a reasonable option for the definition of the mean flow, because time variations generated by the
vortex shedding phenomena will be considered as turbulence fluctuations. As for the statistically
steady flows, the role of the Reynolds stresses is to damp the turbulence fluctuations and allow the
determination of the mean flow. However, there is no guarantee that turbulence models developed
for time-averaged RANS will also be appropriate for statistically unsteady flows.
In this paper, we present simulations for the flow around a circular cylinder at Reynolds numbers
ranging from sub-critical (transition in the near-wake) to super-critical (transition on the cylinder
upstream of separation) performed with three turbulence models: the Shear-Stress Transport (SST)
k−ω two-equation eddy-viscosity model, an explicit algebraic Reynolds Stress model (EARSM)
based on a SST k−ω and a Reynolds Stress model (RSM). Two-dimensional and three-dimensional
approaches are compared and the contribution of statistical, iterative and discretization errors to
the numerical uncertainty are estimated for all flow conditions. With this simple flow, we assess
if the turbulence model is able to provide the required diffusion to damp turbulence fluctuations
and allow the determination of the mean flow solution.

Keywords: Computational Fluid Dynamics, RANS, Statistically Unsteady flows, Numerical errors.

1 Introduction

Modeling and Simulation (MS) has become an essential part of Engineering. One of the branches of MS
that is routinely used is Computational Fluid Dynamics (CFD), that can address a wide variety of flows
including different types of physical phenomena. One of the challenges of CFD is the accurate simulation
of turbulent flows that occur in many practical applications. Currently, it is possible to simulate turbulent
flows solving numerically mass conservation and momentum balance (Navier-Stokes equations) without any
extra modeling (Direct Numerical Simulation, DNS). However, the requirements to perform such simulations
in complex geometries at high Reynolds numbers are unaffordable. Therefore, many engineering applications
are still based on the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations that require the
definition of mean flow quantities and the averaging of the continuity and momentum equations. This results
in additional terms in the momentum equations, the so-called Reynolds stresses that require a turbulence
model for their determination.

Most RANS turbulence models available in the open literature have been developed for statistically steady
flows, see for example Wilcox [1], i.e. time-averaging is applied to the flow variables and to the continuity
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and momentum equations. The extra diffusion provided by the Reynolds stress tensor is supposed to provide
enough diffusion to damp all turbulence fluctuations and enable the calculation of a mean steady flow.

In external flows around bodies of arbitrary shape, statistically steady flows require streamlined shapes
aligned with the incoming flow, i.e. boundary-layers that do not exhibit significant flow separation. For
bluff bodies or large angles of incidence in streamlines bodies, wide wakes are generated due to massive
flow separation and vortex shedding will occur. In such conditions, time-averaging is not a reasonable
option to calculate the mean flow, because time variations generated by the vortex shedding phenomena
will be considered as turbulence fluctuations. In these statistically unsteady flows, the derivation of the
RANS equations is based on ensemble averaging and so the time derivatives of the mean flow quantities are
not zero, which is usually referred to as (U)nsteady RANS. As for the statistically steady flows, the role
of the Reynolds stresses is to damp the turbulence fluctuations and allow the determination of the mean
flow. However, there is no guarantee that turbulence models developed for time-averaged RANS will also be
appropriate for statistically unsteady flows.

In this paper, we present RANS based simulations for the flow around a circular cylinder at Reynolds
numbers ranging from sub-critical, Re = 3.9 × 103 and Re = 105 (transition in the near-wake) to super-
critical Re = 3.6 × 106 and Re = 108 (transition on the cylinder upstream of separation), performed with
two-dimensional and three-dimensional approaches using three different turbulence models: the Shear-Stress
Transport (SST) k−ω, two-equation, eddy-viscosity model [2]; the explicit algebraic Reynolds Stress model
(EARSM) based on a k−ω model [3]; the SSG/LRR-ω full Reynolds stress model (RSM) [4]. The dimensions
of the circular cylinder and computational domain are based on [5] that reports experimental data for two
of the selected Reynolds numbers.

The aim of the present paper is twofold:

1. Evaluate the different contributions to the numerical uncertainty in unsteady RANS simulations;

2. Assess if the selected turbulence models are able to provide the required diffusion to damp turbulence
fluctuations.

As discussed in [6], unsteady flow simulations can be affected by round-off, iterative, discretization and
statistical errors. The estimation of the contributions of these errors to the numerical uncertainty is essential
to quantify modeling errors [7]. On the other hand, if the selected turbulence models do not provide sufficient
damping, the dependent variables of the ensemble-averaged RANS equations will no longer be the mean flow
variables and their meaning will be difficult to interpret. In this study, we analyse the frequency content
of the time histories of integral and near-wake local flow quantities to assess if the solution determines the
mean flow field. These two aspects of the simulation of statistically unsteady turbulent flows with the RANS
equations are connected because numerical errors can provide extra diffusion to the simulations and influence
its outcome.

The assessment of numerical errors in unsteady flow simulations may be time consuming, especially in
three-dimensional geometries. Therefore, we have also included in this study the simulation of the flow
around two-dimensional and three-dimensional circular cylinders for a Reynolds number of Re = 100 that
corresponds to laminar flow. This simple flow allows an easier estimation of the numerical uncertainty and
so its purpose is to illustrate the challenges of such task for turbulent flows.

The remainder of this paper is organized the following way: the mathematical model is presented in
section 2 and the problem definition including geometry, flow settings and boundary conditions in section 3;
the flow solver and the numerical details are described in section 4, whereas section 5 presents and discusses
the results; the main conclusions are summarized in section 6.

2 Mathematical Model

Flows of incompressible fluids are governed by mass conservation and momentum balance, which can be
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expressed in a Cartesian coordinate system as

∂Ṽi
∂xi

= 0,

∂
(
Ṽi

)
∂t

+
∂
(
ṼiṼj

)
∂xj

= −1
ρ
∂P̃
∂xi

+ 1
ρ
∂τij
∂xj

,
(1)

where Ṽi are the Cartesian velocity components, ρ is the fluid density, P̃ is the relative pressure1 and τij are
the components of the stress tensor, which for a Newtonian fluid are given by:

τij
ρ

= ν

(
∂Ṽi

∂xj
+

∂Ṽj

∂xi

)
, (2)

where ν is the kinematic viscosity of the fluid.
At high Reynolds numbers the flows are always three-dimensional and unsteady due to the existence of

turbulence. Flow variables exhibit fluctuations in a wide range of frequencies that make the direct solution
of equations (1) unaffordable.

2.1 Reynolds Averaged Navier-Stokes (RANS) Equations

To simulate complex engineering applications, the Reynolds averaged Navier-Stokes (RANS) turbulence
models are commonly used. The derivation of the RANS equations from equations (1) include two steps:

1. Express the flow dependent variables ϕ̃ as the sum of a mean value Φ and a fluctuating component ϕ;

2. Apply the averaging procedure to the mass and momentum balances equations.

In statistically steady flows, mean values Φ are obtained with time-averaging. However, in external
flows including massive flow separation that leads to vortex shedding time-averaging becomes physically
unsuitable. In such conditions, ensemble-averaging is used to define Φ

Φ(xi, t) = lim
N→∞

N∑
j=1

ϕ̃j(xi, t)

N
. (3)

Unlike time-averaging, the mean value obtained from ensemble-averaging depends on time.
Applying ensemble-averaging to mass conservation, momentum balance and to the flow dependent vari-

ables we obtain the Reynolds-averaged continuity and momentum equations,

∂Vi
∂xi

= 0,

∂Vi
∂t

+
∂ (ViVj)
∂xj

= −1
ρ
∂P
∂xi

+ 1
ρ
∂τT
∂xj

,

τT
ρ = ν

(
∂Vi
∂xj

+
∂Vj

∂xi

)
− vivj

(4)

Vi and P are the mean values of the Cartesian velocity components and pressure, respectively. vi are the
fluctuating part (turbulence) of the Cartesian velocity components and the overbar designates averaging.
The Reynolds stress tensor −ρvivj is generated by the two steps of the averaging procedure and requires a
turbulence model to close the problem.

1Reference pressure is the hydrostatic pressure.
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2.1.1 Turbulence Models

The SST k−ω, two-equation eddy-viscosity model [2] is based on the so-called Boussinesq approximation
that determines the Reynolds stress tensor as a function of the mean strain rate and the eddy-viscosity νt

− vivj = νt

(
∂Vi

∂xj
+

∂Vj

∂xi

)
− 2

3
δijk , (5)

where k is the turbulence kinetic energy and δij is the Kronecker symbol. The contribution of k to the normal
stresses is absorbed in the mean pressure gradient term and so the RANS equations (4) become similar to
the original equations (1) with two main changes:

• the dependent variables are ensemble-averaged quantities;

• dynamic viscosity of the fluid is replaced by the effective viscosity νeff = ν + νt.

The SST k−ω model solves two extra transport equations for k and for the specific turbulence dissipation
ω and determines νt from k and ω and a limiter based on the Bradshaw hypothesis [2].

The Explicit Algebraic Reynolds Stress model (EARSM) proposed in [3] adds an anisotropic contribution
a
(ex)
ij to the Reynolds stress tensor calculated from equation (5). The model also solves transport equations

for k and ω that define the value of the eddy-viscosity. a
(ex)
ij is calculated from algebraic expressions based

on the mean strain rate and vorticity tensors.
The SSG/LRR-ω Reynolds-Stress model (RSM) proposed in [4] solves seven transport equations to

determine six components of the Reynolds stress tensor (the tensor is symmetric) and ω. Therefore, this
model does not rely on the eddy-viscosity to determine the Reynolds stresses. Nonetheless, the model still
requires the calculation of the eddy-viscosity to solve the ω transport equation.

It must be mentioned that equations (4) are similar to the equations of Large-Eddy Simulation (LES).
However, the dependent variables of the LES equations are filtered quantities and the unknown residual
stress tensor generated by the filtering process can be interpreted as the sum of three tensors and only one
of them is similar to the Reynolds stress tensor. Nonetheless, there are several LES model that also use
the eddy-viscosity approach to obtain the so-called subgrid scale model. This means that in the absence of
sufficient diffusion, the numerical solution of equations (4) will solve flow features that do not belong to the
mean flow field.

3 Problem Definition

The flow around a circular cylinder of diameter D is the the problem addressed in this study. The ratio
between the length of the cylinder axis L and D is set equal to L/D = 50/15 to match the conditions reported
in [5]. The center of the cylinder is located at the origin of the Cartesian coordinate system illustrated in
figure 1 and the computational domain is a parallelepiped with three pairs of parallel faces and length of
120D (x direction), height of 12D (y direction) and width of 3.33D (z direction).

Five Reynolds numbers based on the velocity of the uniform incoming flow V∞, D and ν are tested:
Re = 100, Re = 3.9× 103, Re = 105, Re = 3.6× 106 and Re = 108. Re = 100 corresponds to laminar flow,
Re = 3.9 × 103 and Re = 105 are in the sub-critical regime with laminar flow separation on the cylinder
surface and transition to turbulence in the near-wake and Re = 3.6 × 106 and Re = 108 are in the super-
critical regime with transition to turbulence in the attached boundary-layer on the surface of the cylinder
and separation in the turbulent boundary-layer [8]. The choice of the lowest Re is justified by the need to
include a Re that facilitates the evaluation of numerical errors. Re = 3.9× 103 is one of the Re with more
published results for the flow around a circular cylinder [9]. Re = 105 and Re = 3.6× 106 have experimental
data available in [5] and Re = 108 can be easily attained in aquaculture applications [10].

The difference between two and three-dimensional simulations is just the number of cells used in the
transverse z direction, which is equal to 1 for two-dimensional simulations.

4



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, U.S.A., July 11-15, 2022

ICCFD11-2022-4201

Figure 1: Illustration of the computational domain for the simulation of the flow around a circular cylinder.

3.1 Boundary Conditions

The following boundary conditions are applied at the seven boundaries of the computational domain:

• At the inlet boundary (x = −40D), the mean velocity components are set equal to Vx = V∞, Vy =
Vz = 0 and the pressure is extrapolated from the interior of the domain. The turbulence kinetic energy
k and the normal Reynolds stresses are derived from a turbulence intensity I = vx/Vx = 0.007 [5]
assuming isotropic turbulence. The value of ω is calculated from k and νt using the empirical relation2

(νt/ν)inlet = 10−8Re.

• Pressure is imposed at the outlet plane (x = 80D) and the derivatives with respect to x of all remaining
dependent variables are set equal to zero.

• At the top (y = 6D) and bottom (y = −6D) boundaries free slip conditions are imposed. Therefore,
Vy = 0, Reynolds shear-stresses in the normal direction are set equal to zero and derivatives with
respect to y of the remaining dependent variables are set equal to zero.

• Symmetry conditions are applied at the lateral boundaries of the domain (z = 0 and z = 3.33D).
Naturally, in the two-dimensional simulations the momentum equation in the transverse z direction is
not solved and Vz = 0.

• On the cylinder surface, the no-slip and impermeability conditions impose mean velocity components,
turbulence kinetic energy and Reynolds stresses equal to zero. On the other hand, for a smooth wall ω
tends to infinity at the wall [1]. In the present simulations, ω is specified at the cell center of the near-
wall cells [11] using the near-wall analytic solution of the ω transport equation [1]. The shear-stress at
the wall τw is calculated directly from its definition for all Reynolds numbers tested.

4 Flow Solver and Numerical Details

4.1 Flow Solver

All simulations were performed with ReFRESCO that is a flow solver based on a finite volume dis-
cretization of the continuity and momentum equations written in strong conservation form. The solver uses
a fully-collocated arrangement and a face-based approach that enables the use of cells with an arbitrary
number of faces. Picard linearization and mass conservation is ensured using a SIMPLE-like algorithm,
[12], and a pressure-weighted interpolation technique to avoid spurious oscillations, [13]. Time integration
is performed with implicit schemes and so a non-linear problem must be solved at each time step. In the

2Based on authors experience.
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Figure 2: Illustration of the grids topology in the x − y plane. Three-dimensional grids are obtained by
extruding the two-dimensional x− y grids in the transverse direction z.

Table 1: Number of cells Ncells, number of faces around the circular cylinder Nθ, number of faces along the
transverse direction Nz and grid refinement ratio hi/h1 of the grid sets used in the two-dimensional (2D) and
three-dimensional (3D) simulations performed for the flow around a circular cylinder at several Reynolds
numbers (Re).

Grid 102 ≤ Re ≤ 105 3.6× 106 ≤ Re ≤ 108 102 ≤ Re ≤ 108

Ncells Ncells Nθ Nz hi/h1

2D 3D 2D 3D 2D/3D 2D 3D 2D/3D
4 6,624 158,976 11,232 269,568 192 1 24 2.67
3 11,776 376,831 19,968 638,976 256 1 32 2
2 26,496 1,271,808 44,928 2,156,544 384 1 48 1.33
1 47,104 3,014,656 79,872 5,111,808 512 1 64 1
F1 95,984 10,174,464 179,712 17,252,352 768 1 96 0.67
F2 188,416 24,117,248 319,488 40,894,464 1024 1 128 0.5

present study, a segregated approach was adopted for all simulations, which means that momentum, pressure
correction (mass conservarion) and turbulence equations are solved sequentially for each non-linear iteration.
Thorough code verification is performed for all releases of ReFRESCO, [14].

Figure 3: Illustration of the coarsest grid for the calculation of the flow around the circular cylinder.

4.2 Grid Sets

Sets of multiblock geometrically similar grids were generated with the algebraic, hyperbolic and elliptic
grid generation tools described in [15]. The grids topology in the x− y plane is illustrated in figure 2 and a
view of the coarsest grid in the vicinity of the cylinder for Re = 108 is presented in figure 3. The angle θ of
the polar coordinates in the x− y plane is θ = 0◦ at x = −D/2, y = 0 and θ = ±180◦ at x = D/2, y = 0.
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The cell faces on the cylinder surface along θ have the same size and the stretching functions proposed
by Vinokur [16] are used to define the cell sizes along the boundaries of the remaining blocks. Longitudinal
cell sizes at the inlet and outlet are increased to avoid pressure reflections. The three-dimensional grids are
obtained by extruding the x − y grid along the transverse direction using a constant cell width along z.
Two-dimensional simulations are performed with only one cell in the transverse direction.

Table 1 presents the total number of cells Ncells, the number of faces around the circular cylinder Nθ,
the number of faces along the transverse direction Nz and the grid refinement ratio hi/h1 of all the grid sets
used in this study. The grids F1 and F2 were used only for the 2D simulations due to the resources required
to perform the 3D simulations in these grids. This option is a consequence of the iterative convergence
criteria adopted for this study. More details are presented below. As a consequence, the reference cell
size h1 corresponds to the finest grid used in the three-dimensional simulations for all Reynolds numbers.
For the turbulent flow simulations, the maximum non-dimensional height of the near-wall of cells in wall
coordinates on the cylinder surface is approximately 0.7 for the coarsest grids of all the Reynolds numbers
tested. Naturally, this value decreases with grid refinement.

4.3 Discretization Techniques

Second-order schemes are applied to the space and time discretization of all transport equations, including
k, ω and Reynolds stresses transport equations. However, flux limiters are applied to the convective terms
of all equations. Non-orthogonality and eccentricity corrections are applied to diffusion and convection
discretization schemes. For the selected grid topology, these corrections are only active more than 4.5D
away from the cylinder surface.

4.4 Solution Strategy

The solution strategy has a significant influence on the statistical convergence of the flow simulations. For
all flow settings used in this study, the calculations were started by the simulations in the grid with hi/h1 = 2
using an initial condition copied from the inflow conditions and a loose iterative convergence criteria at each
time step that corresponds to the L∞ norm of the normalized residual of 10−3 for the momentum and
pressure correction equations. The simulation time of these initial computations is sufficient to start the
vortex shedding phenomena.

The time step of the following simulations is selected to obtain a maximum Courant number below 3
in the simulations performed with the adopted iterative convergence criteria. For the 2D simulations, at
least 24 cycles are calculated with the time-averaged results obtained from the last 10 cycles. On the other
hand, for three-dimensional simulations at least 48 cycles are simulated and 20 cycles are used to obtain the
time-averaged solution. A cycle is the time interval between two consecutive time instants that exhibit a lift
coefficient equal to zero with a slope larger than zero.

For the remaining grids, the initial condition is obtained by interpolating the solution obtained in the final
time step of the closest grid refinement level available. The time step is changed with the same ratio used for
the grid refinement, which means that the grid/time refinement studies are performed for an approximately
constant Courant number. Naturally, the three turbulence models used in this study will not lead exactly
to the same Courant numbers for a fixed time step. Nonetheless, the largest values of the Courant number
are equal to approximately 2.8 for Re = 3.9× 103. The average Courant number is smaller than 0.5 for all
the flow simulations performed in this study.

As explained, the proportional time step is selected by

ri =
hi

h1
=

∆ti
∆t1

and so discretization errors can be estimated with the procedure proposed in [17].
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4.5 Iterative Convergence Criteria

The iterative convergence criteria tolit used at each time step is based on the L∞ norm of the nor-
malized residuals of the momentum and pressure correction equations. Normalized residuals correspond to
dimensionless variables changes in a simple Jacobi iteration.

5 Results

5.1 Quantities of Interest

The selected quantities of interest for this study include functional (integral), surface and local flow
quantities. The lift CL and drag CD coefficients are the functional flow quantities, for which we have
determined the time histories and the time-averaged values. The surface quantities are the time-averaged
distributions of pressure coefficient Cp and skin friction coefficient Cf on the cylinder surface defined by

Cp =
p− pref
1

2
ρV 2

∞

and Cf =
τw

1

2
ρV 2

∞

.

The reference pressure pref is the maximum value of the pressure at the inlet of the computational domain. For
three-dimensional simulations, time-averaged Cp and Cf distributions are interpolated at z = 0.5L = 1.67D
and also averaged along the transverse direction z, (Cp)z and (Cf )z. In the results presented below Cf is
multiplied by 0.5

√
Re.

The location of flow separation θsep on the upper and lower surface of the cylinder is defined by the
sign change of the shear-stress x-component. As for Cp and Cf , θsep is determined at z = 0.5L = 1.67D
and averaged along the transverse direction (θsep)z. The time histories of the mean velocity components
Vx, Vy and Vz are determined for point P1 located at x = 0.75D, y = 0.4D, z = 1.66D using second-order
interpolation techniques.

Naturally, for a flow that exhibits vortex shedding, we have also determined the Strouhal number,

St =
fD

V∞
,

with the shedding frequency f obtained from the first harmonic of the CL time evolution.

5.2 Numerical Errors

All simulations were performed in double precision (14 digits) and so it is assumed that the contribution
of round-off errors to the numerical uncertainty is negligible.

5.2.1 Statistical Errors

The simulation time should be sufficiently long to reduce the influence of the initial flow condition to
negligible levels and achieve a statistically converged flow. As illustrated in figure 4, for simple flows as the
present test case at Re = 102, it is not troublesome to assess statistical convergence. However, the estimation
of statistical errors may pose significantly challenges when the frequency content of the time histories of the
dependent variables is not as simple as that depicted in figure 4.

Although there are more sophisticated techniques to assess statistical convergence available, see for ex-
ample [18, 19], we have calculated four quantities that are supposed to statistically converge to zero:

1. the time-averaged CL coefficient;
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Figure 4: Time history of the lift coefficient CL and isolines of time-averaged mean axial velocity Vx at
z = 0.5L = 1.67D obtained in the grids with ri = 1 in two-dimensional and three-dimensional simulations
of the flow around the circular cylinder at a Reynolds number of Re = 102.
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Figure 5: Assessment of statistical convergence from the symmetry of the time-averaged flow field ob-
tained for different values of the grid/time refinement ratio, ri. Average lift coefficient (CL)avg, differences
between transverse averaged pressure ∆(Cp)z and skin friction ∆(Cf )z coefficients and flow separation lo-
cation ∆(θsep)z on the upper and lower surfaces of the cylinder surface. Calculation of the flow around the
circular cylinder at a Reynolds number of Re = 102.

2. the average difference between the time Cp and transverse averaged (Cp)z pressure coefficients on the
upper and lower surface of the cylinder, ∆Cp and ∆(Cp)z, respectively;

3. the average difference between the time Cf and transverse averaged (Cf )z skin friction coefficients on
the upper and lower surface of the cylinder, ∆Cf and ∆(Cf )z, respectively;

4. the sum of the transverse averaged flow separation angles (θsep)z from the upper and lower surfaces of
the cylinder, ∆(θsep)z.

Naturally, for 2D simulations there is no need to average on the transverse direction because there is only
one cell in the transverse direction. On the other hand, the calculation of ∆(Cp)z and ∆(Cp)f for the 3D
simulations does not require any interpolation because all grids used in this study are symmetric with respect
to y = 0. ∆(Cp)z, ∆(Cf )z and ∆(θsep)z are divided by reference quantities calculated from the average of the
absolute values of these quantities. All the results presented in this section were calculated with tolit = 10−6.

Figure 5 illustrates these four quantities for all the simulations performed for Re = 102. The data confirms
quantitatively the low level of statistical errors achieved for all simulations performed for the laminar flow
around a circular cylinder. There is not a big influence of the level of grid/time refinement ratio ri on the
statistical convergence, which is similar for the 2D and 3D simulations.

Figure 6 presents the four variables that illustrate the statistical convergence of the simulations for all
the turbulent flow simulations performed in this study. The main trends observed in the data are:

• With the exception of the two finest grids of the 2-D SST simulations at Re = 3.9× 103, all the simu-
lations exhibit values smaller than 10−2 for the four selected variables. Strangely, the two exceptions
are not caused by statistical convergence. These two simulations lead to asymmetric flow fields and so
the selected flow variables do not tend to zero with the increase of the simulation time;

• In general, the 3D simulations exhibit large statistical errors than the 2D calculations. However, this
trend can be a consequence of the frequency content of the mean flow variables obtained in the two
types of simulations;
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Figure 6: Assessment of statistical convergence from the symmetry of the time-averaged flow field ob-
tained for different values of the grid/time refinement ratio, ri. Average lift coefficient (CL)avg, differences
between transverse averaged pressure ∆(Cp)z and skin friction ∆(Cf )z coefficients and flow separation lo-
cation ∆(θsep)z on the upper and lower surfaces of the cylinder surface. Calculation of the flow around the
circular cylinder at Reynolds numbers of Re = 3.9× 103, Re = 105, Re = 3.6× 106 and Re = 108.

• The two lowest Reynolds numbers (Re = 3.9 × 103 and Re = 105) show larger statistical errors than
the two largest Reynolds numbers (Re = 3.6× 106 and Re = 108);

• There is no clear influence of the grid/time refinement on the level of the four selected flow quantities
that quantify the symmetry of the time-averaged flow field. It is also difficult to identify any influence
of the selected turbulence model on the outcome of the checking of the symmetry of the time-averaged
flow fields.

Although the results presented in figure 6 are not sufficient to guarantee a negligible influence of sta-
tistical convergence on the numerical uncertainty of the flow variables analysed in this study, the main
trends observed in the data obtained from the simulations should not be qualitatively affected by statistical
convergence.

5.2.2 Iterative Errors

In flow solvers based on implicit time integration, a non-linear problem must be solved at each time step
and so an iterative convergence criteria is required. As illustrated in [20], iterative errors may have a strong
influence on the numerical uncertainty of unsteady flow simulations without affecting statistical convergence.
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Figure 7: Time-averaged drag coefficient (CD)avg, maximum lift coefficient (CL)max, Strouhal number St
and flow separation angle on the upper surface of the cylinder θsep as a function of the iterative convergence
criteria tolit. ϕref is obtained with tolit = 10−7. Calculation of the two-dimensional flow around a circular
cylinder at Reynolds numbers of Re = 102 (laminar flow) and Re = 108 (SST k−ω turbulence model).

Naturally, it is not feasible to test the level of tolit for all the flow settings considered in this study. Therefore,
we have selected the 2D simulations at Re = 102 and Re = 108 using the SST turbulence model to address
the contribution of iterative errors to the numerical uncertainty of the simulations.

Figure 7 presents the time-averaged drag coefficient (CD)avg, the maximum lift coefficient (CL)max, the
Strouhal number St and the flow separation angle on the upper surface of the cylinder θsep as a function
of tolit for the 2D simulations performed for ri = 1. It is clear that iterative convergence has a significant
influence on the numerical accuracy of unsteady flow simulations performed with implicit time integration.
The trends observed in the data are similar for the two Reynolds numbers. However, the level of iterative
error for the same value of tolit is significantly larger for Re = 108 than for Re = 102.

Naturally, the number of non-linear iterations performed at each time step Nit increases with the decrease
of tolit. For both cases illustrated in figure 7, Nit ≃ 5 for tolit = 10−3. For tolit = 10−7, Nit ≃ 35 for Re = 102

and Nit ≃ 100 for Re = 108. This means that the computing time required to perform these unsteady flow
simulations is extremely dependent on the choice of tolit, especially for the highest Reynolds numbers. In
the present study we have used tolit = 10−6 for all simulations. In some cases, more than 100 iterations
are performed at each time step. A consequence of this choice is that the two finest grids were not used for
the 3D simulations due to the computer requirements to perform them. As an example, a calculation for
Re = 105 and ri = 0.67 with the SST model using 600 processors would require approximately 120 clock
hours. However, it would not make sense to perform grid/time refinement studies with a less demanding
iterative convergence criteria because the solution would be contaminated by iterative errors.

5.2.3 Discretization Errors

In well controlled simulations, the discretization errors should be the dominant contribution to the nu-
merical uncertainty. As discussed in the previous sections, round-off and iterative errors should be negligible
when compared to the discretization error. In most cases considered in this study, statistical errors will
also be negligible when compared to the discretization errors. However, for the flow settings that lead to
time histories with a wide range of frequencies (discussed below), it is likely that statistical errors are not
negligible.

To illustrate the level of the contribution of the discretization errors to the numerical uncertainty we have
selected three quantities of interest: the time-averaged drag coefficient (CD)avg, the Strouhal number St and
the time-averaged flow separation angle on the upper surface of the cylinder (θsep), which is determined at
z = 0.5L = 1.67D and from the transvered averaged solution. The method presented in [17] is used to
estimate the numerical uncertainty using the 4 data points with the smallest values of ri.

Figure 8 presents the results obtained for the laminar flow at Re = 102. For the same level of grid
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Figure 9: Grid/time convergence of the time-averaged drag coefficient (CD)avg, Strouhal number St and flow
separation angle on the upper surface of the cylinder θsep. avg z designates transverse averaging. Calculation
of the flow around a circular cylinder at a Reynolds number of Re = 3.9 × 103 with RANS using the SST,
EARSM and RSM turbulence models.

refinement, the 2D and 3D results are nearly identical. Furthermore, in the 3D simulations, θsep at
z = 0.5L = 1.67D is identical to the value obtained from the transverse averaged solution. The grid/time
step with ri = 2.67 is too coarse and its use in the numerical uncertainty estimation leads to a signifi-
cant increase of the estimated numerical uncertainties. The estimated uncertainties for the 2D calculations
performed with ri = 0.5 are 0.14% for (CD)avg, 0.23 % for St and 0.094% for θsep.

The grid/time convergence properties of (CD)avg, St and θsep obtained for Re = 3.9× 103 with the SST,
EARSM and RSM turbulence models are illustrated in figure 9. The main trends observed in the data are:

• The 2D simulations lead to larger values of (CD)avg than the 3D calculations with differences that
cannot be justified by the numerical uncertainty for the SST and RSM models. The 2D EARSM
results obtained with ri < 1 show a significantly different trend from the four coarsest grids and
so a large numerical uncertainty of 31% is estimated. Numerical uncertainties estimated for the 3D
simulations range from 3.1% for the EARSM model to 11.% for the RSM model;

• The Strouhal numbers of the 3D simulations are smaller than those obtained in 2D, but the estimated
numerical uncertainties are larger than the differences between 2D and 3D simulations. For ri = 1, the
linear fits to the 3D data still indicate a numerical uncertainty of approximately 13% for SST, 8.7%
for EARSM and 17% for RSM. The difference between the estimated uncertainties for EARSM and
RSM reflects the scatter obtained for the RSM data. On the other hand, the 2D simulations performed
for ri < 1 do not show the same convergence behaviour of the four coarsest grids. In particular, the
simulations performed with the SST model lead to a time-averaged asymmetric field that was not
obtained with ri ≥ 1;

• The grid/time convergence properties of θsep are similar to those obtained for St with most 3D simu-
lations leading to first-order fits to the data. The results obtained at z = 0.5L = 1.67D are not equal
to the transverse averaged data (avg z in the plots), but the differences are much smaller than the
estimated numerical uncertainties, which range between 0.41% for EARSM and 5.8% for RSM. The
results obtained for the EARSM 3D solutions show that small disturbances to the data can change the
best fit to the data from first to second order. Therefore, in the presence of scatter in the data, the
observed order of grid/time refinement must be interpreted carefully.

Figure 10 presents the grid/time convergence of (CD)avg, St and θsep for the simulations performed with
the SST, EARSM and RSM models at Re = 105. In general, the convergence properties are smoother than
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Figure 10: Grid/time convergence of the time-averaged drag coefficient (CD)avg, Strouhal number St and
flow separation angle on the upper surface of the cylinder θsep. avg z designates transverse averaging.
Calculation of the flow around a circular cylinder at a Reynolds number of Re = 105 with RANS using the
SST, EARSM and RSM turbulence models.

r
i

(C
D
) a

v
g

0 0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1
2D, SST

p=2

3D, SST

p= 1.5

r
i

(C
D
) a

v
g

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2D, EARSM

p=2

3D, EARSM

p= 0.9

r
i

(C
D
) a

v
g

0 0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1
2D, RSM

p=2

3D, RSM

p=2

r
i

S
t

0 0.5 1 1.5 2 2.5 3

0.3

0.35

0.4

2D, SST

p= 1.0

3D, SST

p= 0.9

r
i

S
t

0 0.5 1 1.5 2 2.5 3

0.3

0.35

0.4
2D, EARSM

ar
i
+br

i

2

3D, EARSM

p= 1.0

r
i

S
t

0 0.5 1 1.5 2 2.5 3

0.3

0.35

0.4
2D, RSM

p=2

3D, RSM

p= 1.3

r
i

se
po

0 0.5 1 1.5 2 2.5 3
105

110

115

120

125

130

135

140

2D, SST

p=2

3D, SST

ar
i
+br

i

2

3D, avg z, SST

p= 0.7

r
i

se
po

0 0.5 1 1.5 2 2.5 3
105

110

115

120

125

130

135

140

2D, EARSM

p=2

3D, EARSM

p= 0.9

3D, avg z, EARSM

p= 0.9

r
i

se
po

0 0.5 1 1.5 2 2.5 3
105

110

115

120

125

130

135

140

2D, RSM

p=2

3D, RSM

p= 1.8

3D, avg z, RSM

p=1

Figure 11: Grid/time convergence of the time-averaged drag coefficient (CD)avg, Strouhal number St and
flow separation angle on the upper surface of the cylinder θsep. avg z designates transverse averaging.
Calculation of the flow around a circular cylinder at a Reynolds number of Re = 3.6× 106 with RANS using
the SST, EARSM and RSM turbulence models.

those obtained for Re = 3.9× 103 with all 2D simulations leading to symmetric time-averaged flow fields.

• For the EARSM model, the 2D and 3D simulations are surprisingly similar with the results obtained
for ri ≥ 2 exhibiting non monotonic convergence. The numerical uncertainties estimated for the 2D
simulations with ri = 0.5 are 10% for (CD)avg, 5.7 % for St and 2.8% for θsep;

• The SST model leads to lower values of (CD)avg and θsep in the 3D simulations than in the 2D
simulations that can hardly be justified by the numerical uncertainty. On the other hand, the differences
between the 2D and 3D St decrease with grid/time refinement and so it is not clear if they will converge
to different values;

• The largest differences between 2D and 3D results are obtained for the RSM model that also leads to
the largest amount of scatter in the data, especially for the 3D simulations. The differences between
θsep at z = 0.5L = 1.67D and the transverse averaged θsep are also larger for the RSM results than for
SST and EARSM data.

Grid/time convergence properties of (CD)avg, St and θsep for the simulations at Re = 3.6 × 106 are
presented in figure 11. There are similarities between the grid/time convergence properties obtained at
Re = 3.6 × 106 and those discussed above for Re = 105, especially for the EARSM model. Nonetheless,
there are a few differences between the two Reynolds numbers for the results obtained with the SST and
RSM models.

• (CD)avg is smaller for 3D than for 2D and for the RSM model the difference is significantly larger than
the estimated numerical uncertainties;

• For the SST and RSM models, the St of the 3D simulations shows a larger dependence on the grid/time
refinement than the St obtained for two-dimensional flow. For the 3D results the estimated numerical
uncertainties are 23% for the SST and 22% for the RSM model, whereas for the 2D simulations the St
exhibits 11% (SST) and 2% (RSM) of numerical uncertainty.

Figure 12 presents the grid/time convergence properties of the three selected quantities of interest for
the highest Reynolds number tested, Re = 108. The data does not exhibit the same trends of Re = 105 and
Re = 3.6× 106 with the EARSM model leading to different results in 2D and 3D simulations.
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Figure 12: Grid/time convergence of the time-averaged drag coefficient (CD)avg, Strouhal number St and
flow separation angle on the upper surface of the cylinder θsep. avg z designates transverse averaging.
Calculation of the flow around a circular cylinder at a Reynolds number of Re = 3.6× 106 with RANS using
the SST, EARSM and RSM turbulence models.
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Figure 13: Time averaged pressure Cp and skin friction Cf coefficients on the cylinder surface obtained in
the 2D and 3D simulations with RANS using the SST, EARSM and RSM turbulence models. Experimental
data from [5]. Flow around a circular cylinder at a Reynolds number of Re = 105.

• The time-averaged drag coefficient (CD)avg obtained in the 2D simulations is larger than (CD)avg of
the 3D simulations for the three turbulence models tested. The numerical uncertainties are smaller
than the discrepancies between the 2D and 3D results and the RSM models exhibits the largest amount
of scatter in the data;

• There is a large grid/time dependency for the St number obtained in the 2D and 3D simulations of
the three turbulence models, with the exception of the RSM data in 2D that exhibits a numerical
uncertainty of 3.5% for ri = 0.67. With the estimated level of numerical uncertainty, it is not possible
to quantify discrepancies between the St obtained in 2D and 3D calculations;

• With the SST and EARSM models, θsep is similar for the 2D and 3D simulations, whereas the RSM
model exhibits a larger value of θsep for 2D than for 3D with a difference that is not justified by the
numerical uncertainty.

5.3 Comparison with Experimental Data

Experimental measurements of the time-averaged pressure Cp and skin friction Cf coefficients on the
cylinder surface are reported in [5] for Re = 105 and Re = 3.6 × 106. Figure 13 presents the comparison
of the time-averaged Cp and Cf distributions obtained in the 2D and 3D simulations with RANS using the
SST, EARSM and RSM models with the experimental data for Re = 105, whereas the same comparison at
Re = 3.6× 106 is presented in figure 14. The plots are inlcude the estimated error bars for the simulations
results. Four grids are used to estimate the error bars plotted in figures 13 and 14. 3D solutions are obtained
in the ri = 1 grids, whereas 2D results are obtained in the ri = 0.5 grids for Re = 105 and ri = 0.67 for
Re = 3.6× 106.

At Re = 105, experiments exhibit laminar flow separation at θsep = ±78◦, whereas all simulations
exhibit |θsep| > 90◦ because transition to turbulent flow occurs upstream of separation. This is an expected
result, because RANS turbulence models predict transition to turbulent flow at unreasonably small Reynolds
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Figure 14: Time averaged pressure Cp and skin friction Cf coefficients on the cylinder surface obtained in
the 2D and 3D simulations with RANS using the SST, EARSM and RSM turbulence models. Experimental
data from [5]. Flow around a circular cylinder at a Reynolds number of Re = 3.6× 106.

numbers [21]. Nonetheless, the results closest to the experiments are obtained in the 3D RSM simulations.
On the other hand, the 2D RSM and SST simulations lead to an awkward result with Cf > 0 in the near-wake
that is not obtained for the EARSM.

The reported location of transition to turbulent flow at Re = 3.6 × 106 is θ = ±65◦ that is again
downstream of the location obtained in the simulations which is close to approximately θ = ±20◦. As a con-
sequence there is a significant discrepancy between the experimental Cf and the results of the simulations in
the region of attached flow. However, for this super-critical Reynolds number with turbulent flow separation
the differences between experiments and simulations are clearly smaller than those obtained for the sub-
critical Reynolds number of 105. Furthermore, the differences between the six simulations at Re = 3.6× 106

are also significantly smaller than those obtained at Re = 105.
For both quantities, Cp and Cf , the estimated error bars tend to be larger for Re = 105 than for

Re = 3.6× 106. Nonetheless, for the present level of grid/time refinement, numerical uncertainties are only
negligible for the Cp distribution on the attached flow region.

5.4 Is it RANS?

One of the goals of this study is to investigate if the turbulence models provide enough diffusion to guar-
antee that the dependent variables correspond to the mean flow quantities. To this end we have calculated
the frequency content of the time signals of the lift coefficient CL and of the mean horizontal velocity com-
ponent Vx for point P1 located at (x = 0.75D, y = 0.4D, z = 1.67D) using the fast Fourier transform tool of
TecPlot [22].

Figure 15 illustrates the results obtained with the SST turbulence model for the four Reynolds numbers
tested. All the 2D simulations lead to the expected behavior of RANS simulations with discrete frequencies
appearing in the time histories of CL and Vx for all grid/time refinement levels. However, for the 3D
simulations the scenario is not the same. Time histories of Vx at P1 show a wide range of frequencies that
are not expected in a RANS simulation. These frequencies do not appear for ri = 2 and ri = 2.67 for
Re = 3.9 × 103 and the results at the highest Reynolds number tested Re = 108 are those that are closest
to the expected behavior. For all Reynolds numbers, amplitude of the CL oscillations are larger in the 2D
simulations than in the 3D results.

The results obtained with the EARSM turbulence model are illustrated in figure 16. The trends observed
in the data are not identical to those obtained for the SST turbulence model. All simulations exhibit the
expected frequency content of CL and Vx at P1. On the other hand, the differences between 2D and 3D
simulations are smaller than those obtained for the SST model and tend to decrease with the increase of the
Reynolds number.

Figure 17 presents the time histories of CL and Vx at P1 and its frequency content for the simulations
performed with the RSM model. The results show the largest differences between the 2D and 3D simulations
that tend to grow with the increase of the Reynolds number, which is exactly the opposite trend of that
observed for the EARSM data. However, in the RSM 3D simulations the frequency content of the time
histories of Vx at P1 are not typical of RANS simulations. For Re ≤ 3.6 × 106, the range of frequencies
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Figure 15: Time-histories and frequency content of the lift coefficient CL and mean horizontal velocity com-
ponent Vx for point P1 located at (x = 0.75D, y = 0.4D, z = 1.67D) obtained in the 2D and 3D simulations
with RANS using the SST turbulence model.Flow around a circular cylinder at different Reynolds numbers.

present in the Vx time history tends to increase with grid/time refinement, whereas the opposite trend is
observed at Re = 108.

Naturally, for all the simulations that exhibit a wide range of frequencies in the time history of Vx at P1,
statistical convergence is not as good as that obtained for the other cases.

To analyse the differences between the results obtained with the different turbulence models at the
selected Reynolds numbers, we have calculated the time-averaged isolines of Vx at z = 1.67D and the
effective Reynolds number,

Reef =
V∞D

ν + νt
.

Naturally, the RSM model does not use νt to determine the Reynolds stresses. However, νt is calculated
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Figure 16: Time-histories and frequency content of the lift coefficient CL and mean horizontal velocity com-
ponent Vx for point P1 located at (x = 0.75D, y = 0.4D, z = 1.67D) obtained in the 2D and 3D simulations
with RANS using the EARSM turbulence model.Flow around a circular cylinder at different Reynolds num-
bers.

from k and ω to solve the ω transport equation.
Figures 18 (2D) and 19 (3D) present the results obtained for Re = 3.9 × 103. The flow field in the

near-wake of the 2D simulations are awkward with only very small regions of negative Vx (indicated by the
white region in the plots). As reported in [9], Vx should remain negative for θ > θsep. This result is most
likely a consequence of the level of νt obtained in the near-wake region. The fields of Reef obtained with the
three turbulence models in 3D are more similar than those obtained in 2D. Furthermore, the EARSM model
leads to the smallest differences between the Reef fields of 2D and 3D simulations. There is still a narrow
region of positive Vx in the near-wake of the 3D RSM simulation. However, this region should disappear
with grid time/refinement because it is significantly smaller in the ri = 1 calculation than in the ri = 1.33
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Figure 17: Time-histories and frequency content of the lift coefficient CL and mean horizontal velocity com-
ponent Vx for point P1 located at (x = 0.75D, y = 0.4D, z = 1.67D) obtained in the 2D and 3D simulations
with RANS using the RSM turbulence model.Flow around a circular cylinder at different Reynolds numbers.

results, which are not included in figure 19.
The results obtained at Re = 105 are depicted in figures 20 (2D) and 21 (3D). The 2D simulations that

are more similar to the 3D results are again obtained with the EARSM model. For this condition, only
the RSM model still shows a small region with positive values of Vx in the near-wake, which should not be
observed in the near-wake field [23]. These awkward wakes are obtained for the highest levels of Reef in the
near-wake, which is equivalent to the lowest levels of νt. The 3D results obtained with the three turbulence
models are a lot more similar than those obtained at Re = 3.9 × 103. At this Reynolds number, the main
shortcoming of the RANS turbulence models is the early onset of transition.

Figures 22 (2D) and 23 (3D) present the results obtained at Re = 3.6× 106. The trends are very similar
to those obtained for Re = 105. Nonetheless, the 2D RSM solution does not exhibit positive values of Vx in

18



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, U.S.A., July 11-15, 2022

ICCFD11-2022-4201

Figure 18: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
2D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 3.9× 103.

Figure 19: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
3D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 3.9× 103.

the near-wake. However, the largest differences between 2D and 3D simulations are again obtained for the
RSM model.

Finally, figures 24 (2D) and 25 (3D) present the results obtained at the highest Reynolds number selected,
Re = 108. The data exhibits the same trends observed for Re = 3.6 × 106, but for the 3D simulations the

Figure 20: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
2D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 105.
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Figure 21: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
3D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 105.

Figure 22: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
2D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 3.6× 106.

discrepancies between the three turbulence models solutions are the smallest of all Reynolds numbers tested.
To conclude, the results obtained with the EARSM model in 2D and 3D are remarkably similar for the
currently tested Reynolds numbers. The RSM model in 2D shows a too short recirculation area in the near-
wake for all Reynolds numbers, whereas the SST results are in between the RSM and EARSM solutions. In
3D, the differences between the flow fields obtained with the three turbulence models are much smaller than
in 2D.

6 Conclusions

This paper presents a study on the numerical simulation of statistically unsteady turbulent flows using
the RANS equations. Calculations are performed for the SST k−ω eddy-viscosity model, a k−ω based
explicit algebraic Reynolds stress model (EARSM) and a Reynolds stress model (RSM) that uses the ω
equation to determine the dissipation rate of Reynolds stresses (SSG/LRR−ω). The selected test case is
the flow around a circular cylinder at four Reynolds numbers: Re = 3.9 × 103, Re = 105, Re = 3.6 × 106

and 108. Simulations are performed with a second-order incompressible flow solver in two-dimensional (2D)
and three-dimensional (3D) geometries. Dimensions of the computational domain were selected according
to available experimental data in [5]. Preliminary calculations were performed for the 2D and 3D geometries
at Re = 100 that corresponds to laminar flow.

Two main topics are addressed in this investigation: the numerical uncertainty of unsteady flow sim-
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Figure 23: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
3D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 3.6× 106.

Figure 24: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
2D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 108.

ulations and the assessment if the computed solution corresponds to the mean flow quantities. The first
topic includes the estimation of statistical, iterative and discretization errors using grid/time refinements
studies. The frequency content of the time histories of force coefficients and mean velocity components in
the near-wake is determined to check if only discrete frequencies are present.

Figure 25: Isolines of the time averaged mean horizontal velocity component Vx at z = 1.67D obtained in the
3D simulations with RANS using the SST, EARSM and RSM turbulence models. White regions correspond
to Vx < 0 and Reef > 1500. Flow around a circular cylinder at a Reynolds number of Re = 108.
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The main conclusions of this study are:

• For similar levels of grid refinement on the cylinder surface (number of cell faces on the cylinder surface)
the numerical uncertainty of all RANS simulations are at least one order of magnitude larger than that
obtained for the laminar flow;

• More demanding iterative convergence criteria than what is usually seen in the open literature are
required to obtain negligible contributions of the iterative error;

• Statistical convergence is strongly dependent on the frequency content of the flow dependent variables
and so the two topics addressed in this study are linked;

• Two-dimensional simulations with the three selected turbulence models always lead to “RANS-like”
time histories of the dependent variables. However, some of the computed results in the near-wake of
the cylinder are physically unacceptable:

– For the SST and EARSM models, only the Re = 3.9 × 103 solutions exhibit near-wakes with
positive streamwise velocities. However, the differences between 2D and 3D simulations are larger
for the SST model than for the EARSM model that leads to remarkably similar results for all
Reynolds number.

– The RSM model does not perform well in 2D simulations. There is a significant difference between
the 2D and 3D simulations for all the Reynolds numbers tested;

• For the 3D simulations, the EARSM leads to “RANS-like” solutions for all Reynolds numbers tested.
On the other hand, most of the simulations performed with the RSM model lead to a wide range of
frequencies in the time histories of the flow mean dependent variables. Nonetheless, this phenomena
seems to decrease with the increase of the Reynolds number. However, the narrowing of the wake with
the increase of the Reynolds number can influence this result;

• The differences between the 3D simulations performed with the three turbulence models decrease with
the increase of the Reynolds number.

This study also includes the comparison of time averaged pressure and skin-friction coefficients on the
cylinder surface with experimental data available in the literature. Most of the discrepancies obtained are
a consequence of a well-known shortcoming of RANS turbulence models: the determination of the onset of
transition to turbulent flow.
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