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Abstract: Finding unknown obstacles in a medium using numerical methods is an important
task, with many applications. It is also very challenging, since the properties of the obstacle often
have many degrees of freedom. Most existing methods utilize prior knowledge of the obstacles they
aim to recover, and use optimizers that take long time to extract the obstacle location, shape and
size. We propose a method based on time reversal and deep learning, for locating obstacles and
finding their shape and size. We test the method on synthetic data that was generated to mimic
the physical experiment of acoustic waves propagating in an underwater medium. In addition, we
use a physically-informed neural network to get even more accurate results.
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1 Introduction
In this work we present a new method, based on Deep-Learning (DL), for locating and identifying obstacles
in an underwater acoustic domain. This problem has been widely investigated in the scientific community
[1, 2, 3, 4], since it has many applications [5, 6, 7]. In a physical experiment, an acoustic wave propagates
in the sea, and the acoustic pressures generated by this propagating wave are recorded by a small set of
sensors. These recorded pressures are the data available for analysis. The two popular tasks are: a) given
recorded pressures and knowledge about the medium, locate the source that initiated the wave propagation
[7], and b) given recorded pressures and knowledge about the sources that initiated the wave propagation,
find properties of the medium. In this paper we focus on the latter, where the property of the medium
we are interested in, is a small reflecting scatterer placed inside the medium. To conduct this analysis we
simulate data of the forward acoustic wave propagation. We use a numerical method to compute the forward
propagation process, and save the computed pressures only at a small set of points selected inside the grid.
We aim to find the location, shape and size of the scatterer based on the synthetic measurements in the
sensors.

The problem of locating scatterers in a underwater acoustic domain based on a set of sensor measurements
is an inverse problem [8, 9], and so highly ill-posed. Because the number of sensors is much smaller than the
computational grid, we expect the solution to be highly sensitive to the data. A solution does not necessarily
exist and if so, may not be unique. In addition, small changes in the conditions of the problem may lead to
large changes in the solution. Moreover, the scatterer is usually of arbitrary shape, and to represent many
different scatterers numerically we need many degrees of freedom. The partial information and complex
representation make the problem of reconstructing the scatterer even more challenging.

We simulate a physical experiment, also called the forward process. We place a source somewhere in the
computation grid. This source emits an acoustic wave that propagates throughout the medium from time 0
to time T . We choose a small set of coordinates on the grid and call them “sensors”. We save only the data
simulated on these points, but for every time step. We have only this data for the inverse problem analysis.
An example of a single sensor recording is shown in Figure 1.
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Figure 1: An example of sensors recording over time.

Figure 2: An illustration of the reconstruction of a source using TR for two different circular obstacles in
the medium. Notice that the background is entirely different in the two reconstructions, which is holding
some information about the obstacle.

Machine-Learning (ML), and specifically DL, are hot topics in the scientific community. With the re-
cent advances in computational hardware, enabling high scale computations, the field erupted with many
researchers creating data-driven solutions for their problems [10, 11, 12, 13]. One improvement is Physics-
Informed Neural Networks (PINNs) [1], that are a family of DL models “physically aware” of the PDE of
which they are trying to approximate the solution. PINNs have shown robustness, ability to fit non-linear
problems, fast convergence (compared to optimization problems), simple to design and implement, and many
other advantages. PINNs are used mostly for forward problems, but can be used for inverse problems as
well.

A disadvantage of ML methods in general, PINNs included, is when facing a problem with too many
degrees of freedom, training the networks may not converge. In the obstacle location and identification
problem, different obstacles create a very large sample space, so one needs to train a neural network to infer
the scatterer location, shape and size (which vary a lot) from a small data-set (sensor recordings). This
is very challenging for both numerical methods and ML methods. A method for solving this problem was
proposed in [11]. In this work, a spatio-temporal architecture was proposed to shift the information from
the sensors recordings into an image segmentation of the obstacle. In addition, a physics-informed loss term
was introduced, to achieve even better performance.

We propose an innovative method that incorporates the Time-Reversal (TR) [14, 15] method into the
solution proposed in [11]. The TR method propagates the acoustic waves backwards through time, until
a reconstruction of the initial condition is achieved. Due to the partial information, this reconstruction is
not perfect. In addition, having a scatterer inside the domain gives us a different reconstruction for every
different scatterer. An example of two different reconstructions is shown in Figure 2. These small differences
are the information we are going to use to extract the location, shape and size of the obstacle. More precisely,
the influence of the scatterer on the sensors measurements can be reflected in the different backgrounds of
the initial condition reconstructions. We propose a data-driven method that can extract the location, shape
and size of the scatterer from these reconstructions.

We first create a data-set of arbitrary scatterers (varying location, shape and size). We then use a
numerical solver to solve the forward problem and create a synthetic data-set for solving the backward
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problem. We emphasize that we have information about the obstacle only when solving the forward part
(which mimics a physical experiment, where the obstacle lays in the domain). When solving the backward
problem we have no knowledge about the obstacle. The proposed method for solving the inverse problem
consists of three blocks. We first apply the TR process to the sensors data to produce, for each arbitrary
source, a reconstruction of the initial condition. We then use a deep neural network to extract the image
of the source from this data. The third part involves a physically-informed loss term that utilizes the
knowledge of the wave problem, leading to even better performance. We also compare the success of the
proposed method to the results in [11].

2 Numerical formulation of the problem

2.1 Mathematical formulation of the physical problem
The wave problem is given by

ü(−→x , t) = ∇ · (c2(−→x )∇u(−→x , t)) −→x ∈ Ω, t ∈ (0, T ]

u(−→x , 0) = u0(
−→x ) −→x ∈ Ω

u̇(−→x , 0) = v0(
−→x ) −→x ∈ Ω

u(−→x , t) = f(−→x , t) −→x ∈ ∂Ω1, t ∈ [0, T ]
∂u
∂n (

−→x , t) = g(−→x , t) −→x ∈ ∂Ω2, t ∈ [0, T ] ∂Ω1 ∪ ∂Ω2 = ∂Ω

(1)

where u(−→x , t) is the wave amplitude or acoustic wave pressure, and c(−→x ) is the wave propagation speed
(assumed constant throughout this paper). The initial conditions are given by u0, v0 for the acoustic wave
pressure and velocity, respectively. The boundary conditions are given by f, g for the Dirichlet and Neumann
boundary condition types, respectively. Throughout this paper, Ω is considered a two dimensional rectangular
domain, and the initial conditions u0, v0 are compactly supported in Ω. In addition, throughout the paper
we discuss only Dirichlet boundary condition, so ∂Ω = ∂Ω1. The specific conditions (choice of initial and
boundary conditions, domain, parameters, etc.) are defined in section 4.

This is a general formulation of the wave problem. We note that the wave problem is well-posed for
given initial conditions (u0, v0) and boundary conditions (f, g), so there exists a unique solution, and small
changes of the initial condition results in small changes of the solution. Solving the forward problem means
finding the solution u(−→x , t) that satisfies the problem (1).

2.2 Numerical scheme for the forward problem
To create the synthetic data we approximate the solution of the forward acoustic wave propagation problem
using Finite Differences (FD). We define a grid of size Nx×Ny, equally spaces with ∆x and ∆y as the lengths
between the nodes in the x and y axes respectively. The source is placed, throughout the paper unless stated
otherwise, at the grid node coordinate (⌊Nx

4 ⌋, ⌊Ny

4 ⌋). The sensors are grid points (xk, uk)
Nsensors
k=1 , and the

number of sensors Nsensors is much smaller than the number of grid nodes Nsensors << NxNy (usually 5-10
sensors in an experiment).

To approximate the solution we use the Finite Differences Central Differences (FDCD) marching scheme.
We use a simplified notation and write:
un
i,j ≈ u(xmin + i∆x, ymin + j∆y, n∆t, i = 0, ..., Nx, j = 0, ..., Ny, n = 0, ..., Nt. xmin and ymin are the

lower bounds of the x, y axes, respectively. We approximate the derivatives of the equation ü = c2(uxx+uyy),
assuming a constant velocity c on the entire grid, using FDCD

un+1
i,j − 2un

i,j + un−1
i,j

∆t2
= c2

(
un
i+1,j − 2un

i,j + un
i−1,j

∆x2
+

un
i,j+1 − 2un

i,j + un
i,j−1

∆y2

)
. (2)

Some methods, e.g. the Newmark method, also use the velocity u̇(−→x , t) for computation, and some even use
the acceleration ü(−→x , t). We utilize only on the pressures both for the forward and the inverse problems. For
the forward process we solve for un+1 while for the backward process we solve for un−1. To create the data
we solve the forward process, and later when we use TR in section 3.1 we solve the backward process with
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Figure 3: An illustration of the setup we use for most of the numerical experiments throughout this work.
The source is a compactly supported thin Gaussian. The sensors are grid 8 grid points. An arbitrary polygon
is shown here as an example.

the same FDCD approach. This FDCD scheme is an explicit compact second order accurate scheme in both
space and time. The time step is limited by the Courant-Friedrichs-Lewy condition ∆t ≤ 1

c

√
2
(

1
∆x2 + 1

∆y2

) .

We use this to forward propagate the waves through Nsteps time steps, and “record” the pressures at the
sensors, resulting in a matrix of size Nsteps×Nsensors, containing the synthetically generated acoustic pressure
measurements.

2.3 Formulation as a data-driven problem
We formulate the obstacle identification as a data-driven problem. Following [11], we use image segmentation
techniques to find and identify the obstacles. We create binary images where pixels with the value 1 are
inside the obstacle, and pixels with the value 0 are in the background. To randomly generate the obstacles,
we create arbitrary polygons by generating a random number of edges, random edge lengths, and random
angles between the edges. The number of edges and edge lengths were generated using a normal distribution
while the angles were generated using a uniform distribution. We created a total of Nsamples arbitrary
polygons, for the obstacles data which we denote as {Om}Nsamples

m=1 . We also call these labels.
We use an initial source of a compactly supported thin Gaussian. An illustration of the setup including

the source, the locations of the sensors and an arbitrary polygonal obstacle is given in Figure 3. Using FDCD
to compute the forward propagation problem, we compute the data in the sensors. The obstacle is set in the
domain by setting the wave propagation velocity in the domain to c2(1−Om) (for each m = 1, ..., Nsamples).
Inside the obstacle the wave propagation speed is set to 0 (no propagation), and outside it the speed is
c2. Then, we generate another arbitrary polygon and solve the forward problem again with a different
obstacle image. This is done for all Nsamples. We eventually achieve a three dimensional matrix of size
Nsamples × Nsteps × Nsensors, with corresponding binary images of obstacles used to simulate the forward
process, a three dimensional matrix of size Nsamples ×Nx ×Ny. The data-driven problem is then to fit a set
of sensor recordings {um(tn, xk, yk)}

Nsteps,Nsensors

n=1,k=1 for each sample m = 1, ..., Nsamples, to a corresponding
binary image of the obstacle {Om}Nsamples

m=1 .

3 Deep learning framework
We propose using a method composed of three steps:
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1. Preprocessing and feature extraction using TR.

2. Convolutional layers that predict the location and shape of the obstacle.

3. Physics-informed loss term used only during training.

The input to the method is the sensor recordings. We first apply TR to get the reconstruction of the
source. Then, we train a convolutional neural network that learns to extract the obstacle from the image.
Last, we introduce a physics-informed loss term that utilizes the wave equation, to create another loss term
for training the network. The additional loss term acts as a penalty term, yielding better training and overall
better performance of the method. We now discuss each step and the contribution to the overall method.

3.1 TR based feature extraction
In this step we use FDCD, as discussed in section 2.2, to backward propagate the waves using the sensor
recordings. In the backward step we do not have any information about the obstacle. To use the FDCD,
we first initialize the grid with 0 values. We place the values recorded in the sensors in the corresponding
coordinates of the grid at the final time step (uNsteps

i,j ), and at the time step before it (uNsteps−1
i,j ). We then

compute u
Nsteps−2
i,j and substitute the computed values at the sensors coordinates with the recorded values

there from the forward step, at that time. We do this iteratively using (2) until we get u0
i,j , which is the

desired reconstruction.
Hence, this step transforms each sample from size Nsteps ×Nsensors to a matrix of size Nx ×Ny. Note

that in relevant applications Nsensors ≪ Nsteps, while Nx ≈ Ny, so we start with an uneven rectangular-like
input and get a square-like output. One advantage of this transformation is that we immediately get the
desired image shape Nx × Ny which allows us to use encoder-decoder (image to image) architectures. We
achieve this in a mathematically meaningful way, without using any upsampling or interpolation methods.

Furthermore, this process performs a type of feature extraction. As seen in figure 4, its result is a sparse-
like image with higher values concentrated around the source, and smaller values approaching zero farther
away from the source. By switching to a different representation of the data we enable the network to learn
from new rich features that could improve the performance of the model.

Figure 4: An example of the TR step. On the left-hand side we have one sample taken from the raw dataset.
It is composed of multiple sensor recordings over time. On the right-hand side we can see the output of the
TR preprocessing step, which is a source reconstruction in the form of a single image.
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3.2 Convolutional architecture
This step involves a deep neural network, trained to predict the obstacle images. During training, we use
Stochastic Gradient Descent (SGD) to find the best set of parameters of the network that minimizes a
predefined loss function. We use the Dice loss function [16, 17] defined by:

Dice :=
1

NsamplesNxNy

Nsamples∑
m=1

2⟨Om, Õm⟩F
∥Om∥2F + ∥Õm∥2F

, (3)

where {Om}Nsamples

m=1 , {Õm}Nsamples

m=1 are respectively the sets of true and predicted labels, and ⟨·, ·⟩F , ∥ · ∥2F
are the Frobenius norm. Note that the predicted labels {Õm}Nsamples

m=1 are not binary - they are probability
images. For numerical stability, a small 0 < ϵ value is often added to the numerator and denominator. The
Dice loss is a differentiable metric for the comparison between the true and predicted images.

To extract the obstacle from the reconstruction of the initial condition made by TR in the previous
step, we employ a variant of the DeepLabv3+ [18] architecture. This architecture uses an encoder-decoder
structure, where the input and output of the neural network have the same shape. It was designed for the
semantic segmentation problem from computer vision, which is the task of assigning pixel-level labels for
an image. DeepLabv3+ has been shown to achieve state-of-the-art (SOTA) results on benchmark semantic
segmentation datasets such as PASCAL VOC 2012 [19]. Due to the similarity of the obstacle problem to
semantic segmentation, using a SOTA architecture from this domain is a natural choice.

DeepLabv3+ requires a backbone neural network to form the basis of the architecture. In the original
paper, the authors used the Xception [20] architecture. In this paper we use a lighter version of Xception.
We reduce the number of convolutional filters in each layer of the middle flow part of the original architecture
by a factor of 4. The full modified DeepLabv3+ architecture ends up having around four million trainable
parameters, which is a relatively small amount in terms of modern deep learning.

3.3 Physics-informed loss term
In addition to the Dice loss defined above, we add another loss term to the training procedure. This term is
based on the FDCD described in 2, and is unique to the wave problem, since FDCD is a numerical solver of
the wave equation. This makes the network aware of the wave equation, and the method is uniquely tailored
for the wave problem data. This method can be extended to other problems as well, using an appropriate
solver of the desired problem.

During the training iterations, every sample goes through the network to produce a prediction, which is
a predicted image of the obstacle. We then use the forward FDCD for the predicted image (exactly how it
was used to create the data in section 2.3), and compute the sensor recordings from the forward process.
Unlike the true obstacle image, the predicted one is not binary, but is a probability image. The method
is appropriate, since the term c2(1 − Õ) produces velocities close to 0 inside the obstacle and close to c2

elsewhere (assuming the network trains correctly). Therefore, we produce comparable sensor recordings (true
versus predicted). We compare the sensor recordings to the true sensor recordings, which are the inputs to
the TR block. We then compare the true sensor recordings to the predicted ones using the Mean Squared
Error (MSE) defined by

PI =
1

NsamplesNstepsNsensors

Nsamples∑
m=1

Nx∑
n=1

Ny∑
k=1

|um(tn, xk, yk)− ũm(tn, xk, yk)|2 . (4)

If the network trained perfectly (the prediction and the truth are identical), the same forward solver would
have been applied to the same obstacle image, producing the same sensor recordings and the physics-informed
loss would be 0. However, this is an impossible scenario. The better the network learns, the lower the physics-
informed loss. Since the FDCD solver used to compute the forward process is linear (operates by summations
and multiplications only), the automatic differentiation mechanism in Tensorflow 2 [21] is able to compute
the gradients and no additional implementation is needed.

To train, we take a combination of the Dice loss and the physics-informed loss. We train the network
and print the values of the Dice loss and the physics informed loss. We found that the two losses are of the
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same order of magnitude. Thus, the loss we use for the training is the sum of the two losses. We recommend
checking this before training, because if, for a different setup, one discovers large differences between the
values, then one may consider weighting the two terms of the loss, giving a larger weight to one of them
to bridge the gap. Failing to do so may make the smaller loss term redundant and insignificant, leading to
saturation (the network would not converge).

4 Numerical tests and results
We created 60,000 samples as described in section 2.3. We chose a grid of size 128 × 128 with a physical
size [0, π] × [0, π]. We used 8 fixed sensors as shown in Figure 3. We emphasize that randomly generating
the obstacles, as described in section 2.3, creates an enormous number of possible samples, and we are
using only 60,000. The total storage size of the dataset is 8.1GB. The parameters we used are c = 1484m

s
(average acoustic wave propagation speed in the Mediterranean sea), ∆x = ∆y = π

127 ≈ 0.025, and ∆t =
1

c

√
2
(

1
∆x2

1
∆y2

) ≈ 8.33 · 10−6. The total number of time steps is 500, so that the wave-front impacts the

boundaries and reflects back to the domain. A larger number of time steps means more interactions inside
the domain, resulting in more data recorded in the sensors. However, the memory consumption when using
more time steps is higher. Choosing 500 steps was based on a balance between enough recorded data
and less computational needs. The initial condition is a small compactly supported Gaussian of the form

Ae
−((x−x0)2+(y−y0)2)

2σ , with A = 1 and σ = 1. The boundary conditions are of homogeneous Dirichlet type
(reflecting).

To train the network we used 54,000 (90%) of the samples as the training set and the remaining 6,000
(10%) as the validation set. We created an additional 15,000 samples for testing the trained model on samples
that are completely new. During training, we observed the loss values of the training set and the loss values
of the validation set through the training iterations (also called epochs). When both losses declined, the
network was training. When the validation loss stopped decreasing, the network is saturating, and when
the validation loss started increasing, the network was over-fitting the training data. We saved the model
with the lowest validation loss (before saturation or over-fit). We used 400 epochs and a batch size of 32
for training. We also tuned the learning rate of the ADAM [22] optimizer. We chose an initial learning rate
of 10−3, and decreased it by half whenever the loss plateaued. We trained the network on a nVidia A6000
GPU for 8 hours. After training, inference takes a fraction of a second (applicable for real-time purposes).
An example output of the model, compared to the true obstacles, is shown in Figure 5. From example 1
we observe that the method is able to infer very thin obstacles. From example 2 we see that some of the
predictions are very accurate in terms of Intersection Over Union (IOU, defined below). From example 3 we
see that the method performs well also for obstacles near the boundary. From example 4 we see that non-
convex obstacles have been generated and used in training and testing (this is a test-set example), showing
that this method is not constrained by convex obstacles. Example 5 highlights a phenomenon that exists in
all other examples as well - we see how the model struggles with pointy shapes, and tries to infer a more
smooth edged obstacle. This can be improved with tuning the hyper-parameters of the network, but the
current results are satisfactory.

To evaluate the success of the method we used the IOU metric: IOU = |O∩Õ|
|O∪Õ| , for some sample where

the true obstacle image is O and the prediction is Õ. We first applied a threshold of 0.5 on Õ, since it is a
probability image. We used this metric to evaluate the predictions on the testing set by checking the mean,
median and standard deviation of the IOU over the entire test set. We compared the results to the results
in [11], which used a similar approach but did not use the TR method. The results are given in Table 1.

To check the contribution of the PI loss term, we conducted an experiment with 5,000 samples and
compared a model trained with the PI loss and one without PI loss. We monitored the validation IOU
score during the training and the results clearly indicate that the PI loss network converges faster. However,
running the model with the PI loss was computationally heavy and time consuming, so we managed to show
the potential on the small data-set. The other experiments were trained without the PI loss.

We also analyzed the influence of adding more training data improve the accuracy of the model. As
the results in Table 1 clearly indicate, increasing the size of the training data-set produced a more accurate
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(a) Obstacle identification example 1 (b) Obstacle identification example 2

(c) Obstacle identification example 3 (d) Obstacle identification example 4

(e) Obstacle identification example 5

Figure 5: Visual examples of outputs of the obstacle identification for different obstacles. Left is the true
obstacle image, and right is the network inference output

model. To conduct these experiments we created data-sets consisting of 10,000, 20,000, 30,000 and 60,000
samples, split into 90% training and 10% validation. In addition, we observed that even for the 20,000
samples data-set we already achieved similar results to the benchmark [11].

5 Conclusion
We presented a method for finding the location, shape and size of an underwater obstacle. We used a
finite difference scheme to approximate the solution of the wave problem and create a data-set of sensors
recordings from many different arbitrary obstacles place inside the domain. We formulated this as a data-
driven problem and proposed a method for solving the inverse problem of recovering the obstacle from the
sensor measurements. The method we proposed has three blocks: a) using TR to backward propagate the
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Method Number of train samples Mean IOU Median IOU IOU standard deviation

Non-TR [11] 22,500 66% - -
Proposed method 9,000 60.96% 67.64% 0.21
Proposed method 18,000 65.88% 72.78% 0.22
Proposed method 27,000 68.21% 75.6% 0.21

Proposed method 54,000 71.69 79.27 0.21

Table 1: Statistical aggregation of the obstacle identification results. The metric is the IOU.

solution and recover the initial condition, b) use a deep neural network to extract the obstacle from this
reconstruction, and c) a physics-informed loss term that utilizes the forward wave problem to penalize bad
predictions made by the network. We show that the method is able to accurately recover the location, shape
and size of the obstacle and even compete with the reference methods available in the literature. In this
work we did not introduce measurement noise, and we are currently investigating extending this method to
work with high measurement noise in the sensors.
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