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Abstract: The five-equation model for compressible two-phase flows has been
extended to unstructured grids in order to model underwater explosions (UN-
DEX) close to complex geometries. The ideal equation of state (EOS) is used
for air. The stiffened gas EOS is used for water. The Johnes-Wilkins-Lee
(JWL) EOS is used for the high-explosive (HE) material to describe a sim-
plified detonation process. A general formulation is written to include these
different EOSs. A sharpening technique based on the hyperbolic tanget in-
terpolation (THINC) is adopted to capture the transitioning interface. After
verifying the accuracy of the numerical schemes against analytical and experi-
mental results, ‘best practice guidelines’ have been developed to assure reliable
results.
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1 Introduction

Underwater explosions (UNDEX) have always been of interest for both military and civilian
applications. The aim of the current work is to establish a mathematical model that is suitable
for this class of problems. Any such model must take into account the three fluids that interact:
air, water and HE.

Although a large body of work has been published for two-phase problems [1, 2, 3, 4, 5],
publications for three fluids are less common, especially with HE. There have been studies for
three fluids with the interface tracking method [6], but this method is limited to free-surface
problems, e.g. an oil bubble rising in a partially filled container [6], making it unsuitable for flows
with a large number of interfaces. This work aims to establish a simple and robust numerical
method for UNDEX problems on vertex-centered unstructured grids [7]. This method is later
extend to fluid-structure interaction problems [8].

The regarding governing equation for the three-fluid model is a system of eight equations: the
continuity and transport equation for air, water and HE material, respectively, the momentum
and total energy equation for averaged flow. In this model, the pressure needs to be determined
from a general formulation of EOS with mixed parameters. This numerical model is used
for underwater explosions because of its simplicity and robustness. The spatial discretization
is based on unstructured grids due to their flexibility to deal with complex geometries. An
explicit multi-stage Runge-Kutta method is used for the temporal discretization. The interface

1

Eleventh International Conference on                                          ICCFD11-2022-4002
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022



capturing method (THINC) [9, 10, 11, 12, 13] used for two-phase fluids is extended here to
three-fluid problems.

2 Numerical Method

2.1 The Five-equation Model for Three-fluid Flows

The five-equation model for three-fluid flows may be written as

∂z1ρ1
∂t

+∇ · (z1ρ1u) = 0, (1)

∂z2ρ2
∂t

+∇ · (z2ρ2u) = 0, (2)

∂z3ρ3
∂t

+∇ · (z3ρ3u) = 0, (3)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ρg, (4)

∂ρE

∂t
+∇ · [(ρE + p)u] = ρg · u, (5)

∂z1
∂t

+ u · ∇z1 = 0, (6)

∂z2
∂t

+ u · ∇z2 = 0, (7)

∂z3
∂t

+ u · ∇z3 = 0, (8)

where
ρ = z1ρ1 + z2ρ2 + z3ρ3, (9)

and
ρE = z1ρ1e1 + z2ρ2e2 + z3ρ3e3 +

1

2
ρu2 (10)

are the averaged density and total energy, g is the gravity acceleration, z1, z2 and z3 are the
volume fractions of three fluids, respectively. It is notable that although there are eight equations
in total, Eqn. 6, Eqn. 7 and Eqn. 8 are not independent from each other, since

z1 + z2 + z3 = 1. (11)

The volume fractions are re-scaled so that they add up to one whenever the solution is updated.
The gravity effects are neglected in this paper unless specified. The Mie-Grüneisen EOS is
used with the isobaric assumption to relate pressure to density and internal energy [14]. In the
context, the subscript k = 1 is for the air, and k = 2 is for the liquid. The HE material is
denoted with k = 3. Material densities are found from (zkρk)/zk. The numerical errors become
amplified due to the division by a very small volume fraction when zk → 0. A special treatment
for the material densities is applied as

ρk =
{ zkρk/zk, if zk > 10−6

ϵρ, if zk ≤ 10−6 (12)
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where ϵρ is taken as 10−7. The governing equations can be written as follows:

∂U

∂t
+

∂Fj

∂xj
= S, (13)

where

U =



z1ρ1
z2ρ2
z3ρ3
ρui
ρE
z1
z2
z3


, Fj =



z1ρ1uj
z2ρ2uj
z3ρ3uj

ρuiuj + pδij
(ρE + p)uj

z1uj
z2uj
z3uj


, S =



0
0
0
ρgi

ρg · u
z1

∂uj

∂xj

z2
∂uj

∂xj

z3
∂uj

∂xj


. (14)

2.2 Mie-Grüneisen General Form of EOS

To close system Eqn. 1-Eqn. 8, the relation between internal energy, pressure and density is
needed. The ideal gas EOS is used for air:

p1 = (γ1 − 1)ρ1e1, (15)

where γ1 = 1.4. The stiffened gas EOS is used for water:

p2 = (γ2 − 1)ρ2e2 − γ2Pc. (16)

where γ2 = 4.4 and Pc = 6.0× 108Pa. The Jones-Wilkins-Lee (JWL) EOS is used for the HE:

p = A(1− ω

R1V
)e−R1V +B(1− ω

R2V
)e−R2V + ωρe, (17)

where V is the relative volume of the HE gas.

V =
ρ0
ρ
. (18)

The properties of TNT are given in Table 1.

Table 1: JWL EOS parameters for High Explosive Materials

Property TNT
A(GPa) 371.20
B(GPa) 3.231
R1 4.15
R2 0.95
ω 0.30
e0(m

2/s2) 4.2945× 106

ρ0(kg/m
3) 1.630× 103

vd(m/s) 6930.0

Mie-Grüneisen formulation EOS gives a general representation of complex equations of state
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[14]:
pk(ρk, ek) = Γk(ρk)ρkek + βk(ρk)

= Γk(ρk)ρkek + pref (ρk)− Γk(ρk)ρkeref (ρk).
(19)

Table 2: Parameters to obtain equivalent Mie-Grüneisen EOS form

Γ(ρ) pref (ρ) eref (ρ)

Ideal gas γ1 − 1 0 0
Stiffened gas γ2 − 1 −γ2Pc 0

JWL ω Ae−R1V +Be−R2V A
ρ0R1

e−R1V + B
ρ0R2

e−R2V − e0

2.3 Speed of Sound

With the general Mie-Grüneisen form of EOS, the speed of sound can be obtained as:

c2k(ρk, p) =

(
Γk + 1 + ρk

Γ′
k

Γk

)(
p− (pref )k

ρk

)
+ Γk

(pref )k
ρk

+ (p′ref )k − Γkρk(eref )
′
k, (20)

where Γ′, p′ref and e′ref are derivatives of the EOS functions with respect to ρ.

2.4 Mixing Parameters

The mixing strategy is performed on the function

βk(ρk) = pref (ρk)− Γk(ρk)ρkeref (ρk), (21)

and Γk(ρk). The averaging parameters are

ξk(ρk) =
1

Γk(ρk)
, (22)

and
ξ =

∑
k

zkξk(ρk). (23)

Applying the mixing parameters to average Γk(ρk) and βk(ρk) with the isobaric assumption, the
pressure and total internal energy for the mixture are found from

p(ρk, ρe, zk) =
1

ξ

[
ρe+

∑
k

zkξk(ρk)βk(ρk)

]
, (24)

and
ρe = ξp−

∑
k

zkξk(ρk)βk(ρk). (25)

A mixed speed of sound is evaluated as

c2 =
1

ξ

∑
k

ykξkc
2
k, (26)

where the mass fraction is yk = zkρk/ρ.
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2.5 Spatial Discretization

The three fluid system is discretized with the finite volume method. If the computational
domain Ω is composed of control volumes Ωe, and the boundaries of Ωe are denoted as Γe, then
the integration over each control volume gives the semi-discrete form:∫

Ωe

∂Uk

∂t
dΩ+

∫
Γe

(Fk · n) dΓ =

∫
Ωe

SkdΩ, (27)

where n is the outwards unit vector normal to Γe. Kuzmin’s VB limiter is first applied to a set
of primitive variables W = [zk, ρk,u, p], and the THINC method is applied to zk only at the
transitioning phase. This process is described in [12]. It should be remarked that zk needs to
be re-scaled according to the constraint (11).

2.6 Temporal Discretization

If all the temporal derivatives are moved to the left hand side in equation (13), then equation
(27) can be rewritten as ∫

Ωe

∂Uk

∂t
dΩ = Rk. (28)

The following explicit forward Euler method is used:

Û
(1)
k = Ûn

k + ∆t
Ve
Rn

k ,

Û
(2)
k = 3

4Û
n
k + 1

4

(
Û

(1)
k + ∆t

Ve
R

(1)
k

)
,

Ûn+1
k = 1

3Û
n
k + 2

3

(
Û

(2)
k + ∆t

Ve
R

(2)
k

)
,

(29)

where Ve is the volume of the considered element, and ∆t is the time step. For all examples
shown the CFL number is taken as 0.6 unless otherwise noted.

3 Numerical Results

3.1 Manufactured Steady Problem of Mixed Air and Water

The one-dimensional manufactured steady problem of air and water is given to study the accu-
racy of the numerical method. The air and water are mixed smoothly, instead of dominated by
interface problem. Therefore, the sharpening technique is not activated. The primitive variables
are assumed to be distributed smoothly as:

z1 = Az +Bzsin(2πx),
z2 = 1.0−Az −Bzsin(2πx),
ρ1 = Aρ1 +Bρ1sin(2πx),
ρ2 = Aρ2 +Bρ2sin(2πx),
u = Au +Bucos(2πx),
p = Ap +Bpcos(2πx).

(30)

Since the solution is supposed to be steady, all the time derivatives should be zero once the
solution is converged. To get the steady manufactured solution, the source terms need to be
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introduced as 

∇ · (z1ρ1u) = (ρ1u)
∂z1
∂x + (z1u)

∂ρ1
∂x + (z1ρ1)

∂u
∂x ,

∇ · (z2ρ2u) = (ρ2u)
∂z2
∂x + (z2u)

∂ρ2
∂x + (z2ρ2)

∂u
∂x ,

∇ · (ρu⊗ u) +∇p = (u2) ∂ρ∂x + 2ρu∂u
∂x + ∂p

∂x ,

∇ · [(ρE + p)u] = ∂
∂x

[
(p+ z1

p
γ1−1 + z2

p+γ2Pc

γ2−1 + 1
2ρu

2)u
]
,

u · ∇z1 = u∂z1
∂x .

(31)

These source terms can be derived from Eqn. 30. The parameters in Eqn. 30 are given as

Az = 0.5,
Bz = 0.2,
Aρ1 = 1.225,
Bρ1 = 0.1225,
Aρ2 = 1000.0,
Bρ2 = 100.0,
Au = 100.0,
Bu = 10.0,
Ap = 1.01325× 105,
Bp = 1.01325× 104.

(32)

The computational domain is taken as 0.0m ≤ x ≤ 1.0m. The mesh is consecutively refined
with total number of nodes as 51, 101, 201 and 401 to study the accuracy of the numerical
method. The CFL number is taken as 0.2, and the solution is taken as convergent when the
relative residual reaches 1.0× 10−5 for the considered cell size.

The computational efficiency and accuracy study is shown in Fig. 1 and Fig. 2. From Fig.
1, one can see that the L2 error converges faster with the VB scheme than with the low-order
scheme. The order of accuracy is shown in Fig. 2, from where one can see that the ’low-order’
method converges to first-order accuracy, while the ’VB’ method converges to second-order
accuracy for the manufactured smooth solution.
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(a) L2 error for z1 aginst CPU time (b) L2 error for ρ aginst CPU time

(c) L2 error for u aginst CPU time (d) L2 error for p aginst CPU time

Figure 1: CPU efficiency analysis for air-water manufactured solution
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(a) L2 error for z1 aginst cell size (b) L2 error for ρ aginst cell size

(c) L2 error for u aginst cell size (d) L2 error for p aginst cell size

Figure 2: Accuracy analysis for air-water manufactured solution

3.2 Air-water Shock Tube

The one-dimensional shock tube is filled with air under high pressure at the left (0.0m ≤ x ≤
0.5m), and with water under atmospheric pressure at the right (0.5m < x ≤ 1.0m). The initial
conditions are given as follows:

z1
p
u
T


L

=


1.0

109Pa
0.0m/s
308.15K

 ,


z1
p
u
T


R

=


0.0

105Pa
0.0m/s
308.15K

 . (33)

The EOS parameters used here are slightly different as: γ1 = 1.4, γ2 = 2.8 and Pc = 8.5×108Pa.
The specific heat capacity for air and water is 1004.5J/(kg ·K) and 4186J/(kg ·K) respectively.
The results converge to the exact solution from in terms of air fraction, velocity and pressure.
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(a) The distribution of air fraction (b) Density distribution

(c) Velocity distribution (d) Pressure distribution

Figure 3: Air-water shock tube with pL/pR = 104 at time of 2.5× 10−4s

3.3 TNT Ignition in Water

This example shows the initial ignition process of TNT in water. The ignition is simplified
because the ’simplest theory’ of detonation model is adopted in this paper. However, it gives the
information after the ignition, and later can be used as initial conditions for UNDEX problem.
The computation domain is taken as 0.0cm ≤ r ≤ 20.7cm, 0◦ ≤ θ ≤ 15◦ and 75◦ ≤ ϕ ≤ 90◦

in spherical coordinate system. The mesh shown in Fig. 4 is composed of 1, 722, 741 elements,
304, 481 nodes, and 29, 025 boundary points. The domain is filled with water, and 1kg of TNT
product is put at the spherical center. The atmospheric pressure is given for initialization, then
the ignition begins at the origin.

The ’VB’ and ’VB+THINC’ methods are compared in Fig. 5. The ’VB’ method gives
a diffusive interface after 20µs, while ’VB+THINC’ is able to keep the sharp interface. The
pressure field is given in Fig. 6 in cgs unit. At time of 5µs, a high-pressure shock wave is
transmitted into the TNT material. This shock wave reaches the TNT-water interface. Due
to the over expansion of the TNT, the pressure at the explosion core drops quickly. After the
expansion, a high-pressure field is formed at the spherical center at time of 15µs. At time of
20µs, the high-pressure wave at the spherical center is going to the outer field again, while the
first shock wave is much weakened. At time of 25µs, the high-pressure field at the center keeps
pushing the TNT-water interface, and enhances the shock wave across the interface. This shock
wave keeps going into the water as can be seen at time of 35µs and 50µs.

The efficiency of parallelism is studied for this test case in Tab. 3 for both the ’VB’ and
’VB+THINC’ methods. It can be seen that the elapsed time for computation is inversely
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proportional to the number of processors. This demonstrates that the present methods are
efficient in terms of parallel computing. The table also shows how the addition of THINC adds
some computational overhead. However, this difference becomes almost negligible as we run in
parallel.

Figure 4: Mesh for TNT ignition in water

(a) Time = 5 µs (b) Time = 20 µs

(c) Time = 35 µs (d) Time = 50 µs

Figure 5: γ for TNT ignition in water (Upper: VB+THINC; Lower: VB)
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(a) Time = 5 µs (b) Time = 15 µs

(c) Time = 20 µs (d) Time = 25 µs

(e) Time = 35 µs (f) Time = 50 µs

Figure 6: Pressure (Ba) for TNT ignition in water

Table 3: Efficiency of parallelism for TNT ignition in water

Number of processors 1 2 4 8 16

VB Elapsed time (s) 3457 1840 985 597 383

VB+THINC Elapsed time (s) 3863 1974 1096 656 412

3.4 UNDEX Near a Rigid Cylinder in a Tank Partially Filled with Water

An UNDEX near a rigid cylinder column is shown as a generic three-fluid problem. A rigid
cylinder column with a diameter of 15in (38.1cm) and a height of 7.0m is fixed in a tank
partially filled with water. The depth of water is 5.0m, and the water surface is set as y = 0.0m.
A TNT charge of 1.0kg is put 2.5m under the water surface, with a stand-off distance of 0.50m
from the column surface. The mesh is composed of 65 million tetrahedral elements. The mesh
is further refined at the water surface, near the column and at the TNT charge position. To
compare the present numerical method with the empirical equations, the mesh is refined to the
size of 0.20cm at two specific locations horizontal to the explosion center, as shown in Fig. 7.
The free-field station is in the free-field water, 50cm away from the detonation center. The other
station is exactly at the column surface facing the explosion.
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Figure 7: Free-field station and reflected station at 0.5cm for UNDEX near a rigid cylinder
column in a tank partially filled with water, colored with pressure

Table 4: Comparison with empirical equations for UNDEX near a slender cylinder column (TNT
charge of 1kg; stations 50cm away from the explosion center)

Present method Cole’s Zhuang’s
Free-field pressure (Pa) 1.25× 108 1.15× 108 –
Free-field impulse (Pa · s) 1.67× 104 1.07× 104 –
Reflected pressure (Pa) 2.56× 108 – –
Reflection coefficient 2.05 – 2.40

3.5 UNDEX Near a Steel Plate

This test case is taken from [15] and considers an UNDEX near a submerged, end-clamped circu-
lar steel plate. The flow characteristics and structural response of the steel structure subjected
to the UNDEX are studied. The steel plate’s density, Young’s modulus, Poisson’s rate and yield
strength are chosen as ρs = 8000kg/m3, Es = 2.1 × 1011Pa, µs = 0.27 and σs = 9.0 × 108Pa,
respectively. The thickness of the steel plate is 6.8cm. The initial radius, density and pressure
of the bubble are set to be 0.5m, 1630kg/m3 and 6.0GPa. The initial density and pressure for
water are set as 1000kg/m3 and 105Pa. The pressure gradient contours and pressure contours
at time of 0.0ms, 0.1ms, 0.5ms, 1.0ms, 1.5ms, 2.0ms, 2.5ms and 3.0ms are shown in Fig. 8
and Fig. 9.

4 Conclusion and Future Work

The numerical example shown and others that have been recently run demonstrate that the
present method is simple to be implemented, accurate, efficient and robust. The results agree
well with the empirical equations. The numerical method is then further extended to underwater
explosions with more realistic fluid-structure interactions. Future study can be focused on the
improvement of the cavitation model.
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(a) t = 0.0ms (b) t = 0.1ms

(c) t = 0.5ms (d) t = 1.0ms

Figure 8: Pressure gradient contours (left) and pressure contours (right) for UNDEX near a
steel plate at 0.0ms, 0.1ms, 0.5ms and 1.0ms
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