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Abstract: In clouds and under cold weather, water droplets impact and freeze on aircraft struc-
tures. The Eulerian model for the air-droplet flow predicts the droplet impingement. The model
equations are close to the Euler equations but without a pressure term. Consequently, the result-
ing system is weakly hyperbolic and standard Riemann solvers cannot be used. To circumvent
this problem, the system is modified to include the divergence of a particle pressure. The main
purpose of this work is to implement a multidimensional HLLC Riemann solver for the modified
formulation of the Eulerian droplet model. The method should preserve physical properties such
as the density positivity and must produce accurate results compared to existing codes.

Keywords: Multi-phase flow, Pressureless Euler equations, Riemann solver, In-flight icing.

1 Introduction
In-flight icing still causes many crashes and accidents, as much as 8% of regional aircraft deathly accident
[1]. Ice accretion on aircraft lifting structures induces a drag increase, a loss of lift, and a reduction of
the stall angle [2]. This performance degradation, especially if sudden, is the cause of many accidents [3].
Ice accretion can also occur on engine air intakes, spinners and inlet fan blades. Frozen fan blades induce
overload and unbalanced mass that would degrade the engine immediately. When this ice breaks away, and
is ingested through the reminder of the propulsion system (engine and nacelle), it creates multiple damages.
These damages have a serious negative impact on the operations costs and may also generate some incident
concern [4, 5]. To minimize ice accretion, wings and propulsion systems have Ice Protection Systems (IPS)
which mostly use air-heated technology through engine bled offs [6, 7]. Air-heated IPS carry associated
design penalties and have themselves performance issues. If manufacturers use too cautious design margins,
it leads to conservative non-optimized solutions.

The conception of aircraft IPS requires the prediction of areas impacted in-flight by cloud droplets.
Critical aircraft surfaces where droplets impinge are prone to aircraft icing and must be protected. In
clouds, the airflow around the wing transports suspended water droplets. Due to their high inertia, they
impact aircraft surfaces and may freeze. The two-phase flow in this situation can be modelled using a one-
way coupling algorithm since the droplet effects on the airflow is negligible because of the low water content
[8, 9]. Indeed, the bulk density of the droplets over the bulk density of air is of the order of 10−3 in icing
conditions. Generally, a one-way coupling models well a loading smaller than 0.1 [9].

For droplet diameters smaller than 100µm, many works investigated the equation for droplet motion
in airflow [10] . The spherical drag coefficient links the droplet momentum to the airflow. The gravity
force can also be involved in large droplets or low air velocity flows. Early numerical codes use a Lagrangian
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coordinate system attached to the droplet [11]. Instead, the CFD codes use an Eulerian coordinate system to
solve for the droplet velocity u and the volume fraction of water (α) [9, 12, 13]. Compared to the Lagragian
method, the Eulerian method does not make a priory estimate on the location of the impingement region and
enables the identification of shadow areas [14]. In the shadow areas downstream of the aircraft, the droplets
vanish. However, for simple cases, the calculation cost of the Eulerian method is higher when compared to
the Lagrangian method. Still, high order implicit solvers, at least second order, enabling large CFL numbers
can reduce the computational efforts.

The Eulerian droplet equation system is a particular form of the pressureless gas equations. The pres-
sureless gas equations are often used to model clouds of dust [15, 16], with ρ the dust density and u the
velocity. The pressureless gas equations are weakly hyperbolic and the Jacobian matrix is not diagonalizable.
The development of delta-shocks, and the emergence of the vacuum state characterize this weakly hyperbolic
system.

First order and second order schemes are developed to solve the pressureless gas, such as the schemes based
on the kinetic approximations [17], the relaxation methods [18], or central schemes [19]. Recently, [20, 21]
used the theory of Jordan canonical forms to solve the weakly hyperbolic systems and derive an upwind
scheme. The addition of a perturbation parameter ϵ transforms the system in a strictly hyperbolic one,
enabling the use of Riemann solvers, such as the Roe solver [22]. The perturbation parameter is equivalent
to a particle pressure [23] with the pressure proportional to the density, p = a2ρ. If the sound speed vanishes,
a→ 0, then the pressureless system is recovered. [24] applied an idea developed originally in computational
magnetohydrodynamics (MHD) [25]. Starting with the Eulerian droplet momentum equations, they add and
substract a vector term involving the divergence of a particle pressure. Next, they split the system between a
strictly hyperbolic part and a source term. They suggest a HLLC approximate Riemann solver that satisfied
the positivity condition for the liquid water content. But once the Eulerian droplet equations are converted
into a strictly hyperbolic system, one can use any standard Riemann solvers, such as the Roe solver, the
HLLC solver or the HLLC-AUSM solver, as recently studied by [26].

Recent works have led to the development of a new Riemann solver[27, 28]. This solver is of the HLLC
type and authors derive it from a Lagrangian framework. In this solver, the face flux is divided into two
sub-face fluxes. The sub-face flux, related to a node, depends not only on the two states next to the sub-
face but also on the nodal velocity. This nodal velocity is computed using all states surrounding the node,
hence the name multi-dimensional aware flux. In the context of gas dynamics, the multi-point scheme shows
good performance in suppressing numerical instabilities like even-odd decoupling and shock instabilities like
carbuncles. Thanks to its positivity preserving property, we expect more robustness than from classic solvers.

In this work, the Eulerian droplet equations are modified according to Jung and Myong technique [24].
The objective is to investigate a new Godunov type Finite Volume scheme with multidimensional aware
Riemann solvers: the multi-point Riemann solver. First, the Eulerian droplet equation system is derived
from the force balance over a single droplet. Then, the equations are modified to obtain a hyperbolic system.
Second, the general description of the multi-point Riemann solver is given in the context of gas dynamics.
Third, the algorithm used to iteratively solve the pressureless system of equations is detailed, before some
numerical results are presented.

2 Problem Statement
Inside a cloud, the compressible air and small liquid droplets flow around aircraft parts. Because the liquid
water content is small, the effect of the droplets on the airflow is neglected. The flow is modelled as a
two-phase flow with one way coupling.

The momentum equations compute the velocity (u, v) of spherical droplets. As illustrated on Figure 1,
the droplets with diameter D and density ρw are carried by the airflow of density ρa and viscosity µ. The
air velocity (ua, va) creates a drag force FD parallel to the relative velocity vector ((ua − u), (va − v)). The
gravity force g also acts on the droplet. These two forces accelerate the droplet such that it reaches a velocity
(u, v) at time t.

The Eulerian droplet equations consist of a mass conservation equation for the liquid water content,
ρ = α, and momentum conservation equations for the droplet velocity u. The momentum equations do
include source terms for the drag force exerted by the air
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Figure 1: Forces on a droplet in an airflow

FD = (Au(ua − u), Av(va − v)) (1)

The drag coefficients Au and Av are the same in both directions

Au = Av =
0.75ρCDReµ

ρwD2
(2)

Re =
ρaD

µ

√
(ua − u)2 + (va − v)2 (3)

The drag coefficient is adapted from [10]

CD =


24

Re
(1.0 + 0.15Re0.687); if Re ≤ 1300

0.4 if Re > 1300
(4)

The droplets behave as a pressureless gas. Unless the calculation requires droplet temperature, the system
does not define the energy equation. For the 2D pressureless equations, the conservative variables and the
fluxes are:

U =


ρ
ρu
ρv
ρψ

 F =


ρun

ρuun

ρvun

ρunψ

 Q =


0

Au(ua − u)
Av(va − v) + ρg(1− ρa/ρw)

0

 (5)

where Au(ua − u) and Av(va − v) stand for the aerodynamic drag in x and y direction. The contravariant
velocity is un = u · n with n the outward-pointing normal vector of the face. The buoyancy force definition
ρg(1− ρa/ρw) assumes the gravity vector point toward the negative y direction.

The convective part of the Eulerian droplet equations is not strictly hyperbolic. The classical Riemann
solvers only apply to strictly hyperbolic systems of equation. Therefore, they cannot solve the unmodified
system. One way to circumvent this problem is to modify the system by adding an artificial pressure term
on both sides of the equations [29].

2.1 Modified pressureless equations
First, the general finite volume equation for non viscous flows is modified and written as

∂

∂t

∫
Ω

UdΩ+

∮
∂Ω

FdS =

∫
Ω

QdΩ+

∮
∂Ω

FpdS, (6)

on a computational domain Ω. The conservative variables and the fluxes are now given by

3



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, USA, July 11-15, 2022

ICCFD11-2022-4101

U =


ρ
ρu
ρv
ρψ

 F =


ρun

ρuun + pnx

ρvun + pny

ρunψ

 , (7)

and the source terms by

Fp =


0
pnx

pny
0

 Q =


0

Au(ua − u)
Av(va − v) + ρg(1− ρa/ρw)

0

 . (8)

The artificial pressure p is related to the liquid water content, ρ, the gravity magnitude, g, and a reference
droplet diameter d as

p = ρgd. (9)

The idea is to have an artificial pressure term equivalent to a classical pressure, p ∝ ρ, for continuous
compressible fluid. Specifically, for isothermal Euler equations, p = a2ρ, where a is the speed of sound. Here,
a =

√
gd.

The first and second terms, equation (7), on the left-hand side of equation (6) are strictly hyperbolic and
consequently numerical methods can use Riemann solvers.

2.2 Boundary conditions
At farfield, inlet or outlet supersonic boundary conditions are imposed, taking into account that the speed
of sound linked to the artificial pressure a =

√
gd should be small.

A special boundary condition is imposed at the solid surface. The flow can leave the computational
domain but it cannot enter. The projection of the velocity vector on the surface normal vector is first
computed. If the flow leaves the computational domain, supersonic outlet boundary conditions are imposed.
If the flow enters the computational domain, i.e. the droplets are ejected from the wall, a supersonic inlet is
imposed with the conservative variables set to zero. Then,

Uwall =

{
0 if un > 0
U if un ≤ 0

(10)

3 New Godunov type Finite Volume scheme with multidimensional
aware Riemann solver

This numerical method is inspired from the seminal work of G. Gallice [30] which has been recently pursued
in [31] in 1D and [27] in 2D. This solver is a particular Finite Volume (FV) scheme for hyperbolic system of
conservation laws, possibly with source terms. It uses a new vertex based Riemann Solver (RS) in such a
way that all surrounding neighbour cells participate to the update of the current one.

Several classical and well adopted techniques have been revamped. First the FV scheme is written in a
non-conservative way to allow for discontinuous fluxes across half-edges. Conservation is, however, retrieved
by solving for the vertex based flux jumps. Although not classic, this approach has the main advantage to
couple all neighbour cells regardless the mesh structure or the cell type. Second the RS, which is of ’HLLC
type’ [32], is derived from the Lagrangian framework [30] and further expressed in the Eulerian one by a
Lagrange-to-Euler mapping. As such the properties of the Lagrangian RD are naturally inherited by the
Eulerian one: consistency, positivity preservation, entropy dissipation and wave ordering [27] with a well-
defined time-step control. Third this new FV scheme seems insensitive to spurious oscillatory phenomena
sometimes encountered such as the carbuncle phenomena [33, 34].

In this section we will recall the main characteristics of this new Godunov type FV scheme with multi-
dimensional aware RS. This scheme is referred as the ’Multi-point’ solver. We will also point the differences
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Figure 2: Sketch of a generic cell. Left: polygonal cell ωc. Right: half interface between cell ωc and cell ωd

with a classical FV scheme using the HLLC RS which we refer to as a ’two-point’ solver.

3.1 Multidimensional aware FV scheme for gas dynamics
First let us consider the 2D isothermal Euler equations with the equation of state p = Kργ with K = gd is
a constant and γ = 1, for which the sound speed is given by a2 = Kρ which consists of the homogeneous
system (6)

∂

∂t

∫
Ω

UdΩ+

∮
∂Ω

FdS = 0. (11)

Notice that the last equation of (11) correspond to the advection of a passive tracer 0 ≤ ψ ≤ 1. The
computational domain Ω is a polygon covered by non-overlapping polygonal cells ωc. c is the generic label
of the cell. P(c) is the set of vertices (points) of ωc. The generic label of a point is p and xp denotes its
vector position. The points of the cell ωc are counter-clockwise ordered, and p− and p+ are respectively the
previous and the next points with respect to p, see figure 2. The sub-cell ωpc is the quadrangle formed by
joining the cell center, xc, to the midpoints of [xp− ,xp], [xp,xp+ ] and to xp. The set of sub-cells ωpc for
p ∈ P(c) constitutes a partition of the cell ωc, that is, ωc =

⋃
p∈P(c) ωpc. The set of faces of the cell ωc is

denoted by F(c). Each face f of the cell c is decomposed into sub-faces (half-faces) by means of the partition
of c induced by the sub-cells pc for p ∈ P(c). Doing so, we define SF(pc) the set of sub-faces attached to the
corner pc. We denote respectively by lpcf and npcf = (nx, ny)pcf the measure and the unit outward normal
of the sub-face f . We observe that the set of sub-faces SF(pc) for p ∈ P(c) constitutes a partition of the set
of faces of ωc, that is, F(c) =

⋃
p∈P(c) SF(pc). Given a cell c and one of its faces f , the unique ’neighbour’

cell associated is d(c, f) or simply d to shorten the notation. The set of neighbours of the cell c is called
N (c) and it will be more appropriately defined, either faced-based or node-based.

At last, any vector can be projected onto the canonical or normal/tangent n/t base to a face f as:

u = uex + vey = unn+ utt, with un = u · n, and ut = u− u · n, (12)
x = xex + yey = xnn+ xtt, with xn = x · n, and xt = x− x · n, (13)

Integrating the system (11) over ωc yields

|ωc|
dUc

dt
+

∫
∂ωc

F(U)n ds = 0, (14)

where Uc(t) =
1

|ωc|

∫
ωc

U(x, t) dv is the cell-averaged value of U over ωc and Un
c ≡ Uc(t

n) for any discrete

time tn. Employing a classical first-order explicit time integration turns (14) into

Un+1
c −Un

c +
∆t

|ωc|

∫
∂ωc

F(Un)n ds = 0. (15)
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The Finite Volume scheme (14) requires the construction of an approximation of the normal flux integral.
Following [27] we design an original node-based approximation of this integral term relying on the partition
of ωc into sub-cells as∫

∂ωc

F(Un)n ds =
∑

p∈P(c)

∫
∂ωpc∩∂ωc

F(Un)n ds ≃
∑

f∈SF(pc)

lpcfFpcf (16)

where the surface integral term in the middle term is approximated along the sub-faces by means of the
sub-face flux related to f attached to the corner pc, denoted Fpcf .
Substituting the above forms into (15) yields the sub-face-based generic Finite Volume scheme

Un+1
c −Un

c +
∆t

|ωc|
∑

p∈P(c)

∑
f∈SF(pc)

lpcfFpcf = 0, (17)

entirely characterized by the sub-face flux Fpcf .

Simple Lagrangian/Eulerian Riemann Solvers. A simple generic Eulerian Riemann solver considers
constant intermediate states U⋆

c/d separated by simple waves, therefore given by constant wave speeds Λc,
Λ0 and Λd, which in our case are deduced from their Lagrangian counterparts −λc ≤ λ0 = 0 ≤ λd as

Λc = un,c − λc
1

ρc
= u⋆n − λc

1

ρ⋆c
, Λ0 = u⋆n, Λd = u⋆n + λd

1

ρ⋆d
= un,d + λd

1

ρd
. (18)

If the Lagrangian approximate Riemann solver preserves the positivity of specific volumes with large enough

wave speeds, i.e.,
1

ρ⋆S
≥ 0, then these Eulerian wave speeds are ordered: Λc ≤ Λ0 ≤ Λd. In [27], it is shown

that the positivity holds true granted that the Lagrangian wave speeds satisfy an explicit condition on the
star velocity. The Lagrangian and Eulerian simple approximate Riemann solvers operating over two states
called left and right respectively associated to the cell c and d in the direction npcf , are given by (m is the
constant Lagrangian mass)

WL

(
Vc,Vd,

m

t

)
=


Vc if m

t ≤ −λc,
V⋆

c if − λc <
m
t ≤ 0,

V⋆
d if 0 < m

t ≤ λd,

Vd if λd < m
t .

WE

(
Uc,Ud,

xn
t

)
=


Uc if xn

t ≤ Λc,

U⋆
c = U(V⋆

c ) if Λc <
xn

t ≤ Λ0,

U⋆
d = U(V⋆

d) if Λ0 <
xn

t ≤ Λd,

Ud if Λd <
xn

t .

(19)

Here, V 7→ U(V) is the Lagrange-to-Euler mapping defined by V =
1

ρ
(U− ρex) +

1

ρ
ex, where ex = (1, 0)t

[30, 27]. The Eulerian intermediate states read U⋆
S = (ρ⋆S , ρ

⋆
Su

⋆
n, ρ

⋆
Su

⋆
t,S , ρ

⋆
Se

⋆
S)

t are deduced from their
Lagrangian counterpart V⋆

S = (1/ρ⋆S , u
⋆
n, u

⋆
t,S , e

⋆
S)

t for S = c, d, check [30, 27] for more details. Following the
derivation in [27], we observe that the simple Riemann solvers are parameterized by the normal star-velocity
u⋆n and the intermediate states of WL read

1

ρ⋆c
=

1

ρc
+
u⋆n − un,c

λc
,

1

ρ⋆d
=

1

ρd
− u⋆n − un,d

λd
, u⋆t,c = ut,c, u⋆t,d = ut,d, (20)

e⋆c/d = εc/d − pc/d

(
1

ρ⋆c/d
− 1

ρc/d

)
+
λc/d

2

(
1

ρ⋆c/d
− 1

ρc/d

)2

+
1

2

(
(u⋆n)

2 + (ut,c)
2
)
,

where εc/d = ec/d−
1

2

(
u2c/d + v2c/d

)
. The Lagrangian wave speeds −λc, λ0 and λd are ordered by construction

and must be large enough to ensure positivity preservation, for instance by fulfilling [27]

λc ≥ max (ρcac,−ρc(u⋆n − un,c)) , λd ≥ max (ρdad, ρd(u
⋆
n − un,d)) . (21)
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By construction, the Eulerian approximate Riemann solver WE inherits the same properties as its Lagrangian
counterpart (positivity preservation, entropy production, wave ordering). Notice that in the previous equa-
tions, the only remaining unknown is u⋆n. Here we make the fundamental assumption that a unique nodal
velocity exists up such that up ·npcf = u⋆n for any face f impinging at the node p. Notice that with such an
assumption, up is shared by all faces/cells around p. This nodal velocity is a central key for our solver.

Multi-dimensional aware numerical flux. Taking into account the Eulerian RS (derived from its La-
grangian counterpart), our non classical Eulerian numerical flux finally reads

Fnpcf
=

1

2

[
Fnpcf

(Uc) + Fnpcf
(Ud)

]
− 1

2

[
|Λc|(U⋆

c −Uc) + |Λ0|(U⋆
d −U⋆

c) + |Λd|(Ud −U⋆
d)
]

− λc + λd
2

[
up · npcf − unpcf

]
(0, 1, 0,up · npcf )

t. (22)

Here the Godunov "acoustic" mean velocity unpcf
is given by the expression

unpcf
=
λcuc · npcf + λdud · npcf

λc + λd
− pd − pc
λc + λd

. (23)

The extra-term in (22) only appears for the momentum and energy equations. It is easy to recognize that a
classical (two points) numerical flux is retrieved when one set up ·npcf = unpcf

because the last term in (22)
cancels out. In this only case, the flux is the same at the face f for cell c and d but applied with a plus (resp.
a minus) sign in the cell c (resp. d). The conservation is simply obtained because there is no flux jump at
the interface between neighbour cells. However there is no reason a priori that a unique nodal velocity up

exists to fulfill this requirement.
Contrarily in our approach we accept that up · npcf ̸= unpcf

. As such the numerical flux depends not only
on the two states adjacent to the sub-face but also on all states surrounding node p through the expression
of the nodal velocity up. Hence the name multi-point or multidimensional aware flux.

Nodal solver. The last unknown in the previous flux is the nodal velocity up which one computes by
invoking local conservation around the node p [31, 27]. Indeed the interface jumps must sum to zero for
conservation purposes that is∑

f∈SF(p)

lpcf (λc + λd)(up · npcf − unpcf
)npcf = 0, (24)

where f is the sub-face in-between cells c and d in contact with the point p. This boils down to express (24)
as a linear system Mp up = wp, where up is the unknown and

Mp =
∑

f∈SF(p)

lpcf (λc + λd)(npcf ⊗ npcf ), wp =
∑

f∈SF(p)

lpcf (λc + λd)unpcf
npcf . (25)

This system, called a ’nodal solver’, always admits a unique solution which provides the nodal velocity up,
given physical states and wave speeds for all faces impinging at the current node. Once up is computed,
then we can get unpcf

= up ·npcf , the wave speeds, the intermediate states, the flux (22), and finally the new
mean values from the FV scheme (17). The foregoing system has been already obtained when constructing a
cell-centered FV discretization of multidimensional Lagrangian hydrodynamics [35], also retrieved in [36, 27]
for designing an Eulerian FV scheme.

Time-step condition. Omitting the details (see [27]) the practical time step condition writes

∆t ≤ |ωc|∑
p∈P(c)

∑
f∈SF(pc)

lpcf

(
|vn

c · npcf |+
λc
ρnc

) . (26)
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Second-order extension. The second-order extension of the previous FV scheme is obtained by piece-
wise reconstruction of primitive variables supplemented with minmod or Ventakakrishnan slope limiters in
space and Strong Stability Preserving Runge-Kutta scheme in time, see [35] for the second-order extension
for Lagrangian FV scheme. The first-order and second-order versions of the scheme have been validated for
gas dynamics [31, 27] and shallow water equations [37], in 1D [31], 2D [27] and 3D [28].

4 Algorithm for pressureless system of equations
In order to solve the pressureless system of equations one must adapt the previous solver. First, the energy
equation for gas-dynamics is useless for the pressureless model as the pressure only depends on the density.
Second, an extra equation for a passive convected scalar variable Ψ is added. For the first-order explicit
scheme it yields

(ρΨ)n+1
c = (ρΨ)nc − ∆t

|ωc|
∑

f∈F(c)

lf (ρΨ)fuf · ncf , (27)

where uf =
up + up+1

2
with points p and p+1 being the two end-points of face f . Moreover (ρΨ)f is equal

to ρcΨc (resp. ρdΨd) if uf · ncf ≥ 0 (resp. < 0). Notice that we have reused the nodal velocity up which
are in reality a good approximation of the material velocity.
Third the source terms in (8) are easily taken into account. Fp is simply discretized as∫

ωc

Fp(U) dv =

∫
∂ωc

pn ds =
∑

f∈F(c)

lfpfnf , (28)

where pf = (ρf )gd and ρf is given by the Riemann solver, that is either ρL, ρ⋆L, ρ⋆R or ρR depending on the
wave speeds, see (19).

On the other hand Q is nothing but a reaction term which at first and second orders in space can be
approximated as

∫
ωc

Q(U) dv = |ωc|


0

(Au)c(ua,c − unc )
(Av)c(va,c − vnc ) + ρnc g(1− ρa,c/ρw)

0

 . (29)

For the second order in time, the source terms are approximated once for the predictor and one more time
for the corrector stage (the same if a RK scheme is employed).
This complete the description of the numerical method.

5 Numerical results
In this section we present a single test case to assess the numerical method. Notice that the numerical
method has been already validated for gas dynamics and shallow-water systems of equations.

The flow of cloud droplets around a cylinder is studied to demonstrate the new solver capability. First,
the Euler flow solution around a cylinder is computed, see figure 3. Farfield boundary conditions are imposed
on the domain and slip wall boundary condition on the cylinder. The farfield temperature is set to 273.15
K, the pressure at 101325.0 Pa, and the Mach number at 0.2. Once the airflow solution is computed, the
pressureless system is resolved. The droplet diameter is 40µm and the water density is 1000kg/m3. At
farfield, the droplet velocity is equal to the air velocity and ρ/ρinf = 1. In our computations the reference
droplet diameter that appears in the artificial pressure is equal to the droplet diameter. The droplet solution,
figure 4 shows an increase in liquid water content on the cylinder front part. Also, very low-density region
is visible on the back of the cylinder. In a narrow area close to the cylinder, the liquid water content goes
from around one to around zero. Results are in agreement with literature, except for spurious oscillations
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Figure 3: Euler flow solution around the cylinder, left: density; middle: u component of the velocity; right:
v component of the velocity

Figure 4: Pressureless flow solution around the cylinder, left: liquid water content; middle: u component of
the droplet velocity; right: v component of the droplet velocity

on the liquid water content in front of the cylinder. These oscillations do not seem to change the solution
anywhere other than on the front of the cylinder. Further investigations should be performed to understand
the origin of these oscillations.

6 Conclusion and Perspectives
In this work, we investigate the multi-point Riemann solver adapted to solve water droplets flow. The two-
phase flow is modelled using a one-way coupling. The obtained Eulerian droplet equations, a pressureless
equation system, must be modified to obtain a hyperbolic system. A perturbation parameter equivalent to
a pressure term is added on the left side and subtracted on the right side of the momentum equations. The
multi-point solver is adapted to the pressureless system. A second order in time explicit scheme is used
to march the solution toward the steady state. Preliminary results have been obtained around a cylinder.
Further investigations should be performed to assess the capacities of the proposed scheme to solve the
pressureless system.
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