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Abstract: Aerodynamic loads that are important to launch vehicle programs such as NASA’s
Space Launch System (SLS) include both integrated loads such as the force & moment on the
entire vehicle and distributed loads. In this work two examples of distributed loads are considered:
the pressure field on the surface of the vehicle and sectional loads, which are one-dimensional
distributions along the axis of the launch vehicle. In some modern flight programs, the integrated
loads, such as lift and drag, used to design the guidance and control laws for the vehicle come from
wind tunnel testing, while distributed loads are produced using Computational Fluid Dynamics
(CFD). The first task that is addressed in this paper, then, is to provide a formal method to adjust
the distributed loads so that integrating them matches the prescribed integrated load. In addition,
the integrated loads in a launch vehicle typically include an uncertainty estimate. The second task
is to distribute this prescribed integrated uncertainty to each point in a distributed load. Both tasks
are addressed using the same technique, which is to create distributed load profiles that isolate
adjustments to one integrated load while leaving the others unaffected. These adjustments are
informed by Proper Orthogonal Decomposition (POD) of the entire CFD-based distributed load
database. Once applied, the adjusted distributed loads can be used to evaluate any scalar quantity
of interest that might be needed by downstream users such as structural analysis or trajectory
modelers.

Keywords: Computational Fluid Dynamics, Launch Vehicles, Uncertainty Quantification, Proper
Orthogonal Decomposition

1 Introduction
The Space Launch System (SLS) is a super heavy-lift launch vehicle under development at the National
Aeronautics and Space Agency (NASA) and its contractors [1], that has the capability of sending humans
beyond Earth orbit for the first time in almost 50 years [2]. Together with the Orion spacecraft [3], Explo-
ration Ground Systems (EGS) [4], Gateway [5], Human Landing System, and other programs, SLS is a key
part of NASA’s Artemis program that will return humans, including the first woman and the first person of
color, to the Moon for the first time since Apollo. An image of SLS, Orion, and some of the EGS ground
systems for the Artemis I mission is shown in Figure 1.

Because the operator of these programs and missions, NASA, is a public agency, new engineering tech-
niques and results are often published, benefiting the public in general and the aerospace industry in partic-
ular. In addition, executing such a large enterprise within NASA provides practical experience to NASA’s
leading aerospace engineers and researchers, which improves the applicability of NASA research to current
space industry needs.

This paper focuses on handling of aerodynamic loads across a large launch vehicle program. Aerodynamic
loads for a launch vehicle can be estimated using a variety of methods, including wind tunnel experimentation,
theoretical models, numerical modeling such as CFD, and flight test. Each of these potential data sources
has its own advantages and disadvantages. For a program like SLS, which has not flown yet, the two primary
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Figure 1: Artemis I vehicle including SLS, Orion spacecraft, and EGS hardware at Launch Pad 39B on
March 18, 2022

data sources are wind tunnel testing and CFD. Some of the key advantages and limitations of these two data
sources as they relate to SLS are:

• Each CFD solution has a high spatial density of information and can provide modeling for the entire
surface of the vehicle and the flow around it whereas wind tunnel testing is best suited for scalar
measurements like total forces & moments or pressures at directly instrumented points.

• CFD can directly model flight hardware and flight conditions, for example including rocket plumes and
running at the flight Reynolds number and scale.

• Measurements from wind tunnel testing are typically associated with a higher degree of trust because
they are not subject to numerical error and have a long history of applications in launch vehicle
programs.

Without going into too much detailed discussion about these concepts, the approach of SLS has generally
been to use wind tunnel testing where practical and CFD for all other needed aerodynamic products. In
particular this means for SLS that the integrated aerodynamic loads (i.e. the total forces and moments in
three axes on the entire vehicle) used by the program are directly from wind tunnel testing [6]. Distributed
loads, on the other hand, such as the surface pressure field on the entire surface of the vehicle, are derived
from CFD [7]. Because the integrated and distributed loads come from different sources, there are two
desirable properties that are not necessarily met:

1. The integral of the distributed loads should match the integrated loads.

2. It should be possible to disperse loads as part of an uncertainty analysis without violating item #1.

SLS is an example of a program where the integral loads and distributed loads are derived from different data
sources, and so integrating the nominal distributed loads yields a result different from the official integrated
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Figure 2: Sectional load slices for SLS Block 1B configuration

loads. For example, integrating z-component of the force from the surface pressure database does not match
the CN for the same flight condition. In other words, desired property #1 from above is not satisfied.

Furthermore, each integrated load has an uncertainty estimate, essentially stating that the force or
moment can take a range of possible values. Therefore satisfying desired property #2 from above means
repeating the same process as for #1, but for many possible values of the forces & moments at each flight
condition.

In the SLS program, there are two major types of distributed loads: surface pressures and sectional loads.
The surface pressure database contains the pressure coefficient at all points on the vehicle for all expected
flight conditions and is relatively simple to understand but contains a large amount of data. The sectional
load database is essentially a projection of this database into 1D. This means dividing the vehicle into a
number of slices, as shown in Figure 2, and calculating the load on each slice.

For the SLS program, both the surface pressures and the sectional loads are derived from the same CFD
simulations, so they are consistent except that the sectional loads include viscous forces while the surface
pressure database does not.

In order to satisfy the two consistency constraints mentioned above, this paper develops a method based
on Proper Orthogonal Decomposition [8] of the surface pressure database that creates adjustments to the
distributed loads such that they are consistent with externally defined integral loads. A similar adjustment
to distributed loads that adjusts only the sectional loads was discussed in [9]. This work extends the ideas
from [9] by applying them directly to the surface pressures and is similar to the approach in [10] used for
sectional loads in the liftoff & transition phase of SLS flight (the present work focuses on the ascent phase
that follows liftoff & transition).

The advantages of applying the adjustments directly to the surface pressures are:

• Adjusted line loads can still be acquired as a surface pressure leads directly to a sectional load.

• Adjusting the surface pressure allows for cross-correlation, in which for example the vertical component
of line loads my change due to a dispersion in integrated axial force.

• Adjustments are consistent with all six integrated forces & moments simultaneously.

• Having a consistent surface pressure distribution means many other engineering analyses can use dis-
persed and consistent aerodynamic environments.

The result of the technique developed here is the creation of a surface pressure profile for each integrated
load. So for example there is a surface pressure distribution that adjusts the integrated force coefficient in
the axial direction, CA, by +1 at Mach 1.75 while leaving the force in the other perpendicular directions,
along with all the moments, unchanged. This approach is developed with the goal of maximum simplicity
for down-stream users such as structural engineers and guidance, navigation, & control teams.

For the phase of SLS flight known to the aerodynamics team as “ascent”, which lasts from about 30 seconds
into the flight to 2 minutes (more precisely when the vehicle reaches Mach 0.5 up to booster separation), the
NASA Ames SLS CFD Team runs approximately 1000 separate simulations in order to provide information
about all possible flight conditions. For Artemis I, this analysis has been conducted at least four times (along
with more limited analysis sets from the early phases of the program) using FUN3D [11] and OVERFLOW
[12] both with and without plume models for the four RS-25 engines on the SLS core stage and two Solid
Rocket Booster (SRB, hereinafter usually just “booster”) motors. More details about how these CFD solutions
are obtained are provided in Section 2.
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Table 1: Number of CFD solutions available from each Block 1 ascent database
Solver Plume Num. Solutions

FUN3D 13.1 power-off 1131
FUN3D 13.1 power-on 1380

OVERFLOW 2.2L power-off 907
OVERFLOW 2.2L power-on 6

Those 1000 or so CFD solutions are divided into an approximately fixed set of angle of attack (α) and
sideslip angle (β) combinations at preselected Mach numbers (M) from 0.5 to 5.0. Because so many CFD
solutions are readily available at each Mach number, the POD-based technique discussed in this paper does
not require any additional CFD solutions. Instead the information already in the database about how angle
of attack and sideslip angle affect the surface pressure are used to create representative surface pressure
modes. Section 3 describes step-by-step how these adjustment modes are created and includes more details
about the CFD surface pressure database (Section 3.1) and some images of sample POD modes (Section
3.2). Using SLS an example, Section 4 shows sample results of adjusted distributed loads and sample
implications for sectional loads and other products that use distributed aerodynamic loads as input. Finally
Section 5 discusses various extensions to the methods presented here, some limitations of the approach, and
the relationship of these methods to direct uncertainty quantification of distributed loads as discussed for
example in [13].

2 CFD Methodology
The results in this paper use a set of CFD solutions produced in 2017 for design certification of the Block 1
configuration of SLS to used for the first three Artemis missions. For that design cycle, the aerodynamics
team conducted an extensive verification analysis that include grid convergence analysis, turbulence model
sensitivity studies, rocket exhaust plume modeling effects, and code-to-code comparisons. As a result of
these investigations, there are three separate full CFD databases of SLS Block 1 ascent, each with at least
900 converged solutions. Two CFD software packages with very different meshing paradigms but otherwise
largely overlapping capabilities were used: OVERFLOW 2.2L from NASA Langley Research Center [12]
and FUN3D 13.1 also form NASA Langley Research Center [11]. Some of the solutions included simulated
plumes for the four RS-25 Core Stage engines and the solid rocket motors on each of two boosters; simulations
including the plumes are labeled “power-on,” and those without are labeled “power-off”. All CFD solutions
studied here were performed for the Artemis I SLS configuiration on the Pleiades supercomputers at the
NASA Advanced Supercomputing (NAS) facility1. Table 2 shows how many CFD solutions have been
archived for each permutation of solver and plume model. In the following sections, results from the middle
two databases (power-on FUN3D and power-off OVERFLOW) are analyzed and compared to show how
two different databases on the same vehicle configuration perform when the distributed load adjustment
procedures are applied.

FUN3D is a fully unstructured solver for the 3D Navier-Stokes equations developed at NASA Langley
Research Center. For this work, version 13.1 [11] was used, with a modification to write surface output in
.plt format instead of .szplt2. The solutions are Reynolds-averaged Navier-Stokes (RANS) solutions with
turbulence closure from the one-equation Spalart-Allmaras [14] turbulence model, and the flow is considered
turbulent everywhere. Non-slip, cold walls with the default FUN3D temperature were used to model the
surface boundaries of the vehicle except for the flow-through faces in the plenums of the six nozzles where
simulated fuel and oxidizer enters the flow, which used total pressure and subsonic pressure3 to set the thrust
conditions. The throat and subsonic regions of each nozzle were modified to match thrust and mass flow
but not temperature. The simulations used the perfect-gas version of FUN3D, so the exhaust is modeled as
high-temperature air and cannot match all three of thrust, mass flow rate, and temperature.

1The 2017 simulations used in this work predate the additions of the Electra and Aitken systems at NAS.
2Getting the .plt output format requires the –plt_tecplot_output option when calling FUN3D’s solver.
3This is FUN3D boundary condition 7011.
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(a) Mach 0.5 (b) Mach 1.4 (c) Mach 3.5

Figure 3: Flow visualization of select FUN3D solutions of Artemis I ascent at zero degrees α and β. Vehicle
surface is colored by pressure contours, where blue is low and red is high. A solution slice through the
center plane of the vehicle shows Mach number with green for local Mach less than freestream and orange
for higher. Purple is used in the two supersonic solutions to highlight regions of subsonic flow.

Two feature-based mesh adaptation cycles were performed using Mach number as the feature scalar key
and the older delta-l option. Unstructured meshes with triangular-prism layers cells and mostly tetrahedral
volume cells were generated using AFLR3 [15] with a wall spacing ensuring y+≤1 for the highest-Reynolds
number flight condition in the trajectory. The initial mesh had 53 million nodes, and the mesh refinement
within FUN3D added another 7 million nodes; the final mesh had a total of 175 million cells. The surface
mesh, which was not affected by mesh adaptation, had 950 thousand nodes and 1.9 million triangular faces.
Some example flow results are show in Figure 3.

OVERFLOW is a structured-overset grid CFD solver developed at Langley Research Center and has a
long history of support for NASA’s missions [12]. The OVERFLOW solutions in this work were performed
using version 2.2L, including the Cartesian off-body grid adaptation capability [16]. The initial grid system
for these OVERFLOW grids contained 1833 near-body grids and 548 million total points. A unique surface
triangulation was created from the full set of surface grids for various post-processing procedures, including
creating a surface pressure database with a single unique pressure coefficient for every point on the surface.
That surface triangulation was created using usurp and contains 6.6 million nodes and 13 million triangles.
The adaptation routine was allowed to grow the volume mesh to 600 million total points. From these numbers
it is apparent that the OVERFLOW solutions were obtained on a substantially finer grid, which was one
of the motivations of the detailed CFD verification study and also makes the comparison of their surface
pressure adjustments interesting.

For both solvers, a nominal sequence of steady-state iterations was run; in the FUN3D this ended at 3000
iterations, and for the OVERFLOW runs it was 20000. An additional sequence of unsteady RANS iterations
with a non-dimensional time step of 1.0 and 5 subiterations was prepared for cases where deemed necessary.
For cases with a Mach number less than or equal to 1.2, the unsteady iterations were automatically executed,
while they were only added as judged necessary for other cases after viewing iterative histories of the three
major bodies (left booster, right booster, and centerbody) and some major protuberances (i.e. other parts
of the vehicle that protrude from the main launch vehicle body). For OVERFLOW the additional iterations
required at least 4000 iterations, while for FUN3D it was 1000. Finally, additional unsteady iterations were
added as needed until the major iterative histories were judged (by a human) to have reached either a steady
state or a limit cycle.

While improvements could and have been made to the various technologies and procedures used to create
this data set, it is rare in that the entire database and not just select cases were run using two very different
approaches. For a database post-processing procedure such as described in this work, the SLS Block 1 ascent
CFD data set is a perfect test subject.
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3 Adjusting Distributed Loads
Once the distributed loads have been adjusted to match an integrated load, the same approach can be used
to adjust them again to match a dispersed integrated load as part of an uncertainty quantification. For
example, if the nominal CN for a given flight condition is 0.7, the database might say that the real value
may be between 0.55 and 0.85. This can be described as a simple equation:

C̃N = CN + εCNUCN (1)

where CN is the nominal normal force coefficient, εCN ∈ [−1, 1] is a random variable that samples a specified
probability distribution function, UCN is the magnitude of uncertainty in CN , and C̃N is the dispersed value.

Once the distributed loads have been adjusted to match CN , the same approach can be used to adjust
them further to match C̃N . Using this approach, each point in the distributed load will have a probability
distribution function (PDF) that is proportional (possibly reversed) to the integrated load. For example if
εCN is normally distributed, than the surface pressure profiles will be normally distributed at every point
on the surface. In general PDFs of local features (such as pressure coefficient) may be bimodal or even more
complex, especially in the presence of shocks [13, 17].

In the present work, this known limitation is tolerated because the statistics of the uncertainty estimate,
both the PDF of εCN and the scale UCN , are specified by external models. There is no set of numerical sim-
ulations that can be expected to reproduce the target integrated load PDF, especially since that uncertainty
estimate may include safety margins and estimates of changes to the geometry between analysis and flight.
A technique with limitations still provides value compared to the typical situation in which distributed loads
are considered deterministic by engineers who use them for other analysis.

In [9] we discussed a technique to directly adjust the sectional loads (also known as line loads). In this
work we extend this work by instead adjusting the surface pressures and then evaluating the line loads from
the adjusted surface pressures.

The outline of this approach is as follows:

1. Divide the database of distributed loads into a number of families; for SLS ascent, the families are the
cases with the same Mach number.

2. Calculate a Proper Orthogonal Decomposition (POD) of the distributed loads for each family.

3. For each of the 6 integrated load coefficients, find an optimal linear combination of the POD modes
that adjust one integrated coefficient without affecting the other 5.

This approach requires a sufficient number CFD solutions in each family to perform the POD [8]. At
a minimum there must be at least 6 CFD solutions available for each family since there are 6 constraints,
and results will improve with substantially more than this. For the SLS program, we typically have 69 cases
for each Mach number, so this adjustment and dispersion method does not require any additional CFD
simulations.

3.1 Description of SLS Distributed Load Databases
A flight condition is a unique combination of Mach number (M), angle of attack (α), and sideslip angle (β).
A typical ascent database consists of solutions at about 19 different Mach numbers and fixed set of about 69
combinations of α and β for each Mach number. For convenience we use r to denote a single flight condition
and x as a node on the surface grid of the CFD solution

ri =

Mi

αi

βi

 xj =

xjyj
zj

 (2)

At each flight condition, the surface pressure coefficient (cp) at each point on the surface grid is saved as
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an array. So for flight condition ri, the surface pressure array is

ci =


cp,i,1
cp,i,2
...

cp,i,nx

 (3)

where

cp,i,j = cp(ri,xj) (4)

is the surface pressure coefficient at node j of flight condition i. For convenience we drop the p subscript in
(3) when writing the array of surface pressure c.

The surface pressure database is a large matrix in which each column is one of the surface pressure arrays
from above. So for example

Cdb =
[
c1 c2 · · · cnr

]
where nr is the number of CFD solutions (also the number of flight conditions).

3.2 Proper Orthogonal Decomposition
In order to anchor the adjustments to the surface pressures to information from the existing CFD solutions
and also extract the most meaningful features from the surface pressure database, the use of a Proper
Orthogonal Decomposition (POD) approach is considered. The POD approach is closely tied to the Singular
Value Decomposition (SVD). POD is a Reduced Order Model (ROM) technique that has been used for many
aerospace applications [8, 18, 19]. It is a technique that identifies the primary signal from a large data set
in a robust and automated way. This section describes how it can be applied to distributed load analysis
using the surface pressure field from one CFD solution as the input “snapshot” and using a family of such
solutions and snapshots to identify typical surface pressure shapes.

First divide the pressure into a number of subsets (herein called “families”). As described previously, the
Mach number is used for this grouping in the present SLS example, so each family consists of CFD solutions
computed at the same flight Mach number. So if k1, k2, . . . , knk

are the indices i for the flight conditions in
family k, we will have

Mk1
= Mk2

= Mknk
(5)

Then we extract a subset of the surface pressure database that consists of the entire surface pressure coefficient
fields for these nk solutions.

Ck =
[
ck1

ck2
· · · cknk

]
(6)

At this stage, there is also the option to subtract the mean snapshot from each column before proceeding to
the next step:

c̄k =
1

nk

nk∑
i=1

cki
Ck =

[
ck1 − c̄k ck2 − c̄k · · · cknk

− c̄k
]

(7)

Whether (6) or (7) is used, the remaining steps are the same. In the examples shown in this paper, the
mean-subtracted option following (7) is utilized.

We then compute a singular value decomposition of the nx×nk matrix Ck

Ck = ΦΣVT (8)

The matrix Φ (note: this matrix is often written U, but we are saving that letter of the alphabet for
uncertainties, which will be discussed later) has column vectors that have the same dimension as the snapshot
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surface pressure arrays.

Φ =
[
φ1 φ2 · · · φnk

]
φi =


φi,1
φi,2
...

φi,nx

 (9)

The basis vectors also form an orthogonal matrix, so

‖φi‖2 = 1 (10)

φi · φj =

{
1 i = j

0 i 6= j
(11)

The matrix Σ is a rectangular matrix with so-called singular values along its diagonal.

Σ =



σ1 0 · · · 0
0 σ2 0
...

. . .
...

0 0 · · · σnk

0 0 · · · 0
...

...
...

0 0 · · · 0


(12)

Finally, the matrix V is defined so that the decomposition in (8) is satisfied. The singular values from (12)
are a generalization of eigenvalues for rectangular matrices and are arranged in descending order such that

σ1 ≥ σ2 ≥ . . . ≥ σnk
≥ 0

Each singular value σj is the L2 norm of norms when taking the dot product of the entire snapshot matrix
Ck with the mode φj . 4. It is common to summarize this by saying σj describes how much “energy” of the
snapshot matrix Ck can be described by mode φj . For example if all the snapshots are scale multiples of
the first snapshot, then σ1 would have a nonzero value and σ2 and all the others would be zero.

Recall that each POD mode φj has the same dimension as a surface pressure snapshot. Therefore the
POD modes can be mapped back onto the original surface and plotted as a feature identification exercise
and has been widely recognized for this property [20]. Figures 4 and 5 show two separate views of the first
three modes at both Mach 0.5 and 1.75 for the Artemis I configuration of SLS from the 2017 FUN3D surface
pressure database.

In Figures 4 and 5, a variant of the traditional blue-white-red surface pressure color scale is used: purple
signifies a negative pressure coefficient (more precisely φi,j value as described in (9)), white is close to zero,
and orange is positive. This altered color scale is used throughout the paper to provide a visual identifier
that a POD mode is shown rather than a nominal cp solution.

Furthermore, the bounds of the color bar are mostly irrelevant when plotting POD modes; because the
root-sum-square of each φi is by definition 1 (see (10)), a finer grid will have lower magnitudes for each
entry, and vice versa. However, using a common scale (0.003 in Figures 4 and 5) shows how each POD mode
either concentrates or spreads out its nonzero values.

It is common for the first few POD modes to have recognizable features and properties. For example, the
first Mach 0.5 mode from Figure 4(a) has a negative normal force (CN ) because the top surface is mostly
purple (cp<0) while the bottom (as seen from the left side view) is mostly orange (cp>0). The second mode
in Figure 4(b) has a similar nature but also includes significant but symmetric orange stripes near both the
front and back of the boosters. Mode 3, as shown in Figure 4(c), has a significant net side force as the left
side of the crew capsule near the front of the vehicle is orange while the right side is purple.

4This is an L2 norm in the vector sense; it does not account for triangles in the surface mesh with different areas, for example.
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(a) Mach 0.50 mode 1, FUN3D

(b) Mach 0.50 mode 2, FUN3D

(c) Mach 0.50 mode 3, FUN3D

(d) Mach 0.50 mode 1, OVERFLOW

(e) Mach 0.50 mode 2, OVERFLOW

(f) Mach 0.50 mode 3, OVERFLOW

Figure 4: Top and left-side views of first 3 POD surface cp modes at Mach 0.5
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(a) Mach 1.75 mode 1, FUN3D

(b) Mach 1.75 mode 2, FUN3D

(c) Mach 1.75 mode 3, FUN3D

(d) Mach 1.75 mode 1, OVERFLOW

(e) Mach 1.75 mode 2, OVERFLOW

(f) Mach 1.75 mode 3, OVERFLOW

Figure 5: Top and left-side views of first 3 POD surface cp modes at Mach 1.75
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The first three modes from the OVERFLOW solutions at Mach 0.5 (Figures 4(d)-4(f)) show some but
not all of the same features as the FUN3D (Figures 4(a)-4(c)). The main difference is actually that the
ordering of the modes is not the same; OVERFLOW mode 2 is most similar to FUN3D mode 3 but with the
sign reversed (which is arbitrary), and FUN3D mode 2 actually matches OVERFLOW mode 4. Ordering
of the modes in this application is somewhat sensitive because the singular values decrease slowly (typically
about 0.15 for the first mode and about 0.01 by the 20th mode). In addition, the OVERFLOW simulations
did not include simulated rocket plumes, which leads to the OVERFLOW modes placing less emphasis on
the aft portion of the vehicle.

Surface pressures typically have more sharp features at higher Mach numbers, and the POD modes are no
different, as the Mach 1.75 example in Figure 5 shows. For example the top view of the second mode, shown
in Figure 5(b), has easily identifiable shock structures along the top center of the back half of the vehicle.
These are anchored to brackets that help support a liquid oxygen feed line that carries liquid oxygen from
its tank near the top of main SLS stage around the large liquid hydrogen tank (instead of through it) and
down to the engine section where it can be mixed with the hydrogen. Interestingly, these shock structures
in Figure 5(b) are approximately antisymmetric, which would be unusual for a direct CFD surface pressure
solution. Meanwhile, these same shocks are far less prominent in modes 1 and 3 (Figures 5(a) and 5(c)). The
differences among these three modes provides an idea of how linear combinations of the same POD modes
might be used to stably alter the six integrated forces and moments.

3.3 Surface Pressure Adjustment
A modified surface pressure distribution (c′i) for one flight condition ri = (Mi, αi, βi) under this technique
is constructed using the original CFD solution plus a linear combination of the POD modes:

c′i = ci +

K∑
j=1

ajφj (13)

Here K≤nk is a subset of the full number of available POD modes. One typical approach to selecting K is
to capture a pre-specified fraction of the singular values, i.e. select K such that

f =
ΣK

j=1σj

Σnk

l=1σl
(14)

is at least 0.9 or some similar fraction. In the examples shown here, K=20 and nk=33.
The adjusted surface pressure distribution c′i from (13) must satisfy 6 constraints, one for each force

and/or moment coefficient:CA

CY

CN

 = −
∫∫

S

c′i(x, y, z)n̂ dÂ

C`

Cm

Cn

 =

∫∫
S

c′i(x, y, z)(x̂− x̂MRP )× n̂ dÂ (15)

where dÂ is a small patch of the surface and Â=A/Aref is just area normalized by a reference area. Also, n̂
is the local unit surface normal (in most practical cases, of a surface grid triangle), x̂ is the x, y, z coordinates
of a point on the surface divided by a reference length Lref , and x̂MRP is the normalized location of the
moment reference point. In other words, (15) states that the surface pressure must integrate to match the
externally specified integrated forces & moments.

In practice, using (15) directly is impractical. Instead, the next step is to integrate the surface pressures
for each of the K POD modes. For example

CA,j = −
∫∫

S

φjn̂ · ê1 dÂ (16)
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Once each mode has been integrated thusly, the six constraints on the adjusted surface can be rewritten

CA = CA(ci) +

K∑
j=1

ajCA,j C` = C`(ci) +

K∑
j=1

ajC`,j

CY = CY (ci) +

K∑
j=1

ajCY,j Cm = Cm(ci) +

K∑
j=1

ajCm,j

CN = CN (ci) +

K∑
j=1

ajCN,j Cn = Cn(ci) +

K∑
j=1

ajCn,j (17)

From (13), it is clear that the technique is linear, so instead of solving (17) for each case in the surface
pressure database and/or each random draw of ε in (1), it is simpler to simply create a surface pressure
profile that increases CA by 1 but leaves the other five unchanged. Then the process is repeated to construct
a mode that increases CY and leaves CA, CN , C`, Cm, and Cn unchanged, and so on.

The constraints for the surface pressure profile that increases CA by 1 while leaving the other five
unchanged is a special case of (17):

1 =

K∑
j=1

ajCA,j 0 =

K∑
j=1

ajC`,j

0 =

K∑
j=1

ajCY,j 0 =

K∑
j=1

ajCm,j

0 =

K∑
j=1

ajCN,j 0 =

K∑
j=1

ajCn,j

A similar set of constraints exists for the CY mode, etc., simply by changing where the left-hand-side 1
occurs.

So now there are 6 constraints and K degrees of freedom; naturally an optimization approach is desired
to solve for a single adjustment mode for each force or moment coefficient. In this work, as in [9], an objec-
tive function is selected that favors making the smallest possible adjustments to existing surface pressures.
Specifically, the optimization problem is

min
a
∈ RK f(a) =

K∑
j=1

wjaj
2

wj = |φj |∞/σj (18)

Using the L-infinity norm in the weights wj is an option that biases the optimization towards POD modes
that spread out the nonzero signal. In other words it explicitly disfavors sharper, point-like modes. Currently
this is a user-preference option as no method has been yet developed to decide if this improves results. Since
the modes are already normalized to have an L2 norm of 1, it might be safe to simply use 1 for the numerator
here.

Putting the singular value for mode j, σj in the denominator is more concretely justifiable as it allows
the optimization to favor modes that are more representative of the existing CFD surface pressure data.
The singular value goes in the denominator so that modes with low singular values have a high weight wj ,
which in turn causes the optimization to work hard to reduce the amount aj of the mode used in the final
adjustment mode.

In order to solve the minimization problem (18) subject to the constraints of (17), Lagrange multipliers
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are used. Consider the Lagrangian

F (a1, . . . , aK , λ1, . . . , λ6) =

K∑
j=1

wja
2
j

+

∆CA −
K∑
j=1

ajCA,j

λ1 +

∆C` −
K∑
j=1

ajC`,j

λ4

+

∆CY −
K∑
j=1

ajCY,j

λ2 +

∆Cm −
K∑
j=1

ajCm,j

λ5

+

∆CN −
K∑
j=1

ajCN,j

λ3 +

∆Cn −
K∑
j=1

ajCn,j

λ6 (19)

To minimize the Lagrangian, set the derivative of F with respect to each aj and λ equal to zero.

∂F

∂aj
= −λ1CA,j − λ2CY,j − λ3CN,j − λ4C`,j − λ5Cm,j − λ6Cn,j + 2wjaj = 0 (20)

This leads to a simple linear system of equations:

−2w1 0 · · · 0 CA,1 · · · Cn,1

0 −2w2
. . .

... CA,2 · · · Cn,2

...
. . . . . . 0

...
...

0 · · · 0 −2wK CA,K · · · Cn,K

CA,1 CA2
· · · CA,K 0 · · · 0

...
...

...
...

. . .
...

Cn,1 Cn2
· · · Cn,K 0 · · · 0





a1
a2
...
aK
λ1
...
λ6


=



0
0
...
0

∆CA

...
∆Cn


(21)

In fact, the system is simple enough that it can be rewritten with six columns on the right-hand side so that
all 6 adjustment modes can be attained with a single matrix solve. Denote the (K+6)×(K+6) matrix on
the left as A, let aCA

be the vector of a coefficients for the CA +1 mode, and let λCA
be the corresponding

Lagrange multipliers.

A

[
aCA

aCY
· · · aCn

λCA
λCY

· · · λCn

]
=

[
0K×6
I6×6

]
(22)

Here 0K×6 is a K × 6 matrix of zeros and I6×6 is the 6× 6 identity matrix.
The result of all this work is 6 surface pressure adjustment modes that can be added to the original

surface pressure solution directly produced by CFD (or otherwise in the original database) to match target
values of each integrated force and moment coefficient.

4 SLS Distributed Load Examples
Figures 6–9 show examples of the Mach 0.5, 0.95, and 1.75 surface pressure modes created using the previously
described methods to alter each integrated force and moment coefficient for the Artemis I surface pressure
created using FUN3D and OVERFLOW. A modified green-white-brown color map is used for the adjustment
modes to provide a visual signal that these are not surface pressures at any particular flight condition (blue-
red) or POD modes (purple-orange). Green values represent decreases in pressure coefficient, and brown
values represent increases.

On the left-hand side of each row of figures is a top view of SLS, and on the right is a view of the bottom
side but with the direction of flight reversed. This flipped view keeps the right booster on the top for both
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(a) Mach 0.5 CA +1 mode, FUN3D

(b) Mach 0.5 CA +1 mode, OVERFLOW

(c) Mach 0.5 CY +1 mode, FUN3D

(d) Mach 0.5 CY +1 mode, OVERFLOW

(e) Mach 0.5 CN +1 mode, FUN3D

(f) Mach 0.5 CN +1 mode, OVERFLOW

Figure 6: Force coefficient adjustment surface ∆cp profiles for Mach 0.5

images and the left booster on the bottom, so symmetry is easier to assess visually.
For example, the suggested method to increase CA at Mach 1.75, shown in Figure 8(a), is to decrease the

pressure on the SRB nozzles and base of the SRB “skirt” 5. The lateral modes, CY , C`, and Cn in Figures
8(c), 9(a), and 9(e), respectively, have noticeable antisymmetry between the left and right sides. Meanwhile
the two longitudinal modes, CN and Cm in Figures 8(e) and 9(c), are roughly left-right symmetric.

These modes have many other notable features for an engineer who is tasked to use surface pressures for
a downstream purpose.

• Near the top of the vehicle there are four abort motor nozzles that are not aligned with either the y or
z axes. Downstream of these nozzles is a cone section that transitions into an ogive. At this transition,
each image in Figure 8 has a significant signal, which can be either checkerboard or stripes.

• The largest conical section, called the Launch Vehicle Stage Adapter, or LVSA, has very little brown
or green on it for any mode. This suggests the CFD is highly confident in the loads on this section

5In the SLS Program, the contributions of this region to CA are accounted for in a separate database since the plume
effects are significant here; however the contributions of this region to the other 5 coefficients are accounted for in the external
aerodynamic database. For this paper, those complexities are neglected to avoid lengthy discussions that would distract from
the main point of the paper.
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(a) Mach 0.95 CA +1 mode, FUN3D

(b) Mach 0.95 CA +1 mode, OVERFLOW

(c) Mach 0.95 CY +1 mode, FUN3D

(d) Mach 0.95 CY +1 mode, OVERFLOW

(e) Mach 0.95 CN +1 mode, FUN3D

(f) Mach 0.95 CN +1 mode, OVERFLOW

Figure 7: Force coefficient adjustment surface ∆cp profiles for Mach 0.95
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(a) Mach 1.75 CA +1 mode, FUN3D

(b) Mach 1.75 CA +1 mode, OVERFLOW

(c) Mach 1.75 CY +1 mode, FUN3D

(d) Mach 1.75 CY +1 mode, OVERFLOW

(e) Mach 1.75 CN +1 mode, FUN3D

(f) Mach 1.75 CN +1 mode, OVERFLOW

Figure 8: Force coefficient adjustment surface ∆cp profiles for Mach 1.75
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(a) Mach 1.75 C` +1 mode, FUN3D

(b) Mach 1.75 C` +1 mode, OVERFLOW

(c) Mach 1.75 Cm +1 mode, FUN3D

(d) Mach 1.75 Cm +1 mode, OVERFLOW

(e) Mach 1.75 Cn +1 mode, FUN3D

(f) Mach 1.75 Cn +1 mode, OVERFLOW

Figure 9: Moment coefficient adjustment surface ∆cp profiles for Mach 1.75
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(d) CN sectional loads dispersed by integrated Cm

Figure 10: Dispersed normal sectional loads from FUN3D at Mach 1.75, 4◦ angle of attack and 0◦ sideslip.
Red curves correspond to an increase in the integrated coefficient while blue curves correspond to a decrease.

even though those are some of the most significant loads on the vehicle.

• The area around the noses of the left and right boosters seem to have the most brown and green area.

• The C` mode in Figure 9(a) has left-right antisymmetry on the entire boosters but top-bottom anti-
symmetry only near the back of the boosters; this is likely an artifact of keeping Cm and Cn constant.

• The Mach 0.5 modes (Figure 6) mostly suggest changes to the pressures around the front and back of
the boosters, while the supersonic modes have changes to the surface pressure over more of the vehicle.

• Mach 0.95 adjustment modes (Figure 7) mostly suggest changes to the area near the forward attach
hardware, just downstream of the booster noses.

As an example of utilization of the dispersed surface pressures, Figure 10 shows the sectional loads (line
loads) in the vertical direction (CN ) for a critical flight condition where SLS is expected to encounter the
maximum longitudinal loads. This flight condition is Mach 1.75 with 4◦ angle of attack and 0◦ sideslip angle.
For SLS Mach 1.75 is the point during ascent with the maximum dynamic pressure, and 4◦ is the total angle
of attack limit. There three sectional loads for each flight condition, CA, CY , and CN . In Figure 10, only the
CN loads are shown, but the effects of dispersions in four of the six integrated force & moment coefficients
are shown.
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The integrated force & moment uncertainty quantification implementation has six separate magnitudes,
and each has its own independent random variable.

C̃A = CA + εCAUCA C̃` = C` + εC`UC`

C̃Y = CY + εCYUCY C̃n = Cn + εCnUCn + (x̂MRP − x̂cg)εCYUCY

C̃N = CN + εCNUCN C̃m = Cm + εCmUCm + (x̂MRP − x̂cg)εCNUCN (23)

The extra terms involving the moment reference point and the center of gravity (x̂cg) in (23) just make it
so that εCmUCm is the dispersion in the pitching moment about the center of gravity, even though Cm and
C̃m are moments about the fixed moment reference point [6]. In Figure 10, the black curve is the original
longitudinal (CN ) line load for Mach 1.75, which includes the skin friction and is not consistent with the
integrated loads from the wind tunnel. Each blue or red curve represents a CN line load constructed by

1. first picking one value of one ε value from (23) and holding the others at 0,

2. applying a surface pressure change consistent with that epsilon value, e.g. εCNUCN .

3. calculating the line load associated with that cp change using the triload tool [21], from Chimera
Grid Tools[22, 23], and

4. adding that to the black curve.

The magnitudes for UCA, UCn , etc. are the current values from the Artemis I flight database. In each case,
the ε value is randomly drawn assuming a uniform distribution on [−1, 1], and the curve is blue if ε= − 1,
gray if ε=0, red if ε=1, and varying continuously in between. The numbers have been removed from the
y-axis because these data are export restricted.

Figure 10(a) shows the effect on the CN sectional loads caused by a change in the integrated CA, or
force coefficient parallel with the centerline of the vehicle. In this case, the line loads show little dispersion,
meaning that pressure changes selected to alter CA were relatively symmetric and do not cause significant
changes to any section’s net CN .

Figure 10(b) shows the effect of dispersing integrated Cn on the same CN sectional loads. In this case,
there is a significant effect, which means that the surface pressure modes were unable to alter the lateral
loads without spilling over into the longitudinal loads. The most significant blue/red spike appears to be
near the nose of the vehicle where the conical section meets the ogive. As mentioned previously, wakes from
the launch abort motor nozzles are present here. Furthermore, the abort nozzles are not aligned with the
vehicle’s y and z axes, so changes to the local pressure that target CY or Cn are likely to also affect CN and
Cm. Cross-correlated sectional loads such as this example are not possible using a similar approach that
only disperses sectional loads directly as described in [9].

Figures 10(c) and 10(d) show the direct effects of dispersing the integrated CN and Cm on the distributed
CN sectional loads. The effects of εCN are relatively proportional to the nominal black CN sectional load
curve, though not exactly. In Figure 10(d), the approximate center of gravity, x̂cg is readily visible because
the red and blue flip at around x̂cg=10.

5 Extensions and Limitations
Several extensions to the surface pressure adjustment techniques developed in Section 3 are interesting and
do not add any appreciable mathematical complexity.

1. The viscous contributions to loads could be considered by including the three components of the skin
friction coefficient to the snapshots in (3) and (6).

2. Additional constraints can be added such as specifying directly the desired pressure coefficient at one
or more points on the surface.

3. Results from CFD on finer grids, different geometry, different conditions, etc. can be added to provide
the opportunity for direct CFD uncertainty quantification.
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4. The approach can be extended to the entire flow solution instead of just the surface.

First consider the addition of the viscous contributions when constructing and modifying the distributed
loads. Compared to the techniques described in Section 3.2, the snapshots grow by a factor of 4: instead
of just the surface pressure coefficient (cp) at each point on the surface, the snapshot now must include the
three components of the skin friction coefficient (cfx , cfy , cfz ). Then the methods in Section 3.3 proceed
unmodified except that (16) and its five unwritten siblings must also include the viscous contributions when
calculating the forces & moments on each POD mode. The liftoff & transition work in [10] is one example
where the skin friction was modified along with the surface pressure in roughly this fashion. For SLS ascent,
the viscous contributions to overall forces & moments are generally quite small, but the main reason they
were not included in the preceding sections is that SLS maintains an official surface pressure database but
not a skin friction database.

The next extension to consider would be to impose additional constraints on the adjusted surface pressure
profiles. In general each additional constraint will add one column and one row (and one Lagrange multiplier)
to the matrix equation in (21). One relatively straightforward extension would be to impose forces and
moments on subcomponents, for example the left and right boosters and the remaining centerbody. In
this example there could be up to 18 constraints if all six coefficients are constrained separately for three
components.

Another additional constraint to consider is to specify the surface pressure match a specific value at
a specific point. The motivation for this idea is a wind tunnel experiment that is instrumented with one
or more surface pressure taps. Following the same approach as described in Section 3.3, it is possible to
construct a mode that is a linear combination of the POD modes that adjusts the pressure at one tap location
while leaving the integrated forces & moments unchanged. To do this we add another row (and) column to
the matrix in (21) that evaluates each POD mode at the location of that tap. So if for example there is a
pressure tap at (xP1, yP1, zP1), and cp,j,P1 is the pressure coefficient of POD mode j at location P1, then
the system of equations becomes

−2w1 0 · · · 0 CA,1 · · · Cn,1 cp,1,P1

0 −2w2
. . .

... CA,2 · · · Cn,2 cp,2,P1

...
. . . . . . 0

...
...

...
0 · · · 0 −2wK CA,K · · · Cn,K cp,K,P1

CA,1 CA2
· · · CA,K 0 · · · 0 0

...
...

...
...

. . .
...

...
Cn,1 Cn2

· · · Cn,K 0 · · · 0 0
cp,1,P1 cp,2,P1 . . . cp,K,P1 0 . . . 0 0





a1
a2
...
aK
λ1
...
λ6
λ7


=



0
0
...
0

∆CA

...
∆Cn

∆cp,P1


(24)

While relatively interesting in that it allows an engineer to construct surface pressures that match experi-
mental measurements exactly, it introduces several risks:

• With many pressure taps to match, the appropriate number of POD modes to use may become excessive

• If the CFD is highly confident about the pressure at a given location, but it differs from the experimental
measurement, the results may be unstable, for example imposing large cp changes far away from the
pressure tap

• Even if those problems are avoided, the resulting pressure distribution to modify cp at one point will
likely change the pressure over much of the vehicle to avoid changes to the integrated loads

In practice this extension is not recommended because it overconstrains the pressure distribution where the
CFD, if run using best practices, already provides the best estimate.

Some of the above issues can be mitigated by localizing the POD modes, for example by multiplying each
POD mode by a mask that is 1 at P1 and then decreases to 0 as a Gaussian function of spatial distance
from P1. It is possible then, to construct surface pressure profiles that increase cp at P1 by 1, have no effect
on integrated forces & moments, and are local to P1. Still, whether using (24) directly or this modified
approach, modifying the pressure profile to match specific point pressures is hazardous. The main reason
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the discussion is included here is to describe how additional constraints can be incorporated. In most cases,
integral constraints are more appropriate than point-like constraints.

As currently described, the methods in Section 3 do not constitute an uncertainty quantification of
distributed loads. It does perform a related task, which is to allocate uncertainty in integrated loads across
the entire surface or into other distributed loads. In order to promote this technique to a direct uncertainty
quantification of distributed loads, dedicated runs on a finer grid or with different values of other epistemic
or aleatory variables would be needed, for example following approaches described in [13]. However, the
techniques described here are still relevant; simply knowing the probability distribution of the cp at each
point is not sufficient because the correlation between dispersions at each point is still needed. In other
words, the techniques described here can turn knowledge about the uncertainty at each point into global
surface modes.

As far as including the entire flow solution instead of just the surface, POD of volume solutions has
certainly been performed [8]. One example where such information could be useful is boundary layer profiles
at key locations, for example at vents on the SLS vehicle where internal some internal compartments must
vent their sea-level air as the vehicle ascends through the atmosphere.

6 Conclusion and Future Work
A generic method to adjust distributed aerodynamic loads to match either wind-tunnel integrated loads
or an external uncertainty quantification of integrated loads has been developed and applied to a surface
pressure database for the Artemis I launch vehicle. Specifically, the methods adjust the surface pressure from
a best-practices CFD solution to match a full 3D set of integrated forces and moments from wind tunnel
test and then repeat the procedure for any point within the uncertainty bounds of that wind tunnel-based
force & moment database.

The methods have been applied to databases from the Space Launch System Program for the first three
flights of the Artemis Program to demonstrate their applicability to actual large-scale engineering problems.
Results have been shown for solutions from two different leading Navier-Stokes CFD solvers from NASA:
FUN3D and OVERFLOW. With the assumption of a large database of available CFD solutions, as is the case
for SLS, the techniques developed here do not require any additional CFD solutions to enable the uncertainty
distribution capability. Finally, the adjusted surface pressures have been mapped to 1D sectional loads to
demonstrate the ability of this method to inform structural analysts; guidance, navigation, & control teams;
etc. of the impact from integrated force & moment uncertainty on any quantity that can be derived from
surface pressures.

The paper describes several extensions, such as also adjusting the surface pressure at one or more discrete
points, that can be implemented by the reader. Future work includes combining the technique with dedicated
CFD uncertainty quantification. Additional advances may include techniques for improved quality control
and more rigorous approaches to the objective function used to optimize pressure adjustment profiles.
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