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Abstract: Over the past decade, the convergence of accessible HPC and high-
fidelity simulation has amplified a bottleneck in analysis workflows: writing, 
managing and reading very large files. There has been much research performed on 
mechanisms to access information directly from the memory of the running solver 
code, known variously as ‘in situ’ or ‘co-processing’.  This paper describes a new 
co-processing approach for enhancing CFD workflows that provides services for 
visualization, data science, job monitoring, provenance capture and logging along 
with computational steering of the solver code.  The software, called Kombyne™ 
accomplishes these functions with a very low code footprint, few to no external 
dependencies and direct support for ‘in transit’ operation where the workload and 
memory requirements are delegated to a separate process, working in tandem with 
the solver code. 
 
This paper documents three recent examples of Kombyne™ applied to industrial-
scale CFD analyses. In the first case, high-fidelity frequency analysis of a cylinder 
in supersonic crossflow was needed to calibrate data science workflows with 
experiment.  The unique requirement here is obtaining a block of sample points at 
every solver timestep, to ensure that no temporal aliasing artifacts were present in 
the data used for the FFT analysis.  The second application is a biomedical 
workflow intended to demonstrate the feasibility of using quick-turnaround 
automated CFD to advise surgeons on the condition of a patient’s aneurysms[1].  
The third example uses "Computational Steering" where the Rolls-Royce 
production flow solver Hydra was instrumented with the Kombyne™ software to 
enable on-the-fly changes of the computational setup for the production of 
compressor maps for gas turbine engines[2].  The common theme in these three 
applications is greatly increased functionality and turnaround speed in existing 
CFD codes by augmenting them with co-processing. 
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1     Introduction 
 
Advances in HPC and modelling techniques have led to a steady increase in the size and fidelity of 
solutions. Unsteady calculations have become more common as researchers seek to capture more of 
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the dynamics of underlying phenomena.  As size and fidelity increase, there is a requisite increase in 
the amount of information required for the calculation, with meshes composed of billions of cells 
requiring huge amounts of memory and the correspondingly large files for checkpointing and post-
processing.  The situation is further exacerbated in the unsteady domain, where tens of thousands of 
timesteps may result. 
 
In the vast majority of these large scale computations, a 
large amount of memory is required for high fidelity 
solutions to the Navier-Stokes equations and associated 
physical models.  However, computation of engineering 
quantities such as forces/moments and mass flow along 
with visualization of model geometries, cut planes, 
wakes and vortices requires only about 10% of the mesh 
and field data residing in memory.  Given that file I/O is 
much slower than memory access and network transfer 
is slower still, the concept of going directly from solver 
memory to extracted surfaces, subvolumes or even 
rendered images has the potential to improve the wall 
clock time performance of modelling and simulation 
workflows by one to three orders of magnitude and is 
today essential to certain production workflows [3]. 
Figure 1 illustrates how co-processing functions are 
invoked during solver code iterations. 
 
Several software solutions have been developed to implement these mechanisms, such as 
VisIt/Libsim[4], Paraview/Catalyst[5], and SENSEI.  These tools are developed with visualization as 
the primary goal and are highly dependent upon the VTK graphics libraries [kitware, USA].  While 
co-processing has improved analysis and visualization for extremely large data, this achievement has 
been hard won. Two of the most prominent state-of-the-art in situ infrastructures, VisIt’s Libsim and 
ParaView’s Catalyst have been created from full fledge post-processing tools, which rely on very 
large and complex software libraries. This makes them hard to build, hard to integrate, hard to get 
working, inefficient, a risk to crash the simulation, or require mixed-language programming. SENSEI, 
currently under development by a team directed by the Lawrence Berkeley Laboratory with R&D 
performed by Intelligent Light and kitware, suffers from the same dependency burden. 
 
1.1     Kombyne™ 
 
Based on the need for more effective and easy-to-integrate co-processing [6], Intelligent Light in 2018 
proposed to create a next-generation software toolset that could provide both in situ and in transit 
operation.  Development funding was obtained via Small Business Innovative Research (SBIR) grants 
from the Department of Energy, Office of Science.  Brad Whitlock, a Senior Software Engineer at 
Intelligent Light lead this effort, after having spent over a decade working on scalable visualization 
and in situ workflows with the Visit/Libsim codes at Lawrence Livermore National Laboratories.  
Whitlock’s experience, combined with the many years of CFD practice at Intelligent Light (via 
FieldView) drove a focused effort to resolve the major drawbacks of the existing software tools 
mentioned above: 
 

• Difficult to build and port to new computer systems 
• Difficult to instrument simulations 
• May require unacceptable amount of runtime or memory from simulation 

Figure 1: In situ iteration with Co-Processing 



 3 

Figure 3 - In situ versus in transit operation 

• May introduce error conditions (such as out of memory) that crash simulation 
• Lack of readiness for heterogeneous computer architectures 

 
Initially called “SCOREBOARD”, the project went through research and development phases both in-
house and through externally funded efforts with industry [7].   The product was re-branded as 
Kombyne™ and was launched commercially in December of 2021.  Kombyne™ is a high 
performance, parallel data analysis library that is designed to integrate with diverse simulations and 
get the most out of HPC hardware. Kombyne™ efficiently applies in situ and in transit data analysis 
techniques to create targeted data extracts that can be orders of magnitude smaller than typical 
simulation data. Kombyne™ shortens the time to insight, compared to post hoc methods and other in 
situ–only solutions, by enabling simulation and analysis to execute simultaneously. Kombyne™ also 
includes unique simulation monitoring and steering capabilities, bringing HPC data analysis for many 
jobs to a browser interface. 

In transit is similar to in situ but it adds the step of staging data to separate analysis resources 
where data are processed (shown in Figure 2). Practitioners are often hesitant to include libraries that 
may compete for time and memory with the host simulation, or even worse, cause it to terminate. 
Kombyne™ mitigates this risk by sending simulation data to an analysis program called the 
“Endpoint”, which receives and processes data.  Intelligent Light designed Kombyne™ for in transit 
to minimize code added into the simulation, reduce risk, and to reduce time and resource competition 
between simulation and analysis by making these operations occur in the Endpoint. 
 
As shown in Figure 3, the fact that the in transit endpoint 
operates in a distinct process space on separate cores  The 
solver code does not have to pause for the endpoint to 
complete its work thereby enabling more iterations per wall 
clock hour.  Whether in the solver address space, or in an 
endpoint, Kombyne™ provides services, computes extracts 
and creates data products: 

• Create cutting planes, iso-surfaces, boundary 
surfaces with populated with field variables 

• Sample the meshes with arbitrary or structured 
coordinate patterns 

• Render images of the extracted surfaces into PNG or 
Cinema [8] 

• Execute expressions and triggers 

Figure 2 - In transit workflow with Endpoint operating in a separate process space 
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Data extracts enable the simulation to save meaningful results that would not be possible any other 
way. “Data Extract” is a broad term that encompasses reduced-size data products generated in situ. 
Data extracts can contain geometry-based subsets that focus on regions of interest, they can be 
images of the simulation data, or even computed metrics derived from the simulation data. 
Kombyne™ can produce various types of data extracts. For example, Cinema databases are an 
example of an image extract that can be explored interactively from multiple camera angles in a 
Cinema viewer. Better data extracts that retain more of the simulation’s data at compact sizes are 
needed 

Integrating Kombyne™ into a solver 
code or data collection device is made 
easy due to the solver-oriented design 
of the data interface and the low 
external dependency count.  This is 
one of the most important design goals 
for Kombyne™.  The mesh and field 
interfaces are designed for zero copy 
and avoid the need for mixed language 
programming. 

 
 
The key components are the Adapter and the Kombyne™ Library (Figure 4).  The adapter header 
code and documentation are provided under an open source BSD license, simplifying potential 
intellectual property issues.  Code is written to expose the meshes, fields and other quantities 
(samples) to the Kombyne™ API.  Data is usually pointed to by reference, so that copies are not made 
at runtime.  The interface is in the pattern of publisher-subscriber: Kombyne™ knows where things 
are, and accesses them when called for in a co-processing operation.  The Kombyne™ library comes 
in two forms: Kombyne™ and Kombyne™ Lite.  Kombyne™ Lite lacks some capabilities (such as in 
transit) and is available from the Intelligent Light website via a free download.  Either form is 
available as static or dynamically loaded, for a wide variety of operating systems and hardware. 

Once a solver has been ‘instrumented’ with Kombyne™ for in situ operation, it is also ready for 
communication to an Endpoint process (Figure 5).  The Endpoint can communicate with the solver 
process through one of two transports: MPI for tightly coupled operation and ZeroMQ for connection 
over an IP-protocol physical link.  The configuration Kombyne™ will use at runtime is chosen by a 
command line option at solver startup time.  When used with an Endpoint, Kombyne™ 
automatically moves the computation of extracts, renderings and any user functionality added 
to a custom built Endpoint into the Endpoint and out of the solver process space.  When used 
with the ZeroMQ transport, the Endpoint can run on a separate compute resource, connected via IP. 

Figure 4 - Integrating Kombyne into a solver code 

Figure 5 - Using a Kombyne Endpoint 
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It should be noted that Kombyne™ is ‘all parallel, all the time’.  While it can be operated in serial 
mode as well, Kombyne™ is fully MPI compliant and uses OpenMP as well.  When tightly coupling 
an Endpoint process to a solver, a ‘split MPI communicator’ technique is used.  This is very scalable 
and has been tested on the NERSC Cori system at up to 16K cores.  When coupling via the ZeroMQ 
transport, the MPI domain for the solver and Endpoint are distinct.  This the allocation of cores/nodes 
for the Endpoint is independent from that of the solver.   One could have the solver running on 1024 
compute cores and the Endpoint using 32 cores on a ‘fat node’. 
 
Finally, Kombyne™ provides a GUI for monitoring the operating status, resource utilization and data 
product production.  Strip charts are available that show the amount of CPU, memory and networking 
resources utilized by the solver code and Kombyne™.  This is very useful for debugging and tuning.  
Events may be reported through the Kombyne™ API and appear as notifications.  The solver can also 
be paused, continued or stopped.  All of this is accomplished in the single web or Qt GUI for all 
active jobs of a given user.  As shown in Figure 6, this service is available whether you are using strict 
in situ or in transit co-processing. 
 
Other tabs in the GUI support runtime computational steering of the data product creation and any 
solver variables the were selected for steering when the adapter was built.  For the data products, 
extracts can be turned on or off and parameters such as iso-surface value or slice location can be 
changed.  On the solver side, things like free stream alpha can be exposed to facilitate a drag polar, 
time step can be adjusted for unsteady calculations and as described in Section 4, boundary conditions 
can be manipulated to obtain engineering performance plots. 
 
In the next three sections of this paper, examples of Kombyne™ applications will be surveyed.  In 
each one, an existing solver code is instrumented with Kombyne™ to achieve research or 
performance results that are beyond the capability of the underlying CFD code.  In that regard 
Kombyne™ provides a simple way to get more from the solver code(s) being used and allows a user 
to gain control of the simulation through a modern GUI. 
 

2     Time Fidelity for Frequency Analysis: Cylinder in Crossflow 
 

Unsteady CFD calculations are more frequently used today as the power and memory size of HPC 
systems grows and the need for predictive results are pressing for more accurate modelling.  At the 

Figure 6 - Kombyne provides a monitoring a steering GUI for your jobs 
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Figure 9 - Simulation results sampled in regions 

same time, the size of the file outputs from traditional CFD workflows provide a priori limitations on 
how much information can actually be stored and accessed.  It is commonplace for users of remote 
HPC resources to wait days for network transfer of bulk output files, when then may only be 
interested in behavior at walls or very near to them. 
 
Intelligent Light’s Applied Research team had a requirement to calibrate a solver workflow for 
boundary layer separation point oscillation behavior of a cylinder in cross flow for which there was 
experimental data as reference (Figure 8).  In more typical workflow, result files would be saved off 
at intervals such that the total file space need would fit within available resource.  Or a ‘rule of thumb’ 
method would be used to determine the output rate.  Frequency analysis is used in many types of 
engineering and experimental fluid mechanics but the rate limiting forced by file sizes creates 
roadblocks to use with high fidelity CFD.   

Examining flow physics through 
results that are undersampled with 
respect to time can lead to spurious 
results.   In the signal processing 
world, these principles are well 
understood.  But a user performing 
FFT or DMD on undersampled 
data may observe false harmonic 
peaks unless a decimation filter is 
used.  In Figure 7, the FFT of fully 
time resolved data is shown in 
blue.  There are true 5kHz and 
1kHz peaks.  When downsampled 
timesteps are used directly, a 

0.5kHz harmonic appears which is false: an artifact (shown by the red line).  If the undersampled data 
is properly filtered (decimated) the orange line is much more faithful to the original data, shows the 
same peaks and does not exhibit aliasing.  If the researcher is analyzing results without a reference as 
to the proper frequency behavior, it is very easy to be fooled by the false harmonics. 
 
Kombyne™ permits data sampling in regions of interest at 
the solver iteration rate.  In other words, one can obtain the 
most detailed data with respect to time due to the fact that 
the location and number of points that are saved as data 
products can be limited to just what is needed.  For the 
cylinder in crossflow case, the target of study is the unsteady 
behavior of the separation point that moves up and down on 
the downstream side. 
 

 
Two structured sampling regions 
were specified in the Kombyne™ 
script that defines the data 
products: a annular cylinder and 
a box.  Each sample contained 
about two million points, with 
the original gird containing 
almost 30 million points. The 

important fact is that these points were sampled at every converged solver timestep and written 
directly to Matlab files for subsequent DMD (Dynamic Mode Decomposition) computation.  For 

Figure 7 - Aliasing of results due to undersampling 

Figure 8 - From Ackerman [9] 
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visualization, VTK files were written every 200 timesteps. The flow solver used here is NASA’s 
OVERFLOW2 v2.2n, which was instrumented with Kombyne™. 
 
The Matlab files resulting from the simulation were read by the DMD analysis tool, which along with 
POD and FFT analysis tools comprise the Intelligent Light Data Analytics Suite (DAS).  Figure 10 
shows the GUI, a power spectral density (PSD) plot (above) and a plot of that mode within the CFD 
flow field.  Comparing that plot with the unsteady CFD animation, we can see that the higher values 
of the 1kHz mode intensity (red, orange and yellow) correspond to the extent of the oscillatory motion 
of the separation point.  Thus, it is possible to determine the movement extent of a dynamic flow field 
feature in a numerical, automated fashion, provided that the input data is of sufficient fidelity in time. 
 

 
Some conclusions and opportunities from this study: 
 

• Frequency space analysis can be very useful in determining cause and effect of variable loads 
and other phenomena which are much more difficult to find via strip chart plots or animations.  

• The unsteady nature of separation, re-attachment, vortices and shocks can not only be 
understood with this type of analysis but potentially used in flow path design. 

• Artifacts coming into any kind of POD, DMD or FFT can cause confusing and or inaccurate 
results.  Issues such as time fidelity and CFD solver numerics embedded in the code such as 
limiters or turbulence models can contaminate not only frequency or eigen analysis but machine 
learning applications as well.  In this study, OVERFLOW2 was run with the turbulence model 
turned off, with a very fine mesh and timestep. 

• Kombyne™’s structured sampling and direct output to Matlab (or CSV for python analytics) 

Figure 10 - DMD analysis shows a 1kHz energy peak in the PSD, the intensity of that mode is then plotted 
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greatly simplifies the development of automated knowledge capture workflows that are 
repeatable, of high fidelity and fast.  

 

3     Rapid Knowledge Capture: CFD for Aneurysm Diagnostics 
 
The use of robots, advanced scans and AI/ML in medicine offer promise to achieve better outcomes.  
In a research project funded by the German government, Dr. Thomas Wagner of the  
Universitätsklinikum Regensburg (University Hospital Regensburg) teamed up with CFD Consultants 
GmbH to evaluate a CFD-based approach to determining the need for surgical intervention.  A 
cerebral aneurysm is a sack-like bulge of the vascular wall of a brain artery.  The risk when an 
aneurysm is detected is that it may rupture, with dire consequences.  As with many medical issues, 
assessing this risk is not simple, as there are many factors that influence the evaluation.  One of the 
factors is the behavior of blood flow through the aneurysm. 
 
It is not an easy task to observe the blood flow through an aneurysm, but with the help of CFD, it may 
be possible to understand the risk factors through simulation.  There has been much research on the 
use of CFD to help predict the probability of rupture (see [10] for reference), the effective use of such 
a capability in a surgical environment faces two huge challenges: the neurosurgeon/medics are 
typically not CFD experts and the turnaround time for the entire process needs to be reliable and fast.  
The goal of the research effort therefore was to prototype a workflow that could rapidly convert well 
known medical scans, into meshes, automatically set the (complex) boundary conditions, run the CFD 
(OpenFOAM) efficiently and then extract/present the results (Figure 11). 

The presentation by CFD Consultants 
(see [1]) details the pipeline used to 
go from raw medical imaging data to 
a 3D mesh (using cfMesh from the 
OpenFOAM toolbox), and setting the 
complex boundary conditions for 
blood flow (non-Newtonian).   
OpenFOAM’s configurability was 
very important in meeting the 
constraints of this effort.  However, 
the magnitude of the solution 
problem remained vast: an unsteady 
run with four heartbeat cycles needs 
between 15,000 and 30,000 
timesteps.  This can take 2-3 weeks 
to run and generate up to 100GB of 
disk space. 

 
The  interesting  outcome  is  the  oscillating  shear  stress  and  the  
normalized  wall shear stress as scalar numbers for the medics as 
in Figure 12. The medics then can decide if it is necessary to 
operate or not, of course also on the basis of a lot more numbers.  
The goal is to have a fully automated workflow from getting the 
real life data from a scan of the brain over to the automatic 
segmentation that creates a geometry as an STL that is used to 
generate the mesh run the simulations, and get back the numbers 
and images. The steady  state  simulation  shall  be  run  within  30 
minutes  to  get  first  results  and  the  unsteady simulations shall 
run within two days.  The normalized wall shear stress and the 

Figure 12 - Output image for medics 
including WSS & OSI values 

Figure 11 - Prediction functions, unsteady inflow & complex 



 9 

oscillation shear index are highly mesh sensitive, so a boundary layer is necessary. Testing showed 
that polyhedral meshes show the best results at the minimum cell size. Polyhedral meshes were 
therefore used and the Kombyne™ pipelines were enhanced to handle them. 
 
The post-processing step, getting useful information quickly to the medical team, is one area of 
potential gain, through the use of Kombyne™ workflows integrated into OpenFOAM.  This can 
greatly reduce the amount of information saved by focusing in the surfaces of the blood vessels and 
the aneurysm: this is where the shear stress is computed.  Surface data in an unstructured data set can 
be as little as 3% of the entire simulation storage. 
 
CFD Consultants’ software engineers implemented 
the Kombyne™ OpenFOAM adapter for this effort. 
Those familiar with the code know that OpenFOAM 
is NOT a single application; it is a set of multiple 
tools and solver applications and libraries (the v2012 
installation consists of 310 executables and 156 
shared libraries!).  The engineers chose the 
functionObjects mechanism to enable a shared 
library integration, using fvMeshFunctionObject as 
base class.  This method provides simple access to 
mesh and fields through reference pointers so that a 
‘zero copy’ implementation is possible.  An in transit 
workflow was implemented for co-processing of the 
simulation results as the solver ran.  The ZeroMQ 
transport was used to communicate with the 
Endpoint. 
 
The published results of the research project were: 
 

• A working medical diagnostic pipeline was demonstrated that used segmentation of scans 
created by medical imaging to produce STL files that formed the input to an automated 
polyhedral meshing step.  OpenFOAM was used to calculate steady state and unsteady 
simulations and to derive the important diagnostic quantities oscillating  shear  stress  and  the  
normalized wall shear stress. 

• OpenFOAM was instrumented with Kombyne™ via the functionObjects mechanism and the 
Kombyne™ software was enhanced to handle the polyhedral meshes and boundaries needed for 
this project. 

• An in transit workflow was used to directly create surface extracts of the blood vessels and the 
aneurysm that were colored by the shear stress scalars.  This produced actionable results much 
more rapidly than saving the volume files and reading them back into visualization software.  In 
addition to single images, unsteady animations were also accessible to medics to increase their 
understanding (Figure 13). 

 

4     Computational Steering: Turbomachinery Performance Maps 
 
Rolls-Royce Deutschland (RRD) is a world leader in aeroengine products and has been funded under 
a German government initiative known as “PRESTIGE” whose purpose is to extend the state-of-the-
art in computational and experimental techniques used in design.  Intelligent Light was selected as a 
subcontractor to address co-processing workflows for massive simulations of full 360 degree 
compressors, some on the order of several billion cells, fully unsteady.  Kombyne™ has been 
integrated into the RRD production CFD code “Hydra” for the PRESTIGE effort and this enabled the 

Figure 13 – Single timestep, blood vessels with 
aneurysm, colored by Wall Shear Stress 
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lead researcher, Marcus Meyer, to also use the computational steering capability in Kombyne™. 
 
From Dr. Meyer’s paper[2]: “Compressor maps for gas turbine engines show the relationship between 
efficiency, pressure ratio and corrected mass flow for a given corrected shaft speed. In conventional 
CFD workflows, several different operating conditions must be computed which means that several 
separate jobs must be submitted to converge the simulation for each prescribed exit mass flow while 
monitoring efficiency and pressure ratio until they settle. Since several points are required to 
accurately capture each single speed curve, this process becomes tedious and subject to error when 
performed manually.” 
 
Like so much in engineering analysis, a low dimensional 
performance plot, populated by highly complex 3D 
analysis forms the basis for comprehension and design.  
Obtaining the actual performance plot in the form shown in 
the adjacent Figure 14 is the objective of this computational 
study.  Each point (such as that labelled “DP”) requires a 
converged CFD solution.  Python scripts have been used to 
create the input decks for the solver and to harvest the 
required statistics, but a new solver start and run is required 
for each point using standard techniques.  The manual 
nature of starting each solver run and monitoring is error 
prone and time consuming.  Copying, possibly converting 
units and then plotting the results can also be sources for 
error. 
 
Instead of using the manual method to vary inputs to 
many solver runs, the Kombyne™ interface was used to 
accomplish “computational steering”.  When Hydra 
converged to the initial design point, the solver is paused 
and provided with a new value for the corrected massflow 
at the exit.  In a sense, this is like running a virtual engine 
in a test cell and adjusting physical operation as it is 
running.  This process and the convergence paths taken 
by the dependent variables is shown in Figure 15. The 
dots along the paths show the desired computational 
results to be used in preparing the compressor map.   
 
The process of collecting values, steering to new points and also obtaining extract data products to be 
visualized can be controlled via the scripting capability in Kombyne™ called “triggers’, essentially 
conditional behavior in the co-processing workflow.  An example of these data products is shown in 
Figure 16.  Here a series of boundary surfaces showing hub, shroud and blades along with a scalar-
colored sampling surface at mid-height are output in VTK format and visualized in ParaView. 
 
Dr. Meyer concluded his paper with the following observations on the benefits of computational 
steering to the preparation of the compressor performance plots when compared to submitting a 
number of jobs on the same computational resource: 
 

• When running a single steering run on N cores in contrast with the usual approach of running 
M jobs, each on N/M cores, file I/O time is reduced, since grid and initial conditions are read 
only once instead of M times. 

• Steering can reduce the number of iterations required, since the changed exit boundary 

Figure 14 - Notional Compressor Map [11] 

Figure 15 - Computational Steering 
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condition is deliberately chosen to be close to the previous one. 
• In order to be more computationally efficient, the solver code should possess good strong 

scaling.  
 

 

 

5     Conclusions and Future Work 
 
Co-processing is the strongest and most applicable mechanism for compressing analysis workflows 
within the existing technology framework of CFD solvers.  The technique exploits the fact that 
knowledge capture for research and engineering can separated from the fine discretization in space 
and time for PDE solutions.  The benefits of a co-processing work flow with targeted data products 
(matrices, surfaces, subregions, etc.) are many, here are a few: 
 

• Simulation fidelity and breadth of analysis space does not have to be limited by disk resource 
or network copy time. 

• Reduced order models, surrogate models, slice or subvolume extracts can be conveniently 
stored, retrieved and manipulated, giving more value to the digital assets resulting from CFD. 

• Frequency-based analysis has many current applications and potential new uses are arising 
from eigen analysis and machine learning.  However, users must take care to ensure that the 
fidelity and time and/or space is sufficient for their application.  Co-processing can be very 
useful here. 

 
Regarding future work in Kombyne™, efforts are underway to support high order element types [12], 
flexible topologies whereby multiple solvers can communicate with a single Endpoint, direct support 
for reduced order model production and consumption and GPU-resident operation. 
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