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Abstract: Accurate wake modeling of wind turbines is essential for wind farm power output
estimation or designing wind farm control strategies to help improve the overall performance of a
wind farm. High-fidelity physics-based methods that can account for variable atmospheric wind
conditions, and interactions between wakes are computationally expensive, and, thus data-driven
surrogates are sought for fast and accurate wake modeling of wind turbines. In this work, we
explore two deep learning methods to learn the wake model from an approximate form of the
Reynolds-averaged Navier–Stokes equations. The first method is based on a single neural network
that is trained to learn the mapping between the parameter space and the wake flow field. The
second method utilizes a composite neural network that is trained using large samples of low-fidelity
data along with very few samples of high-fidelity data. We train a composite neural network using
data generated from the Gauss and curl wake models treated as proxies for low- and high-fidelity
models, respectively. This work opens up possibilities for data-efficient construction of predictive
surrogates for wake modeling that can be utilized to study the influence of wind speed, yaw angles,
and layout configuration on wind farm power production.
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1 Introduction
The U.S. Department of Energy has set the goal of generating 20% of the nation’s electricity from wind
energy by 2030 [1] and similar goals have been set worldwide [2]. This rapid growth in the utilization of
non-conventional energy resources like wind energy is important considering the depletion of fossil fuels and
their negative impact on the environment and climate change. The layout optimization and control of wind
farms are very important for realizing this goal [3]. A strong wake interaction between wind turbines is
a major source of power loss in wind farms [4]. Once the kinetic energy is extracted by the first row of
turbines, the wind speed does not recover to its freestream speed and subsequent turbines encounter lower
wind speed. Therefore, accurate modeling and improved prediction of the wake are important for achieving
optimal wind farm layout design and better yaw-control strategies to improve the operational efficiency [5].

Wake modeling is a very challenging problem due to spatio-temporal variability of wind speed, unsteady
nature of interactions of turbine wakes with other wakes, and atmospheric turbulence [6]. There are different
approaches for modeling wake ranging from high-fidelity large eddy simulation (LES) to simplified analytical
models. One of the most widely used Jensen models is derived based on linear expanding wake assumption
[7]. The Guass model is derived by applying conservation of mass and momentum distribution and assum-
ing a Gaussian kernel for velocity deficit in the wake [8]. The curled wake model was proposed to capture
the curling mechanism in wake steering and is obtained by linearizing the Reynolds-averaged Navier–Stokes
(RANS) streamwise momentum equation and neglecting the pressure gradient and viscous forces in a bound-
ary layer [9]. Additionally, high-fidelity methods like Reynolds-Averaged Navier-Stokes (RANS) and large
eddy simulation (LES) can be applied to resolve phenomena like wake meandering, yawed inflows, and the
effect of atmospheric stratification on wake development [10, 11]. However these high-fidelity methods are

1



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui,Hawai, July 11-15, 2022

ICCFD11-2022-3401

computationally intractable to be used for optimization or control, and, hence simpler analytical models are
preferred for outer loop tasks.

Recently, machine learning is being applied to variety of problems in wind energy, such as, power fore-
casting [12, 5]; superresolution of wind data from global climate models [13]; airfoil design optimization for
wind turbine [14]; reconstruction of spatiotemporal wind field from LIDAR measurements [15, 16]; control of
wind farms [17]; and many more [18]. Machine learning is also being utilized for building a surrogate model
for wake prediction. Ti et al. [19] proposed a machine learning-based wake model by training deep learning
using a dataset generated from CFD simulation with a modified k − ϵ model for turbulence modeling and
actuator disk model for a wind turbine. Renganathan et al. [20] developed a data-driven wake model based
on compressing the LiDAR data using a convolutional autoencoder and then learning a relation between
parameter space to latent space with a neural network or a Gaussian process model. Modal decomposition
techniques have also been explored to model the dynamics of the velocity field in the wake of the turbine
[21].

In this work, we investigate two deep learning approaches for building a data-driven surrogate model for
the wake prediction behind a single wind turbine. The first approach utilizes a simple feed-forward neural
network to learn the mapping between the parameters of the surrogate model and the velocity in the wake of
the turbine. The second approach is based on a composite neural network [22] that uses the data generated
from the Gauss and curl model as proxies of low- and high-fidelity models. Section 2 presents two deep
learning models used in this study for data-driven wake modeling. The data pre-processing for training
deep learning models is described in Section 3. Section 4 discusses the numerical results obtained with both
surrogate models and compare them against the true data. The concluding remark is provided in Section 5.

2 Deep Learning Models
Here, we describe two deep learning models that are used for building a surrogate model for wake prediction
behind the single wind turbine.

2.1 Feed-forward neural network
A feed-forward neural network is designed using several layers consisting of the predefined number of neurons.
Each neuron is associated with certain coefficients called weights and some bias. The weight determines how
significant a certain input feature is to the output. The input from the previous layer is multiplied by a
weight matrix as shown below

Sl = Wlxl−1, (1)

where xl−1 is the output of the (l− 1)th layer, Wl is the matrix of weights for the lth layer. The summation
of the above input-weight product and the bias is then passed through a node’s activation function which
is usually some nonlinear function. The introduction of nonlinearity through activation function allows the
neural network to learn the complex relations between the input and output. The output of the lth layer
can be written as

xl = ζ(Sl +Bl), (2)

where Bl is the vector of biasing parameters for the lth layer and ζ is the activation function. If there are L
layers between the input and the output in a neural network, then the output of the neural network can be
represented mathematically as follows

ỹ = ζL(W
L, BL, . . . , ζ2(W

2, B2, ζ1(W
1, B1,x))), (3)

where x and ỹ are the input and output of the feed-forward neural network , respectively. There are several
activation functions that provides different nonlinearity. Some of the widely used activation functions are
sigmoid ζ(ϕ) = 1/(1 + e−ϕ), hyperbolic tangent (tanh) ζ(ϕ) = (eϕ − e−ϕ)/(eϕ + e−ϕ), and rectified linear
unit (ReLU) ζ(ϕ) = max[0, ϕ].

The matrix W and B are determined through the minimization of the loss function (for example mean
squared error for regression task). The gradient of the objective function with respect to trainable parameters
is calculated through the backpropagation algorithm. The optimization algorithms like the Adam method
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[23] provides a rapid way to learn optimal weights. The training procedure for a neural network can be
summarized as follows

• The input and output of the neural network are provided along with some initial weights and bias.

• The training data is propagated forward through the network to produce output ỹ whose true label is
y.

• The derivative of the objective function with each of the neural network parameters is computed using
the backpropagation.

• The trainable parameters of the network are updated based on the learning rate and the optimization
algorithm.

This procedure is repeated until convergence or the maximum number of iterations is reached.

2.2 Composite neural network
The main idea in multi-fidelity modeling is to learn the relation between low- and high-fidelity data. The
correlation strategy between low- and high-fidelity data can be expressed as follows

yH = ρ(x)yL + δ(x), (4)

where yL and yH are low- and high-fidelity data respectively, ρ(x) is the multiplicative correlation, and δ(x)
is an additive correlation. The relation given in Equation 4 captures only the linear relationship between
low- and high-fidelity problems. For many scientific problems like wake modeling, the correlation between
low- and high-fidelity data is nonlinear. Meng and Karniadakis [22] put forth a composite neural network
that can discover the nonlinear correlation and a generalized scheme can be written as

yH = F (yL) + δ(x), (5)

where F (·) is a function that maps low-fidelity data to high-fidelity data. Equation 5 can further be rewritten
as follows

yH = F(yL,x), (6)

The unknown function F(·) can be divided into linear and nonlinear parts. Therefore the mapping from
low-fidelity data to high-fidelity data can be written as follows

yH = Fl(x,yL) + Fnl(x,yL), (7)

where Fl(·) and Fnl(·) are linear and nonlinear parts of F(·), respectively.
The composite neural network has three feed-forward neural networks. The first one is the low-fidelity

neural network NNL(xL,θ) that approximates the low-fidelity data. The second and third neural networks,
NNHi

(xH ,γi), i = 1, 2, are utilized for approximating the linear and nonlinear correlation between low-
and high-fidelity data (i.e., Fl = NNH1 and Fnl = NNH2). The unknown parameters of the multi-fidelity
composite neural network, θ,βi, i = 1, 2 are learned by minimizing the below loss function

MSE =
1

NyL

NyL∑
i=1

(
|ỹL − yL|2

)
+

1

NyH

NyH∑
i=1

(
|ỹH − yH |2

)
+ λ

∑
β2
i (8)

where ỹL, ỹH denotes the output of NNL , NNH , respectively. β corresponds any weights from ỹL and
ỹH2

, and λ is the regularization rates for β. The regularization is usually adopted to prevent overfitting. If
we have more than one low-fidelity model, then we can employ multiple low-fidelity neural networks (i.e.,
NNLi(xLi ,θi), i = 1, . . . , n, where n is the number of low-fidelity models). The output from all these low-
fidelity models can be concatenated together and can be given as an input to high-fidelity neural network.
One of the main advantages of the present approach is that it allows for different amount of sampling of
low- and high-fidelity data and this sampling can be essentially at different points. This makes the present
approach flexible for fusing data from different sources.
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3 Data Generation
We consider the NREL 5-MW turbine [24] which has a hub height of 90m and the diameter of 126m. The
geometry of the NREL 5-MW turbine is available open-source and is widely used as a baseline by the wind
research community for offshore wind research.

Our surrogate model for the NREL 5-MW turbine has three parameters, i.e., inflow wind speeds, yaw
angle, and turbulence intensity. First, the data is generated for training a neural network, and we utilize the
FLOw Redirection and Induction in Steady State (FLORIS) software [25] for this step. FLORIS has options
for several physics-based models ranging from analytical approaches to one-dimensional linearized Reynolds-
Average Navier-Stokes equations (RANS) model. The use of simplified models allowed us to accelerate the
data generation and pre-processing data curation steps for demonstrative purposes. The methods presented
herein can be easily extended to data obtained from high-fidelity CFD simulations.

For our numerical experiments, the Gauss model is treated as the low-fidelity model, and the curled wake
model [9] is considered a proxy for the high-fidelity model. Based on regular wind farm operating conditions,
the low-fidelity data is generated for inflow wind speeds between 5.0m/s to 15.0m/s with an interval of
1.0m/s, turbulence intensity between 4% to 16% with 2% interval, and for yaw angles between −20◦ to 20◦

with 2◦ interval. The data for the high-fidelity model is generated for inflow wind speeds [5.0, 10.0, 12.5, 15.0]
m/s, yaw angles [−20◦,−10◦, 0◦, 10◦, 20◦], and turbulence intensity [4%, 10%, 16%]. The data is extracted
at different downstream locations in the wake region behind the rotor. For each downstream location, the
data is extracted along the cross-plane which covers 2D distance in the spanwise direction on each side
of the turbine, and 2H distance in the vertical direction. In particular, if we discretize the domain with
nx × ny × nz, we get nx samples for a single set of parameters corresponding to the velocity in the Rny∗nz

cross-plane. To improve the robustness of deep learning models, we use thrust coefficient as an input feature
instead of inflow wind speed, and the labels are normalized velocity deficit, i.e., i.e., ∆U/U∞ instead of the
wake velocity. The learning map for a composite neural network can be written as follows

NNL : {CT , λ,TI, x} ∈ R4 → {ỹL} ∈ Rny∗nz , (9)

NNH : {CT , λ,TI, x,yL} ∈ Rny∗nz+4 → {ỹH} ∈ Rny∗nz , (10)

where CT is the thrust coefficient at corresponding inflow wind speed, λ is the yaw angle, TI is the turbulence
intensity, x is the stream-wise location, and yL is the prediction from the low-fidelity model at high-fidelity
data points. Here, ỹL and ỹH are the output from low- and high-fidelity neural network part of the composite
network.

4 Results and Discussion
This section presents the validation study where the wake prediction from data-driven models is compared
with the curled wake model. The results from a single feed-forward neural network are referred to as HF
and the results from a composite neural network are called MF. The data-driven models are evaluated at
different inflow wind speeds, yaw angles, and turbulence intensities. Particularly, the inflow wind speed is
varied from 5.0m/s to 15.0m/s with a 1.0m/s interval, yaw angle from −20◦ to 20◦ with 5◦ interval, and
turbulence intensity from 4% to 16% with 2% interval. Therefore, we have a total of 693 test parameters
for the evaluation. The neural network for the HF model is composed of four hidden layers with 40 neurons
in each hidden layer. The low-fidelity network in a composite network has 6 hidden layers with 60 neurons
in each hidden layer, and the high-fidelity network consists of four hidden layers with 40 neurons. Both the
neural network uses the tanh activation function and is trained for 5000 epochs.

The performance of both data-driven models is assessed using the normalized root mean squared error
(RMSE) for the kinetic energy flux in the streamwise direction. We consider the area between −D to D
in the spanwise direction and 0 to 2H in the vertical direction for computing the kinetic energy flux at the
corresponding streamwise location. Mathematically this can be written as follows

E(x) =
∫ D

−D

∫ 2H

0

U2dzdy, (11)
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Figure 1: Normalized RMSE of prediction of kinetic energy flux for different yaw angles (γ) at TI = 4%

Figure 2: Normalized RMSE of prediction of kinetic energy flux for different yaw angles (γ) at TI = 10%

where U is the velocity in the wake of the turbine, z is the vertical direction, and y is the spanwise direction.
The relative percentage error for the kinetic energy flux is defined as follows

RMSE =

√√√√ 1

nx

10D∑
x=1D

(
ET (x)− EP (x)

ET (x)

)2

, (12)

where x is the streamwise location, ET is the true kinetic energy flux, and EP is the predicted kinetic
energy flux from the data-driven surrogate model. We note here that the near wake region (x ≤ 1D) is
not considered for computing the relative percentage error as the flow is strongly disturbed by the rotor
geometry in this region. Figures 1- 3 displays the variation of normalized RMSE for kinetic energy flux in
the streamwise direction for different turbulence intensities 4% to 16%. Overall the normalized RMSE is of
a similar magnitude for all inflow wind speeds and turbulence intensity for both HF and MF models. The
normalized RMSE for the inflow wind speed of 12.0m/s is higher for the MF model compared to the HF
model.

Next, we visualize the velocity field in the hub-height plane for some test cases. In Fig. 4 and Fig. 5, the
velocity predicted from HF and MF models along with normalized percentage error is depicted for inflow
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Figure 3: Normalized RMSE of prediction of kinetic energy flux for different yaw angles (γ) at TI = 16%

Figure 4: Visualization of the velocity field in the hub-height horizontal plane for inflow wind speed U∞ =
11.0m/s and yaw angle γ = −15◦ at turbulence intensity 6%.

wind speed of 11.0 m/s at yaw angle −15◦ and 0◦, respectively. The normalized percentage error is calculated
as the difference between true and predicted wake velocity non-dimensionalized with the inflow wind speed,
i.e., (UT−UP )

U∞
× 100, where UT is the true velocity, UP is the prediction from the data-driven model, and U∞

is the inflow wind speed. We observe that both HF and MF are able to capture the flow structure in the
wake of the turbine with a high level of accuracy. We also show the prediction for the Gauss model obtained
for the MF to demonstrate the success of a low-fidelity network in accurately predicting the wake velocity.
Fig 6 and Fig. 7 shows the velocity field in the cross-plane at a downstream distance of x/D = 8 for inflow
wind speed of 11.0 m/s at yaw angles −15◦ and 0◦, respectively. The prediction accuracy for the HF and
MF is mostly uniform over the cross-plane, and there is a very good agreement with the true velocity field
for the curl model.

5 Conclusion and Future Work
This work introduces two deep learning methods to predict the three-dimensional velocity field in the wake of
the wind turbine by leveraging data obtained from approximate for of the Reynolds-averaged Navier-Stokes
(RANS) equations. Specifically, a parametric surrogate model for wake prediction is developed by utilizing a
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Figure 5: Visualization of the velocity field in the hub-height horizontal plane for inflow wind speed U∞ =
11.0m/s and yaw angle γ = 0◦ at turbulence intensity 6%.

Figure 6: Visualization of the velocity field in the the cross-plane at x/D = 8 for inflow wind speed U∞ =
11.0m/s and yaw angle γ = −15◦ at turbulence intensity 6%.

neural network that learns the mapping between the inflow wind speed, yaw angle, and turbulence intensity
to a high-dimensional velocity field. Furthermore, a composite neural network is investigated that is trained
using two streams of data. The data from the analytical model is treated as a proxy for low-fidelity data,
and the data from RANS equations is considered the high-fidelity data. Overall, once trained both data-
driven models are able to predict the wake velocity with a sufficient level of accuracy compared to the true
high-fidelity data.

This work is the first step toward building data-driven wake models by using multi-fidelity data. One of
the limitations of the present approach is training the neural network to predict a high-dimensional velocity
field (O(1) → O(1000)) and this will be addressed using dimensionality reduction techniques to compress the
data in future studies. Our future work also includes extending these deep learning models for data gathered
from three-dimensional RANS/LES simulations and LiDAR measurements. The deep learning models can
also be extended to quantify uncertainty using a Bayesian neural network [26]. Furthermore, the integration
of these models into FLORIS for modeling the flow field in a large wind farm to perform layout optimization
is also another direction for future work. Introducing the physics-based prior knowledge through a loss
function can also be a considerable path for our future work.
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Figure 7: Visualization of the velocity field in the the cross-plane at x/D = 8 for inflow wind speed U∞ =
11.0m/s and yaw angle γ = 0◦ at turbulence intensity 6%.
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