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Abstract: The field of machine learning is broad, covering many different areas and applications.  

The identification of aerodynamic flow features is one such possible application.  Training a 

machine learning model to classify aerodynamic flow features opens a field of potential 

applications such as automated data extraction, onboard solution assessment, and volume solution 

physics comparisons.  In this study, Convolutional Neural Network-based ML systems are built to 

recognize vortical structures and simple flow separation patterns. The system then is deployed to 

automatically identify & extract such features from 3D flowfields such as rotorcraft wakes. The 

ML-physics identification system leverages a combination of supervised CNN-learning and non-

supervised clustering algorithms. The ML-physics identification methodology is demonstrated for

vortex property extraction from high-complex wake physics of hovering rotor blades. A central

theme of the ML-inference of physics is the ease and speed with which the automated ML

methodology facilitates physics inference from large-scale computed solutions and hence

accelerates the process of physics discovery. Potential extensions of the ML-physics inference

capability include ML-enabled verification & validation that includes physics comparisons,

extraction of high-fidelity physics constructs such as vortical elements and separation patterns to

feed to surrogate models, and automated sanity checks to ensure correct end-use of CFD software.

Keywords: Machine Learning, Hi-fidelity Simulations, Physics Inference, Vortices, Flow 
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1. Introduction:

Machine learning refers to a vast class of mathematical, statistical, and optimization methods that can infer useful 

information from observed data [1]. The neural-inspired Deep Learning networks are a compelling class of methods 

[2][3]. These methods mimic the fundamental canonical elements of human neuron interaction at its core level and 

have non-linearity inbuilt into the modeling process. In physics-based modeling, deep-learning networks are gaining 

traction through several avenues, i.e., infusion of physics into the learning mechanism [4], augmenting predictive 

modeling [5]. A quick literature search yields an exploding list of applications related to aerospace engineering, in 

general, and aerodynamics, in particular.  

A specific form of deep-learning network known as the Convolutional Neural Network (CNN) [6][7] has been 

spectacularly successful in the field of vision and image processing. In this work, a CNN is architected to classify 

physics in large-scale 3D fluid-dynamic-simulation result visualization. In present-day workflows involving 

physics-based simulations, human-in-the-loop visualization of results forms a fundamental basis for inferring 

physics and assessing the accuracy of the computed results. The primary intent of the current work is to assess if 

CNN-based deep-learning networks can effectively classify physics such as vortical systems or flow separations in 

computational simulation results and aid further automation of the workflow for routine simulations.  

One of the corollary benefits is to aid verification and validation. Widely used physics-based software tools such as 

HPCMP CREATETM-AV Kestrel/Helios are subject to rigorous forms of software engineering [8] practices and 

undergo continuous testing [9] before any new capability is released. With increasing modeling capabilities to 

simulate real-world model challenges, the permutations required to test the capabilities before a new version is 

released scale up correspondingly. Traditionally, automated testing of full-up capabilities compares integrated 
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quantities from "gold-standard" test results and random checks for output quantities to ensure existing capabilities 

have not been adversely affected. Visual human-engineer spot-checking of underlying field physics is only 

performed when tests fail. The current effort also explores if visually observable physics (i.e., separation, vortex 

structure) can be auto-verified by CNN-based systems to ensure high confidence in the automated V&V processes. 

 

An immediate motivation for developing a CNN-based classifier is to extract vortex systems from simulations of 

rotorcrafts in hover [10]. The flow field underneath a hovering rotor-blade consists of complex 3D vortex dynamics 

in the wake of the rotor-blade and is non-trivial to capture accurately. A critical aerodynamic efficiency factor for 

rotorcraft hover performance is the figure-of-merit, a measure of total thrust generated for a given torque required. 

Understanding the detailed characteristics of the vortical system and how this relates to the predicted hover 

performance is an essential metric for evaluating a computational model. However, the extraction of such 

information is a time-consuming, manual process. Furthermore, only a sparse sample of points is feasible when 

these extractions are performed manually. An automated machine learning-based model to identify vortices can be 

further developed into an automated system to identify and extract vortex information. By applying this enhanced 

automated extraction on a routine basis, more insight into the correlation of the wake structure to integrated hover 

performance results is possible. 

 

2. Machine Learning Methodology and Results: 

 
In this section, the ML methodology to extract vortical information from computed high-fidelity solutions is first 

discussed. The extraction methodology consists of three broad steps (i) Vortex identification & classification (ii) 

Vortex center localization, and (iii) Vortex property extraction. In the following section, these steps are described, 

and sample application results are presented. The final section briefly covers the extension to the method to extract 

flow separation information. 

 

 

 

2.1 ML Vortical Flow Structure Identification 

 

A schematic of the vortex classification Convolutional Neural Net (CNN) is shown in figure 1. The CNN 

architecture was constructed using TensorFlow 1.15 [11] with the Keras library [12]. The input is processed through 

a series of convolution and pooling layers before being flattened and then processed through a series of fully-

connected layers. The final two-class output provides the prediction confidence of the vortex and no-vortex classes. 

While the prediction confidence is not a mandatory output for classification, this parameter has proven to be helpful 

in assessing the quality of the trained CNN. After initial verification with simple canonical structures (figure 2), the 

method was applied to a high fidelity wake solution from a hovering rotor. While the primary method to generate 

training data was founded on image processing (figure 2), subsequent improvements eliminated the need for images 

or image processing in any form and operated on raw floating-point data ( figure 3, see Reference [14] for details). 

Data augmentation for both classification and localization efforts is usually applied to enrich training completeness.   

 

Initial vortex recognition training focused on a simple problem consisting of a single well-formed vortex and a 

broken-down vortex region of the flow field[14]. Canonical vortical inputs are used to train the CNN and assess its 

ability to identify a vortex under full and partial conditions consistently. The no-vortex-present samples are used to 

assess the likelihood of false positives when the vortex is not present. Vertical and horizontal scanning and coarse 

and fine scan strides are utilized for these tests. Figure 4 shows the demonstration of the CNNs ability to positively 

identify the presence of a full or partial vortex in a scanning window. The classification CNN stops with the 

determination of which spatial scanning windows have vortical content present – it makes no attempt to localize the 

position. Vortex localization is achieved by another CNN and is discussed next. 
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2.2 ML Vortical Flow Structure Localization 

 

Object localization is closely related to classification. Both employ similar CNN architectures. However, the 

localization model outputs a set of floating-point numbers between zero and one, representing the vertical and 

horizontal position of the object in view, instead of a number indicating which class a prediction belongs to. The 

localization CNN not only provides if there is a vortex in view but also where that vortex center is located. The 

success of the localization CNN is judged by how close the predicted center is to the actual center, as illustrated in 

Figure 5. The core center is identified as the location of the peak vorticity magnitude in a vortex.   

 

Figure 6 shows a schematic of the vortex localization CNN. The simple canonical case that has been the focus of the 

discussion in the prior section is useful for investigating the behavior of the model variations. However, hovering 

rotor-wakes contain significant variability in vortex dynamics, and the real test of the localization method is the 

ability to identify vortices and core centers for the full-3D wake geometry. Figure 7 (left) shows volume 

visualization of the helical vortex structure under a hovering rotor (see Reference [10] for details) – an instance of a 

computation where the helical vortex structure is largely intact. Figure 7 (right) shows select azimuthal planes in the 

rotor wake.   For clarity, only six sample planes at a resolution of 15 degrees are shown in figure 7 – the scanning 

process is much finer. These six planes are representative of the general performance of the method on the full wake. 

The green boxes represent all the locations at which a positive vortex identification was made. Each vortex is 

positively identified multiple times during the scan process. Each blue point is the associated localization prediction 

for each positive vortex classification. The classification method was able to target the vortices in view with only a 

few false positives that an analyst would require additional data to establish if it were a vortex or not. The 

localization predictions are mostly clustered at the center of the vortices, with a few points located in ambiguous 

regions.   

 

A more challenging case is the prediction of vortex centers when the computed 3D wake structure exhibits 

significant wake breakdown (Figure 8 (left), see Reference [10] for details on wake breakdown). A broken-down 

wake with significant non-helical braid vortex content introduces significantly more ambiguity into the ML 

prediction process as the wake transitions from coherent helical vortex strands to unstructured vortical flow. The 

matching ML prediction results are shown in Figure 8. The classification and localization models clearly identify the 

vortices in view. The predictions taper off in the vertical direction as the tip vortex breaks up. 

 

2.3 ML Vortical Structure Physics Extraction 

 

The overall process of searching for and extracting vortex core data follows multiple stages and is illustrated in the 

flow chart in Figure 9. The red boxes in this flow chart indicate machine learning-based steps, and the blue boxes 

indicate non-machine learning-based steps. First, the rotor wake data is loaded into memory. Next, a polar-

coordinate-based scan is executed about the rotor axis to search individual azimuthal planes for vortices. Each plane 

is scanned for vortices within the specified search area using the vortex classification CNN and the localization 

CNN – as discussed in the last two sections and is labeled under "ML Model Development" Figure 9.  

 

The next step in the vortex physics inference process after vortex classification and vortex-center localization 

process is the extraction of physics quantities of interest, i.e., core size, circulation etc. This step consists of multiple 

sub-steps (Figure 9, see Reference [16] for details): 

 

(i) The vortex core center CNN predictions are condensed using an unsupervised ML clustering to identify 

unique vortex predictions.   

(ii) The vortex core physics data is then computed for each of the unique vortex predictions.   

(iii) Finally, the resulting point cloud has additional unsupervised ML clustering applied to assign the 

individual predictions to blades. Once assigned, the wake age is computed for each vortex extraction 

point.   

 

Figure 10 shows the result of the first step after the application of ML-clustering is completed. The vortex centers 

are identified uniquely. The core data extraction methods are described in references [15, 16]. The peak vorticity 

magnitude is identified as the vortex core center. A horizontal slice through the vortex core is used to identify the 

core radius and peak tangential velocity. Such a process mimics the typical manual method for extracting such 

information. However, the automated localization and clustering method provides a more accurate estimate of the 
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vortex center, and hence the process of vortex-property extraction becomes more efficient. Figure 11 shows an 

example of the processing for a typical helical rotor-wake. In Figure 11, the center image (Region Extraction) 

illustrates the differences in the core center location. The yellow boxes are the centered extraction regions. The red 

points are the locations identified as unique vortex-center predictions, and the blue lines are the identified cross-

sections across vorticity magnitude peak values. Figure 12 shows the extracted peak-to-peak tangential velocity 

variations across the vortical structures and illustrates the power of the ML-vortex methodology. The overall vortical 

content is quite noisy (as seen in Figure 10) with significant 3D braid vortical content, but the ML method is able to 

track the helical strand well into the third revolution. The method successfully identifies the peak-to-peak profile 

that represents the core center of each vortex. Extraction of peak-to-peak tip vortex profiles (as a function of wake 

age) from 3D rotor-wakes is an intensely manual and time-consuming process – the ML-vortex extraction 

methodology makes it fully automated. 

 

Once the vortex core centers for the four helical strands have been extracted, additional unsupervised clustering is 

applied to compute the wake age associated with each vortex prediction in the wake. The wake-age computation 

algorithm is another unsupervised clustering methodology (see reference [16] for details). Figure 13 shows a plot of 

the final wake vortex center tracking as a function of wake age.  

 

2.4 Example Application of the ML Methodology for Wake Vortex Physics Analysis of Hovering Rotors 

 

In this section, select results from real-world applications for the ML vortex extraction methodology are highlighted. 

The S-76 rotor-blade hover analysis case is one of the standardized test cases for the AIAA Hover Prediction 

Workshop [17]. Reference 18 details the underlying hover high-fidelity computations for blade-tip shape variations 

for the S-76 rotor-blade and variations in operational conditions such as the near-ground effect.  

 

A visual comparison of the ML-predicted trajectories overlaid with the volume visualization solution for an 8° 

collective anhedral case is shown in Figure 14. The top part of the image is a volume rendering illustrating the portion 

of the wake scanned by the core extraction process. The bottom part of the image is a comparison of the volume 

rendering of vorticity magnitude with the core center positions extracted by the ML methodology. This comparison 

shows that the ML-extracted trajectories are able to track the vortices in the solution. As the effects of the numerical 

wake breakdown strengthen with wake age, the tip vortices begin to break up, and the core profiles deviate farther 

and farther from the axisymmetric ideal profile before disappearing. As expected, the ML-based predictions also 

become more broken up as a function of wake age in line with the volume data. In addition, the vortex-centers of the 

individual blades are not identical as expected. Figure 14 (right) also compares the radial position of helical strands 

with wake age. Even though the overall system is axi-symmetric, vortical interactional dynamics introduce small 

amounts of asymmetry at the individual helical strand level.  

 

Figure 15 provides a verification of the ML-extraction for a quasi-steady S-76 hover computation where there is no 

wake breakdown. Figure 15 compares the ML-extracted vortex position (radial, vertical) and core size against 

manually extracted values - the results are indistinguishable. Whereas the manual extract is done only at select 

azimuthal locations for a single blade and takes about a day of painstaking work, the ML-extraction takes is 

automated and takes around ten minutes. The ML method can also extract much finer-scale wake age data for 

multiple blades for individual-blade comparison than is possible with manual extraction. 

 

One of the key performance parameters for a hovering helicopter is the rotor blade's aerodynamic efficiency – known 

as the figure of merit (FM) [18]. FM is a measure of the ratio of the thrust generated by a rotor for a given engine 

torque at operating conditions. Rotor-blade designers often focus on the tip shape of the rotor as a mechanism to 

boost FM. Figure 16 shows typical blade-tip variations studied for the S-76 rotor-blade. Incorporating a tip-anhedral 

or sweep is often employed to alter the tip loading and strength/position characteristics of the generated tip vortex. 

Comparing the ensuing tip-vortex trajectory is of keen interest to figure out the physics driving FM changes due to 

tip-shape changes. Figure 17 shows the ML-extracted tip vortex trajectory/circulation/core-size comparisons. Figure 

18 shows similar physics extractions for typical variations in rotor operational states for a given tip shape, i.e., 

operating near the ground vs. away from the ground. Detailed discussions on the implications of the differences in 

vortex trajectory/positions are beyond the scope of this paper (see Reference 18). However, the central theme 

illustrated from the above two use-cases is the ease and speed with which the automated ML-vortex methodology 

facilitates physics inference from large-scale computed solutions and hence accelerates the process of physics 

discovery.  
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2.5 ML-Classification for Separated Flows: Preliminary Analysis 

 

The ML methodology described in this paper has broader applications to target other physics features such as flow 

separation or shocks. Specifically, the automated identification of flow separation has many practical applications, 

including verification of engineering evaluations for sanity checks. Reference 19 shows initial forays into extending 

the ML methodology to flow separation. The preliminary image-based version of the CNN in Figure 1 was modified 

to train using 2D flow separation over a NACA0015 airfoil. Figure 20 shows the CNN (from Reference 19) and 

sample training images. It is easy to distinguish the differences between images with an AoA of 0° vs. 22°. However, 

the ML methods' success will depend on whether it can pick up the transition to stall accurately as the AoA goes 

through 12-13 degrees for the NACA0015. The CNN was trained with images with AoA's from 0° to 8° (fully 

attached flows) and 14° to 22 (fully separated flows). After training and verifying with 2D image sets, the 

methodology was applied to a 3D twisted NACA wing, as shown in figure 21. Spanwise scanning is done to predict 

the spanwise station where the stall first occurs. Figure 22 (from Reference 19) compares the stall-point prediction 

accuracy when different image sets are used for the training and prediction. Further work is required to automate 

primitive-variable based truly 3D flow separations. 

 

3. Conclusions and Future Work: 

 
A machine learning framework has been developed to automatically extract flow features such as vortices and flow 

separations from large 3D computational data sets. The machine learning models discussed in this effort are a 

significant advancement over the previously published efforts. While the primary method to generate training data 

was founded on image processing, subsequent improvements eliminated the need for images or image processing in 

any form and operated on raw floating-point data directly obtainable from high-fidelity simulations. The 

methodology has been refined specifically for extracting tip vortex structures for rotors in hover. The ML-vortex 

identification system leverages a combination of supervised CNN-learning and non-supervised clustering algorithms. 

Illustrative results from automated extraction of wake vortex physics for AIAA Hover Prediction Workshop S-76 

rotor blade hover solution were highlighted. Preliminary results from an investigation of the identification of 

separated flows over 3D wings were also presented. Whereas the manual extract process takes about a day of 

painstaking work, the ML extraction is automated and takes around ten minutes. The ML method can also extract 

much finer-scale spatial/temporal wake vortex data without human intervention. A central theme of the ML-inference 

of physics is the ease and speed with which the automated ML-vortex methodology facilitates physics inference from 

large-scale computed solutions and hence accelerates the process of physics discovery. 

 

The method promises to automate & enormously speed up the human-in-the-loop aspect of visualization and 

extraction of physics inference from 3D high-fidelity CFD simulations. Such a capability will also enable ML-

enabled verification & validation that includes physics comparisons, extraction of high-fidelity physics constructs 

such as vortical elements and separation patterns to feed to surrogate models, and automated sanity checks to ensure 

correct end-use of CFD software. Current training methods for the classification and localization CNNs rely on 2D 

slices from 3D data. Future work will target direct three-dimensional training. Using three-dimensional data will 

allow the generalization of vortex structure extraction and accommodate broader use-cases such as high Angle-of-

Attack aircraft aerodynamics. 
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Figure 2. Sample training images for simple demonstration problem [14]. 
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Figure 1. Convolutional Neural Net Architecture to classify if vortex is present in the scanning domain [14]. 
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Figure 3. CFD primate variable inputs to train for vortex classification [14]. 

Full Vortex Core in View
Vortex Center 

Out of View

Vortex Center 

Out of View

C
o

n
fi

d
en

ce
 M

ea
su

re
 

o
f 

V
o

rt
ex

 C
la

ss

Horizontal Vortex Core Position
Figure 4. Verification of vortex classification for a fine-grain horizontal scanning window. 
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Figure 5. Vortex localization training metric. 
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Figure 6. Vortex localization CNN. 
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Figure 7. Raw classification (green boxes) and localization (blue points) predictions on a typical rotor wake  [15]. 
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Figure 8. Classification & Localization with broken down wake structure[15]. 
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Figure 9. Overview of the classification/localization/extraction process [16]. 

All CNN Predictions Clustered Predictions

Figure 10. ML clustering eliminates outliers from ML-classification (broken down wake) [16]. 
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Figure 11. Vortex region extraction and extraction of core profile properties [16]. 
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Figure 12. Peak to peak tangential velocity extraction [16]. 

Figure 13. Wake age extraction for broken down wake (left) and preserved wake (right) [16]. 
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Figure 14. VoREX extraction of core centers for S-76 planform (Left) Overlaid with wake volume viz, (Right) Radial location of the vortex 

center for the four blades [17] 
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Figure 16. Blade tip variations for the S-76 rotor [17] 

Figure 15. Verification of ML-extracted wake positioning vs. manual process for the S-76 rotor [17] 
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Figure 18. Hovering rotor in ground effect (IGE) 
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Figure 19. Wake vortex physics comparison for the  S-76 rotor in ground effect (IGE) vs. out-of-ground effect (OGE). 

Figure 20. CNN and image training set for exploratory study on identifying separated flows [19]. 
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                                                                 Separation point expected here

 

Figure 21. Linearly twisted NACA0015 wing planform (0-30 degrees). 

Figure 22. CNN prediction of point of separation and error for different training scalar sets. 


