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Abstract: The pandemic of COVID-19 has had a major impact globally. Several authors have ar-
gued that the airborne transmission route of the virus SARS-CoV-2 plays a major role, particularly
in poorly ventilated indoor environments. In this paper, the airflow inside a naturally ventilated
elementary school classroom is simulated through highly resolved Large Eddy Simulation for a win-
tertime scenario. The flow results are qualitatively analyzed and the contagion risk is estimated
through passive tracers, by coupling the simulation with the traditional Wells-Riley approach.
Different window configurations and infected positions are considered. The developed numerical
framework is able to capture the dynamics of the phenomenon, highlighting the importance of the
spatial inhomogeneities.
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1 Introduction
By now the SARS-CoV-2 pandemic has caused the loss of millions of lives around the globe. Furthermore, in
many cases health systems have been strained beyond their capabilities and the economical consequences have
been notorious. The scientific community has therefore centered its efforts in understanding and reducing
the transmission of the virus.

The transmission routes of SARS-CoV-2 have been a point of heated debate. The virus has been recog-
nized from the start to be transmitted via droplets of fluid expelled by infected individuals during respiratory
or vocalization events (e.g. breathing, coughing, sneezing, talking and singing). During quite some time the
World Health Organization (WHO) only recognized the short-distance airborne transmission route, that is,
that infection is caused by large expelled droplets, which follow ballistic trajectories and sink at a relatively
short distance from the individual. Nonetheless, because of the insistence of the scientific community due to
an increasingly large body of evidence, the long-distance airborne route was acknowledged as a possible way
of transmission. This consists in smaller fluid droplets (some generated by evaporation), which can remain
airborne and can be transported large distances by air currents. Thus, the ventilation of indoor environments
and air disinfection has been put under the spotlight as a means of containing the pandemic.

One type of indoor environment in which attention has focused is primary schools. There have been
several school closures in many countries, which has raised concerns about the adverse impact they could
have on children. As classrooms usually hold stable populations during relatively large time intervals, many
researchers have applied different variations of Wells-Riley risk models [1, 2, 3, 4, 5, 6]. Despite being useful
models and although their simplicity is attractive, these models neglect spatial variations of transmission
risk. In this context, Computational Fluid Dynamics (CFD) could provide a better understanding of airborne
transmission, as it resolves the airflow inside the room [7].
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Previous studies have applied CFD to resolve indoor airflows and to spatially assess infection risk.
Nonetheless, many of them use a RANS (Reynolds-Averaged Navier-Stokes) approach. Concern has been
raised that this technique might be ill-suited for resolving the indoors dispersion of airborne contaminants,
as this process is mainly driven by turbulence, which is fully parametrized in the RANS approach [8]. Con-
sequently, attention has been recently centered in Large Eddy Simulation (LES) for tackling this problem
[8, 9]. LES resolves the largest turbulent scales, alas, it has a higher computational cost and requires much
finer grids.

In this work we present a case study of a naturally ventilated primary school classroom in Montevideo,
Uruguay, via a highly-resolved LES simulation. We spatially resolve the long-distance airborne contagion
risk for SARS-CoV-2 by using passive scalar tracers (which have been shown to be a suitable surrogate for
droplet nuclei for airborne transmission assessment [10]) and coupling results with a Wells-Riley approach,
in a similar way to that of [8] and [9]. The main objective is to assess the importance of airflow patterns
and inhomogeneities in risk assessment in the context of natural ventilation.

2 Methodology
2.1 Case description
The simulated classroom is a naturally ventilated room with a surface area of 6 m×8 m and a height of 3.5 m.
It has four double casement windows facing west, which communicate directly to the school playground. On
the opposite wall, facing east, there is a door and an awning window, which communicate with a central
corridor. Figure 1 depicts the west and east walls and the position and dimensions of the room openings.
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Figure 1: Studied classroom. (a) shows the west wall and (b) shows the east wall. All dimensions are in m.

The classroom holds a population of 30 children and a teacher. Two children sit per table, generating a
quincunx pattern, as shown in Figure 2. This was one of the sitting patterns used during the pandemic in
the studied classroom.

2.2 Numerical CFD framework and modelling
2.2.1 Flow solver

Computations were carried out using CHAMAN (Computación Heterogénea en MecÁNica), an in-house,
open-source, general purpose CFD software [11, 12]. This software stems from the caffa3d.MBRi code
[13, 14] by adding the capability of Heterogenous Computing (using both CPUs and GPUs).

As well as its predecessor, CHAMAN is a finite volume, incompressible flow solver, which is second-order
accurate in both space and time. It uses collocated orthogonal grids (or, alternatively, curvilinear body-
fitted grids) distributed in unstructured blocks, each one containing a structured grid, which are grouped in
unstructured computing regions. Computation among regions is parallelized via the MPI (Message Passing
Interface) library.
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CHAMAN solves a mathematical model which comprises the incompressible mass balance equation (1),
the momentum balance equation for a viscous and incompressible fluid (2) and a passive scalar transport
equation (3): ∫

S

(v⃗ · n̂S) dS = 0 (1)∫
Ω

ρ
∂v⃗

∂t
dΩ+

∫
S

ρv⃗ (v⃗ · n̂S) dS =

∫
Ω

−ρβ(T − Tref)g⃗ dΩ+

∫
S

−pn̂SdS +

∫
S

2µD · n̂SdS (2)∫
Ω

ρ
∂ϕ

dt
dΩ+

∫
S

ρϕ (v⃗ · n̂S) dS =

∫
S

Γ (∇ϕ · n̂S) dS +

∫
Ω

qϕdΩ (3)

where Ω is a control volume delimited by a surface S with a unitary normal vector n̂S (outwards pointing), v⃗
is the fluid’s velocity, ρ is the density, β is the coefficient of thermal expansion, T is the fluid’s temperature,
Tref is the reference temperature for β, g⃗ is the gravity field, p is the pressure, µ is the fluid’s dynamic
viscosity, D is the strain tensor, ϕ is a scalar field and Γ is its associated diffusivity. Finally, qϕ represents
the tracer’s volumetric generation rate. It should be noted that the coupling of thermal effects is modelled
via the Boussinesq approximation. Furthermore, equation (3) is used to represent both the energy balance
(by setting ϕ to T and Γ to k/cp = µ/Pr) and to represent the transport of other passive scalars, such as
airborne contaminants, in an Eulerian phase.

The mathematical model is expressed in the Cartesian coordinates of the grid, linearized and iteratively
solved at each time step by employing an outer-inner iteration scheme and either SIP or AMG solving
algorithms. The SIMPLE method for pressure-velocity coupling is used [14]. Several implicit time-stepping
methods can be used, in this work we have selected a three time level scheme.

Finally, regarding subgrid modelling, the standard Smagorinsky model was used [15].
Further information regarding CHAMAN and caffa3d.MBRi, as well as detailed application examples,

can be found in [12, 13, 14, 16, 17]

2.2.2 Case settings

For the simulation at hand, the domain was divided into 30 parallelized computation regions, each consisting
of a uniform Cartesian grid with 9.145.000 cells, which totalizes 274.352.400 domain cells. The achieved
resolutions in the x, y and z directions (defined as shown in Figure 1) are 8.4 mm, 7.9 mm and 9.2 mm,
respectively. This is quite high for usual simulations in the context of indoor airflows, particularly considering
the dimensions of the domain [18, 19, 20]. It should also be noted that many studies use RANS simulations,
which require less resolution. The highest resolution for a similar LES problem is, to the best of our
knowledge, the one presented in [8] (9.24 mm × 9.24 mm × 9.69 mm).

Simulations were run using a four spot virtual machines setup in GoogleCloud Compute Engine, com-
prising a total of 32 GPUs Nvidia K80, with 12 GB RAM each, for a total of 384 GB RAM.

Furthermore, a time step of 0.1 s has been used, which, for the boundary conditions specified further
ahead, leads to a Courant number just above 2. This is deemed acceptable based on previous experience
and the fact that CHAMAN is mainly an implicit CFD solver.

Individuals and some furniture were represented within the domain by using the Immersed Boundary
Method (IBM) [21]. STL files for the teacher and the students were obtained from [22] and students desks
were modelled in Autodesk Inventor and exported to STL format. A unified patch containing information
for all objects was preprocessed before running the simulation. Figure 2 depicts the resulting arrangement.
It is worth noticing that the IBM gives CHAMAN great flexibility for representing complex geometries while
keeping meshing relatively simple.

Boundary conditions were imposed as follows, with the aim of representing a cross-ventilation scenario.
A uniform speed boundary condition of 0.182 m/s was prescribed at one of the exterior windows in order
to set a ventilation rate of 6.4 ACH (Air Renovations per Hour). This value was selected in accordance to
WHO’s recommendation for the pandemic [23]1. The inflow temperature was set to 14 ◦C. The other (closed)

1Although this ventilation rate, which is well above ASHRAE’s 62.1 standard [24] minimum requirement for schools (3.8
ACH for this room), might seem rather high, a measurement campaign (not reported here) allowed to infer that similar window
configurations could provide even higher ventilation rates.
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windows were set to a wall boundary condition with 15 ◦C. Two different scenarios were simulated, one with
the open window at the back of the room and the other one with the open window at the front. The room
walls, ceiling and floor were also set as non-slip boundaries with a uniform temperature of 18 ◦C. These
temperatures are feasible for the Uruguayan winter. Additionally, outlet (null gradient) boundary conditions
were set at the interior awning window and at the door. Finally, both the teacher and the students immersed
boundaries had a prescribed body temperature (bellow the neck) of 28 ◦C and a head temperature of 33 ◦C.
These values were selected in accordance to the configurations reported in [8] and [9]. Immersed boundary
temperatures were prescribed by introducing a heat source within each patch cell. Said source is modulated
for each cell proportionally to the difference with the target temperature, and is updated at each time step.
This technique was observed to be stable.

Furthermore, two passive scalar tracers were considered, both of which were used to represent an airborne
pathogen emission and dispersion from two possibly infected individuals. All tracer sources were defined
as spheres with a diameter of 10 cm, with their centers set 15 cm in front of the mouth. This aims at
representing an already dispersed pathogen exhalation [8]. Momentum associated with inspiration and
exhalation is neglected. The net tracer generation is equally divided among all the cells within the sources.
Figure 2 shows the tracer sources in front of each infected individual. The emission rate set will be addressed
in section 2.3.4.

Figure 2: Immersed Boundary Conditions for the classroom domain, representing 30 children, 15 desks
and the teacher. The room windows and door are depicted by grey rectangles and the tracer sources are
represented by red spheres in front of the infected individuals.

It is interesting to notice that as passive tracers do not alter the flow, different tracer fields can be used to
independently simulate the dispersion of pathogen from different locations (i.e. selecting different positions
for the infected individuals) in the same CFD simulation, which considerably reduces the computational load.
Furthermore, as the tracer transport equation is linear in the tracer field, it follows that tracer emission can be
scaled as wanted, and therefore individual simulation of different emission rates is unnecessary. Finally, the
tracer fields associated with different sources can be added to obtain the cumulative pathogen concentration
for the cases where more than one infected individual is present.

Initial conditions for velocity and tracer concentrations were set to zero and a uniform temperature of
18 ◦C was prescribed. These conditions aim at roughly representing an initially empty classroom with closed
windows. The simulation was run for one physical hour, which required approximately 10 computation days.
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Mean fields were observed to have reached stead state at that point. The problem was then run for an
additional half hour in order to compute mean fields.

2.3 Risk assessment methodology
2.3.1 Wells-Riley models

The risk assessment methodology employed is based upon Wells’ hypothesis and his concept of quanta [25].
Wells devised the latter as a certain amount of a pathogen which can, on average, cause the infection of
an individual. Wells’ hypothesis expresses that the probability of infection of an individual within a room
via the long-distance airborne route can be modelled with a Poisson distribution. It is proposed that the
distribution’s parameter, λ, corresponds to the total amount of quanta inhaled by the individual after a
certain time. It follows that the probability of infection of at least one person, P , can be expressed as shown
in equation (4).

P = 1− e−λ (4)

Several ways of estimating λ have been proposed, resulting in the Wells-Riley models family2. Different
approaches have allowed to represent additional physical processes (e.g. virus inactivation and filtration)
and to relax certain hypothesis (e.g. Riley’s model required steady-state conditions). Nowadays almost
all applications of the Wells-Riley models stem from either the Gammaitoni-Nucci [27, 28] or the Rudnick-
Milton [29] methods, both of which have found widespread use in the context of the SARS-CoV-2 pandemic
[1, 2, 3].

2.3.2 Coupling of Wells’ hypothesis with CFD

Despite their undeniable usefulness, traditional Wells-Riley models have certain limitations. In particular,
they rely on the perfect-mix hypothesis: they asume that the pathogen is homogenously and instantly
distributed in the room (i.e. they are box models). Therefore, spatial quanta and risk variations are
neglected. Concern has been raised that this could underestimate the risk of infection [9]. CFD has been
proposed as a suitable tool for evaluating this issue, and several works have introduced ways of coupling it
with Wells-Riley methods [8, 9, 30].

For this paper, we have coupled the Wells-Riley approach with the CFD method as follows. The total
number of quanta inhaled by an individual can be calculated as given in equation (5):

λ = p

∫ T

0

C(t) dt (5)

where C is the tracer (quanta) volumetric concentration in the inhaled air, T is the total time elapsed since
the considered event begun (i.e. class time elapsed) and p is the mean pulmonary ventilation rate, which we
assume to have a constant value of 800 L/h, according to what is reported in [31] for a breathing (not talking)
person. It should be noticed that the spatial dependency of risk is implied in the value of C. To approximate
this concentration, we suppose children inhale air from a cubic volumen centered on the horizontal plane
at their nose level. We assume that school children breath 20 times per minute [32] which, for the selected
value of p, implies a volume of 667 cm3 per breath, and therefore a cube of side 8.74 cm. Consequently, we
build an airborne contagion risk map by solving equation (5) for each simulation grid cell at nose level using
the spatial concentration average over the described cube centered at the cell at hand. The time integral is
approximated by a finite sum, resulting in equation (6):

λ = p
∑
i

C̃i∆t (6)

where the index i covers the simulation time steps and the tilde denotes the spatial average. It should be
noted that the latter is a tridimensional moving mean operation. The calculated value of λ is then plugged
in equation (4) for estimating the risk of infection.

2Named after the work of Riley and his collaborators [26].
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2.3.3 The Gammaitoni-Nucci model

We have selected the Gammaitoni-Nucci model [27, 28] for comparison with the CFD coupled results, as it
allows for a transient quanta concentration in the system. Furthermore, it incorporates the ventilation rate
as an explicit parameter, which is known for the case of study.

The quanta inhaled by an individual is estimated by performing a mass balance to the considered room
under the perfect mix hypothesis. Assuming that the air entering the room is pathogen-free, the mass
balance can be written as

dN(t)

dt
= qI − Q

V
N(t) (7)

where N is the number of quanta in the room, V is the room’s volume, t is the time and Q is the volumetric
airflow entering and leaving the room. qI expresses the generation of quanta within the room as the product
of the number of infected individuals I and the quanta generation rate per person q, which is supposed to
be the same for each infected individual. Equation (7) does not consider quanta sinks such as disinfection
UV lights, pathogen deposition and inactivation, but those processes can be easily modeled by summing
additional pathogen elimination rates to Q [33].

Equation (7) can be integrated to obtain the N . Then, the amount of quanta inhaled by an individual
over a certain time period T can be expressed as

λ =
pIq

Q

[
T +

(
No

Iq
− V

Q

)(
1− e−

QT
V

)]
(8)

where No is an initial condition for quanta, which is herein assumed to equal zero. We will also assume I = 1
(only one infected at a time), as it is usually done for risk assessment via Wells-Riley models.

2.3.4 Quanta emission rate

The main difficulty for applying Wells-Riley models to real scenarios is determining the appropriate quanta
emission rate for an infected individual. This parameter, which depends on the pathogen considered and
how contagious it is via the long distance airborne route, has been traditionally backwards-calculated by
fitting epidemiological data [33]. Nonetheless, given the difficulty of this approach and the lack of available
data for SARS-CoV-2, recently Buonanno, Stabile and Morawska [34, 35] have proposed a novel method for
estimating the quanta emission rate by measuring the viral load in the saliva of infected individuals. Although
high uncertainties prevail, this method has allowed for determination of a probability density function for
the quanta emission rate [34]. Moreover, it has been possible to associate certain quanta emission rate values
to certain respiratory events (breathing, talking, coughing, singing, etc.).

For example, based in Buonanno’s results, in [3] quanta emission rates of 1 quanta/h and 5 quanta/h
are given for SARS-CoV-2 as representative values for quiet and noisy classrooms, respectively. Nonetheless,
this assessment was done prior to the appearance of newer and more contagious SARS-CoV-2 strands, such
as Delta and Omicron [36]. Therefore, some researchers have decided to use much higher values in recent
studies, of up to 100 quanta/h [8]. Great variation is therefore possible.

For the present paper we have selected a quanta emission rate of 1 quanta/h. Although this value
corresponds to the mentioned recommendation for a quiet classroom, we have principally chosen it in order
to generate scalable results. The total number of quanta inhaled by an individual is proportional to the
quanta emission rate, both via the CFD approach3 and the Gammaitoni-Nucci equation4. Furthermore,
for small values of λ, equation (4) can be linearized around λ = 0 without introducing important errors.
Therefore, the infection risk is approximately proportional to the quanta emission rate. Consequently, the
risk maps presented in section 3.2 and the results obtained via the Gammaitoni-Nucci model can be scaled to
fit any pathogen by simply multiplying the reported risk by the appropriate quanta emission rate, expressed
in quanta/h. We will therefore focus the analysis on discussing the spatial risk distribution without dwelling
too much on the actual absolute risk value.

It should be noted that for very big values of λ, the linearization of equation (4) could introduce large
errors. Nonetheless, we have observed that for the parameters of the case of study, the relative error remains

3Due to the linearity of equation (3) in ϕ, see section 2.2.2.
4This strictly only occurs for No = 0, as is considered in the present study.
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bellow 1% for a quanta emission rate of 100 quanta/h when estimating λ from equation (8), which is deemed
acceptable, as it is probably well below the uncertainty of q estimations.

3 Results and discussion
3.1 Qualitative description of the flow
For both simulation cases, the flow was observed to be quite complex. Thus, we first focus on performing a
qualitative description of the flow and its main features by examining orthogonal slices of different fields.

The flow was observed to have reached a statistical steady state by the end of the first simulation hour
for both cases. Therefore, mean field values were obtained by averaging over a 30 minute window after the
first simulation hour.

3.1.1 Case 1: rear window open

For the first case, in which the inflow boundary condition was set at the back of the classroom, the results
shown in Figures 3, 4, 5 and 6 were obtained.

The velocity field components in Figure 3 show how the air entering the room (with only a positive y
velocity component) quickly sinks due to buoyancy (negative z velocity component), as it is colder than the air
inside. The inflow draft then impacts the floor, spreads radially from the impact point and continues moving
just above the floor, forming a cold low draft. It should be noticed that this draft exhibits a contraction
with respect to the inflow area, and therefore increases its speed with respect to the inflow condition just
after reaching the floor.

Figure 4(a) shows how part of the cold draft moves along the y axis (positive y velocity component),
impacts on the wall at y = 6 m and is then redirected towards the door (negative x velocity component).
Another part reaches the front of the classroom and is then redirected towards the door. Finally, a diagonally-
moving draft reaches the door with no turns. While thermal plumes start forming from the feet of the
occupants, these are rather small and do not significantly alter the flow, which is essentially bidimensional.

On the middle height levels of the room, airflow becomes more complex, and many recirculations arise,
as can be appreciated in Figure 4. Most noticeably, at the children’s mouth level, recirculations mainly
redirect the air towards the side of the inflow boundary condition and the front of the room, where the
teacher stands, is quite stagnant. The dynamic on these middle levels is less directly influenced by the inflow
boundary condition, and horizontal velocity components are of lower magnitude. In turn, the vertical velocity
component becomes preponderant, as thermal plumes dominate the air movement near the room occupants.
Air rises within the plumes and ultimately reaches the ceiling, where it spreads horizontally and descends
near the walls and in-between plumes while reducing its temperature. This effect is most notorious next to
the closed windows, where localized downwards drafts are stronger, as the closed window panes are colder
than the walls. Therefore, a tridimensional airflow is developed, with notorious vertical mass advection.

The room’s temperature field, depicted in Figure 5, attests to the described airflow. There is a clear
division between the lower portion of the room (i.e. mouth level and below), where the temperature is
around 1 ◦C above the inflow boundary condition, and the upper portion, where the temperature is higher
due to the heating induced by the teacher and students. After an hour, the latter reaches almost 19 ◦C, 1 ◦C
above the initial and wall boundary conditions. Both zones have a rather homogeneous temperature field.

Finally, Figure 6 explores the pathogen (i.e. passive tracer) distribution for both the infected student at
the front and at the back of the classroom. The tracer distribution provides a complementary depiction of
how the airflow evolves inside the classroom. In the case of the student at the front of the class, the emitted
tracer is both horizontally and vertically transported. The horizontal advection is mainly towards the open
window, to the back and left of the infected student, as a consequence of the previously observed recirculation
at the students’ mouth level. The vertical advection is caused by the thermal plumes. The tracer reaches the
ceiling next to the inflow wall and is mainly transported to the front of the class, descending to lower heights
due to the downwards flow at the closed windows and at the walls, and also in-between thermal plumes.

On the other hand, in the case with an infected child sitting at the back, there is a higher tracer dispersion
all over the classroom, particularly at breathing level, although higher concentrations are attained at the
back. Again, the tracer field evidences considerable vertical mass advection, induced by the thermal plumes.
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(a)

(b)

(c)

Figure 3: Velocity field slices for case 1. (a), (b) and (c) show the instantaneous velocity x, y and z
components, respectively, after an hour of simulation.
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(a)

(b)

(c)

Figure 4: Mean velocity field at different horizontal planes for case 1: (a) at 10 cm from the floor, (b) at the
children’s mouth level and (c) at the middle of the awning window. The coloured background corresponds
to the vertical velocity component and the arrows show the horizontal projection of the velocity field.
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Figure 5: Instantaneous temperature field for case 1 after an hour.

(a)

(b)

Figure 6: Instantaneous quanta concentration field slices for case 1, for the infected individuals sitting at (a)
the front and (b) the back of the room.
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3.1.2 Case 2: front window open

For the second simulation scenario, with the front window open, the results are shown in Figures 7, 8, 9 and
10.

The velocity field components depicted in Figure 7 show a similar behavior as the one observed for the
first simulation case. Air enters the room at the open window, sinks due to thermal effects and a radial cold
draft evolves from the impact point near the floor. On higher levels the airflow becomes more complex and
is mainly driven by the thermal plumes and cooling at the walls.

Figure 8 show the mean flow at different heights. The cold draft near the floor exhibits a different pattern
than the one observed for the first case. As the door is aligned with the open window, part of the cold draft
moves directly towards the door and exits the domain. Nonetheless, another part moves towards the back
of the room and progressively moves upwards due to thermal effects. On the other hand, upper levels’ flow
is once more dominated by thermal effects and many recirculations arise. A recirculation towards the open
window also appears at mouth level for case 2.

For case 2, Figure 10 depicts the spatial tracer distribution. In the case of the infected child sitting at
the front of the room, there are some noticeable differences with respect to case 1. In case 2, the pathogen
is advected to the front of the room at breathing level (not backwards) due to the recirculation towards
the open window, and upwards by the thermal plume. Nonetheless, less pathogen reaches the upper-front
part of the classroom than in case 1. In contrast, part of the tracer is captured by the inflow air, reaches
the floor and is then transported to breathing level. Consequently, case 2 allows for a more widespread and
homogeneous tracer distribution at breathing level than case 1.

For the infected individual sitting at the back of the classroom, case 2 presents certain differences with
case 1 due to the different upper level recirculations. Although in both cases the tracer travels mainly
upwards, in case 2 a greater part of it is transported to the front of the room instead of moving to the back.
This results in lower tracer concentrations at breathing and floor level in the student’s area, but higher
concentrations where the teacher is located.

3.1.3 General observations

Both cases show remarkable flow complexities, yet exhibit some common characteristics. In both cases the
upper and lower room heights develop flows of different nature. Near the floor, cold drafts are induced by
the inflow boundary condition and there is little recirculation. As progressively higher horizontal planes are
inspected, the flow slows down and many recirculations arise, which are mostly directed towards the inflow
boundary condition. Additionally, thermal effects become preponderant, with plumes forcing air upwards
and descending drafts forming over the cold walls.

One of the main concerns for the simulated scenarios, apart from contagion risk, is thermal comfort. The
child sitting next to the window will undoubtedly be colder, but the low cold draft generates a significant
vertical temperature gradient for most occupants, which implies an adverse thermal comfort condition. Addi-
tionally, it is interesting to notice that children sit at the colder portion of the room. Therefore, the natural
heating their thermal load provides is mainly wasted, as only the upper unoccupied portion of the room
heats up.

Finally, the simulations confirm the existence of relevant pathogen concentration inhomogeneities at
breathing level, which justify the need of evaluating to what extent Wells-Riley perfectly mixed models are
valid.
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(a)

(b)

(c)

Figure 7: Velocity field slices for case 2. (a), (b) and (c) show the instantaneous velocity x, y and z
components, respectively, after an hour of simulation.
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(a)

(b)

(c)

Figure 8: Mean velocity field at different horizontal planes for case 2: (a) at 10 cm from the floor, (b) at the
children’s mouth level and (c) at the middle of the awning window. The coloured background corresponds
to the vertical velocity component and the arrows show the horizontal projection of the velocity field.
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Figure 9: Instantaneous temperature field for case 2 after an hour.

(a)

(b)

Figure 10: Instantaneous quanta concentration field slices for case 2, for the infected individuals sitting at
(a) the front and (b) the back of the room.
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3.2 Contagion risk at mouth level
3.2.1 Risk maps

For both simulation cases and for both infected children’s positions, a risk map has been computed according
to the described procedure in section 2.3. Risk has been evaluated for a one hour exposure period for both
the first simulated hour (i.e. encompassing the initial transient flow) and the stationed concentration field.
This aims at evaluating the importance of the transient process at the beginning of the simulation. The
resulting maps were almost identical, meaning that the transient effects at the beginning of the simulation
are not particularly relevant for the total risk. Therefore, only the steady state risk maps are reported.

The risk maps obtained for cases 1 and 2 are shown in Figures 11 and 12, respectively.
One of the most noticeable features in the results is that risk increases towards the open window, whether

that is at the back (case 1) or at the front (case 2) of the room. This is associated with the recirculation
patterns observed at mouth level, shown in Figures 4 and 8.

Furthermore, it is evident that there are important risk inhomogeneities for all scenarios. These are most
important near the infected individual but, as the room is relatively crowded, higher risk zones comprise
several other children in the room. At greater distances, spatial risk variations decrease.

Although the probability of infection might seem rather low (most commonly below 0.20%, and never
above 1%), care should be taken when interpreting the absolute risk results. As it was previously mentioned,
the analyzed scenario consideres a quanta emission rate of 1 quanta/h. Nonetheless, quanta emission rates
of more than 100 quanta/h have been suggested for SARS-CoV-2, and exposure events could last more than
one hour. Consequently, risk values more than two orders of magnitude higher could be attained.

(a) (b)

Figure 11: Risk maps for case 1 at children mouth level, considering a one hour steady state exposure with
a quanta emission rate of 1 quanta/h. Grey circles represent the position of the head of susceptible children.
The pink circle represents the infected individual, at either (a) the front or (b) the back of the classroom.
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(a) (b)

Figure 12: Risk maps for case 2 at children mouth level, considering a one hour steady state exposure with
a quanta emission rate of 1 quanta/h. Grey circles represent the position of the head of susceptible children.
The pink circle represents the infected individual, at either (a) the front or (b) the back of the classroom.

As it was previously mentioned, the presented risk maps can, up to a certain limit, be proportionally
scaled for higher quanta emission rates and exposure times. This also allows for the inclusion of face masks,
which can be represented by introducing a filtering factor in equation (6).

3.2.2 Comparison with the fully mixed Wells-Riley model

As we have restricted the results to the steady state portion of the CFD simulation, the equilibrium solution
of equation (7) will be analyzed (i.e. the original Wells-Riley model). By setting the quanta time derivative
to zero in equation (7), it can be shown [26] that in this case the predicted risk is given by equation (9).

P = 1− e−
pIqT

Q (9)

For the simulation conditions, the Wells-Riley box model results in an infection risk of 0.074%5. This
is a reasonable estimation for some of the individuals (see lighter blue zones of the risk maps), but clearly
underestimates the risk for many students. This is quantitatively evaluated in Figure 13, which shows the
infection probability risk for each susceptible child as a function of the distance to the infected individual.
Additionally, Figure 13 shows the fully mixed (and therefore independent of distance) analytical Wells-Riley
model.

The highest risk was attained for case 1 with the infected individual sitting at the front, at the shortest
distance. In this case, the risk predicted via the CFD coupled approach was approximately seven times
higher than the one predicted via de traditional box model. Nonetheless, this was not the case for other
configurations. Most noticeably, for case 1 with the infected individual at the back of the room, the highest
risk was attained at a distance of more than 2 m, which is larger than the typical physical distancing
recommendation for COVID-19 [23]. This is consistent with the results obtained in [9], and highlights the
importance that flow inhomogeneities might play in indoors airborne infections.

Despite the fact that the fully mixed Wells-Riley model greatly underestimates the contagion risk at some
positions, on average it has a relatively good performance. Even though the flow in the room was shown to

5For contrast, the transient Gammaitoni-Nucci model predicts a probability of 0.063%.

16



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, USA, July 11-15, 2022

ICCFD11-2022-3602

be extremely complex, the fully mixed model predicts a risk level that is appropriate for many occupants.
Therefore, the model provides a simple and useful tool for mean risk assessment.

Figure 13: Infection probability as a function of distance to the infected individual obtained from the coupled
CFD and Wells-Riley approach. The horizontal black line depicts the probability of infection estimated via
the fully-mixed Wells-Riley approach.

4 Conclusions and future work
Highly resolved LES simulations of an indoor naturally ventilated school classroom during wintertime have
been conducted. Airflow patterns were explored and passive tracers were used to assess the long distance
airborne contagion risk of SARS-CoV-2 by coupling of the CFD results with a Wells-Riley approach. We
particularly highlight the size and resolution of the CFD simulations, which attest to the great computational
capabilities of CHAMAN.

The simulation results revealed remarkably complex airflow patterns. Thermal boundary conditions were
found to be of the utmost importance, both at the inflow of cold air, which generated low cold drafts, and
at the immersed boundaries of the occupants bodies, which generated thermal plumes that dominated the
airflow from mouth height and above. The passive tracer fields further evidenced the flow complexities. In
particular, recirculations towards the inflow boundary were observed at mouth level.

Additionally, the risk assessment methodology employed allowed for the generation of infection probability
maps at mouth level. These suggest that pathogen inhomogeneities may play a significant role in airborne
contagion, as local pathogen maxima significantly increase the probability of infection. Furthermore, the
results showed that airborne contagion risk is mostly linked to airflow patterns and not to mere distance
to the infected individual. Therefore, physical distancing could be insufficient to cope with long distance
airborne infections.

The traditional fully mixed Wells-Riley approach was shown to provide an adequate estimation of the
average risk of infection in the room, although it underestimates local risk maxima and overestimates risk
for many positions. Despite this, given its simplicity, it remains a useful tool for quick risk assessment.

Further analysis of the preliminar simulation results is ongoing. In particular, grid independence and
time convergence are being tested. Additionally, turbulence spectrum analysis will be performed.

Future work aims at simulation of more ventilation configurations, refinement of the initial and bound-
ary conditions, validation via measurement campaigns and implementation of more physical models within
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CHAMAN. In particular, we aim at implementing a Lagrangian particle module in order to evaluate the
performance of the passive tracer approach. Additionally, the effects of virus inactivation and deposition
could be explored, as well as the impact of not explicitly modelling the breathing of the occupants.
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