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Abstract:
The process of selecting a code for hypersonic simulations is a nontrivial one, especially given
the range of CFD software options currently available. In this paper, we give an overview of
and compare the codes US3D, SANS, and BuBL to establish their usefulness, limitations, and
accuracy. We evaluate state-of-the-art codes that span a range of fidelities, turbulence models,
chemistry models, and computational implementations to assess the performance of the codes
and the uncertainty associated with their heat flux predictions. A sample transitional, flat plate,
experimental case is used for analysis and comparison. Uncertainty metrics for each code are found
to be similar for both the laminar and turbulent regions. However, greater uncertainty is found
for the turbulent region. Further code considerations including runtime and required expertise are
discussed as well. In general, this paper serves as a framework for code comparisons by setting
quantitative methodologies for experimental and numerical uncertainty assessments.

Keywords: Hypersonics, Computational Fluid Dynamics, Uncertainty Assessment, Turbulence
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1 Introduction
The study of hypersonic flows is limited by the lack of reliable experimental data. As such, the use of
Computational Fluid Dynamics (CFD) is critical for the prediction of these flows. CFD has had a significant
impact in the fields of design, analysis, and optimization of hypersonic engineering systems [1]. Currently,
there are a large number of codes that have the ability to carry out high-speed and compressible flows. These
codes differ in computational scheme, flow assumption, computer architecture, numerics, flow models, etc.
These differences in implementation exist as alternatives for handling the significant challenges associated
with hypersonic CFD. Achieving accurate, convergent solutions with low numerical uncertainty using a CFD
code can be quite difficult. Many commercially available CFD codes that have wide use for various fluid
dynamic simulations are not suitable for hypersonic systems [2]. In general, expert knowledge is required to
produce viable hypersonic simulations. To determine if a code is sufficient for a particular context, it is critical
to understand how the code itself works and the uncertainty associated with the code’s predictions. Doing
so is often a nontrivial process, and oftentimes, when uncertainty analysis is performed, its documentation
is incomplete.

Hypersonics suffers from a lack of accessible comparison data of both the computational and experimental
variety. However, hypersonic databases do exist. For example, the National Project for Applications-oriented
Research in CFD (NPARC) [2] has validation cases available for a variety of flow regimes, and the Calspan
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University at Buffalo Research Center (CUBRC) has experimental results for hypersonic flows [3]. Fernholz
and Finley have collected experimental data for compressible turbulent boundary layers [4, 5]. Settles and
Dodson also worked to develop a database [6, 7]. This database includes cases for high-speed compressible
turbulence. However, each of these databases contain dated findings. Roy and Blottner update the latter
database by adding only three new cases [8]. Unfortunately, these resources are far from comprehensive. We
seek to add to the catalog of available hypersonic data. In this study, we refer to an experimental and CFD
database from NASA that includes reference examples for hypersonic 2-D and axisymmetric cases [9] as a
comparison for our CFD results.

Furthermore, chemistry and turbulence (including transition) modeling pose significant challenges in
simulating hypersonic flows. At hypersonic speeds, temperatures often become great enough that high-
temperature and real gas effects can become non-negligible. There are a range of potential chemistry effects.
Activation of the vibrational mode can result in the breakdown of the calorically perfect gas assumption.
Furthermore, gases can become reactive and enter thermochemical non-equilibrium in which ab-initio chem-
istry becomes pertinent. Candler et. al. highlight the significant impact that non-equilibrium chemistry
can have through a validation study [10]. In addition, turbulence can be a significant source of uncertainty
[2, 11]. There are many models that capture the turbulent behavior of flows along with the transition from
the laminar state. A summary of turbulence models for hypersonic flows can be found in Roy and Blottner
[8]. In this paper, we will examine and compare both RANS and LES turbulence results along with results
for perfect gas and modified fluid viscosity equations.

A key element of code-to-code comparisons is uncertainty quantification. Even predictions from determin-
istic simulations have uncertainty due to differences in partial differential equation numerics and modeling
assumptions. As such, we aim to understand how much uncertainty is associated with each code due to the
particulars of their mathematical underpinnings and their implementations. This understanding is impor-
tant to the overall goal of improving the state-of-the-art in CFD using improved modeling. Whether this
improvement be in turbulence, chemistry, or novel reduced-order modeling techniques, a researcher must
know the vector contribution of error in order to improve models. Figure 1 gives a graphical example of how
modeling uncertainty can be incorrectly approximated. The implications of which are that researcher may
be led to believe that a model is accurately capturing the relevant physics when it is not. While there is no
method to know the exact numerical uncertainty in a simulation, or experimental uncertainty in a dataset,
systematic quantification methods are necessary in fields of research meant to improve CFD models.

Figure 1: Graphical definition of simulation and experiment results and their associated uncertainty, where
the true modeling uncertainty is much greater than the assumed modeling uncertainty in the presence of
poor experimental characterization and convergence studies

To assess uncertainty, we follow a framework inspired by Roy and Oberkampf and using metrics from
Gnoffo et al. [12, 11]. Therefore, our study will employ elements of verification and validation. Verification is
the process of characterizing numerical approximation errors in a simulation, and validation is the assessment
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of accuracy by comparison with experimental data [12].
Previous studies have performed code-to-code comparisons, many of such studies are accomplished

through validation studies. For example, Roy et al. performed a code-to-code comparison with three
codes in the process of verifying the SACCARA compressible fluid mechanics code [13]. Maicke provides
an assessment of the state of hypersonic codes at the time, evaluating the specialized codes DPLR and
VULCAN and the unspecialized codes CFD++ and VULCAN [2]. However, this assessment is general and
largely qualitative as opposed to quantitative. DPLR has been the subject of many comparison studies.
These studies include the work by Hollis for the context of Mars entry [14], the study by Candler evaluating
the state-of-the-art of simulation [15] , and Maclean’s comparison against the NPARC WIND code [16].
WIND also appears in other comparison studies [1]. The Langley Aerothermodynamic Upwind Relaxation
Algorithm (LAURA) Code also appears in these types of studies[17, 14]. Gnoffo et al. use LAURA, DPLR,
and VULCAN to assess a variety of turbulence and chemistry models [11]. Unfortunately, many of the
subjects of these comparison studies are limited to finite-volume solvers, whereas we include finite-element
and finite-difference codes as well. Watermann et al. perform a code comparison, but only for stability
codes [18]. Harvey et al. conducted an extensive validation study involving the comparison of 25 mostly
Navier-Stokes codes [19]. This study was done for low Reynolds number laminar flows on various geometries.
However, the details of the various code implementations are not included. Many of these studies sought
to evaluate the leading codes of the time. However, many of these studies are now dated. Although there
exist hypersonic code comparison studies that include US3D, a code included in this work, most of these
studies given above do not include the diversity in code types included in the present work[20, 15]. Many of
these comparisons also do not quantitatively address both experimental and numerical uncertainties. When
numerical studies do not provide either a convergence study or a numerical uncertainty approximation, it is
unknown what kind of results are provided. Figure 2 shows one example of turbulence modeling for which
the author highlights how coarse grid results seem to match the experimental results much better than the
results for more resolved meshes [21]. This convergence study for the SA turbulence model is an example
that highlights how important it can be to rigorously account for numerical uncertainty.

Figure 2: Comparison of y-velocity profiles downstream of a shock impingement for the SA turbulence model
where the grids are numbered by increasing resolution [21]

In this paper, we perform a comparison of three state-of-the-art CFD codes used in academic contexts.
The purpose of this work is to understand uncertainty and assess confidence in codes for hypersonic modeling.
To do so, we first discuss the implementation of these codes. Then, as a case study, we simulate a standard
set of inflow conditions over a flat plate geometry using various numerical and modeling methods. This
analysis focuses particularly on the evaluation of modeling uncertainty due to the treatment of governing
equations, turbulence, and chemical models. Note that the chemistry modifications in this paper describe any
changes to the base equations of state used in any solver, whether it be a change to the ideal gas assumption,
specific heats, or viscosity calculations. The Gnoffo and Oberkampf methods guide the uncertainty analysis
completed in this study [11, 22].
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2 Code Methodology
This section will describe each code and their numerical implementations, as well as their physical models
and assumptions used in this study. A summary of these codes is presented at the end of this section in
Table 1.

2.1 US3D
UnStructured 3D (US3D) is a tool developed by the University of Minnesota and the NASA AMES Research
Center for the simulation of compressible and reacting flows [15]. US3D has been extensively studied and,
as such, it is one of the most frequently referenced hypersonic CFD tools in recent literature.

US3D relies on the finite-volume method (FVM) to discretize the system of partial differential equations
that govern hypersonic fluid flows. Inviscid fluxes are approximated in one of two ways, depending on
whether a steady or unsteady solution is desired. For steady flow simulations, a modified Steger-Warming
flux-vector splitting scheme is used to approximate the inviscid fluxes at cell faces. This scheme extrapolates
upwind-biased data to a cell face using a second-order monotonic upstream-centered scheme for conservation
laws (MUSCL) approach and employs a flux limiter in order to ensure a total variation diminishing (TVD)
scheme. For unsteady flows, inviscid fluxes are approximated by a fourth-order, kinetic energy consistent
(KEC) scheme [23]. Since the KEC scheme is much less dissipative than the modified Steger-Warming
scheme, a scaled dissipative flux is added in certain regions of the flow for improved stability, with the
scaling factor given by the Ducros sensor [24]:

ϕ =
(∇ · u)2

(∇ · u)2 + ∥∇ × u∥2 + ϵ
(1)

in which ϵ is set to a small positive value to avoid division by zero. Viscous fluxes at cell faces are approxi-
mated through a second-order weighted least-squares fit to the cell-centered flow variable gradients.

Temporal discretization follows either the backward Euler method (for steady flows) or the Crank-Nicolson
method (for unsteady flows). In both cases, the implicit system of equations is solved using a pointwise
relaxation method [25, 26].

In addition to its numerical capabilities, the US3D software package includes thermochemical modeling of
finite-rate chemistry and vibrational relaxation. US3D is still actively being developed and can be customized
with plugins and user-implemented subroutines. In this paper, US3D is used to run steady laminar and RANS
computations, as well as unsteady LES.

US3D simultaneously solves equations for the conservation of fluid mass, momentum, and energy

∂ρ

∂t
+

∂ρuj

∂xj
= 0 (2)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂σij

∂xj
(3)

∂ρE

∂t
+

∂ρEuj

∂xj
= −∂puj

∂xj
+

∂σijui

∂xj
− ∂qj

∂xj
(4)

where the following definitions apply

E = e+
ukuk

2
(5)

σij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ
∂uk

∂xk
δij (6)

qi = −k
∂T

∂xi
(7)

For laminar simulations, the governing equations are solved iteratively until a steady-state solution is
obtained. For RANS simulations, the above equations are solved in Reynolds-averaged form to reach steady
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state. The SA-Catris turbulence model is used to approximate the Reynolds stresses (for more details on
the RANS approach, see section 2.2).

LES computations solve the spatially-filtered conservation equations

∂ρ
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+

∂ρũj

∂xj
= 0 (8)
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+
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]
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+
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[
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∂T̃

∂xi

]
(10)

In the above equations, an overbar denotes a spatially-filtered variable, a tilde denotes a Favre-filtered
variable, and an overhat implies that a variable is a function of other resolved variables (e.g., â = â

(
ρ, ũ , p, T̃

)
).

Note that these filtered variables are not the same as the averaged variables described in the following section.
The Vreman eddy viscosity model [27] is used to account for the sub-grid scale (SGS) stresses. In

accordance with the Vreman model, the local eddy viscosity is computed as

νt = 2.5Cs
2

√√√√B11B22 −B12
2 +B11B33 −B13

2 +B22B33 −B23
2

∂ũi

∂xj

2 (11)

where
Bij = ∆k

2 ∂ũi

∂xk

∂ũj

∂xk
(12)

and ∆i is the local grid spacing in the xi direction. The Smagorinsky constant is set to Cs = 0.092, and the
turbulent Prandtl number appearing in the spatially-filtered energy equation is taken to be Prt = 0.9.

For all computations, the fluid is assumed to be a perfect gas

p = ρRT (13)

e (T ) = cvT (14)

with a constant Prandtl number given by Eucken’s relation

Pr =
4γ

9γ − 5
(15)

and viscosity is assumed to be a function of temperature according to Sutherland’s law

µ (T ) = µref

(
T

Tref

)3/2
Tref + Ts

T + Ts
(16)

For air, we assume specific heat capacities cp = 7/2R and cv = 5/2R, and a gas constant R = 287 J
kgK .

The air-specific gas constants appearing in Sutherland’s law take on the values µref = 1.84645 x 10−5 kg
m s ,

Tref = 300 K, and Ts = 110.4 K.

2.2 SANS
SANS is a high-order unstructured finite element method (FEM) flow solver which utilizes Variational Multi-
Scale with Discontinous subscales (VMSD) discretization [28]. VMSD combines continuous Galerkin (CG)
and discontinuous Galerkin (DG) methods while staying adjoint consistent. The adjoint consistency allows
for accurate numerical error estimates. SANS is able to adapt grids to reduce discretization error multiple
orders of magnitude lower than what is generally achievable using manually generated grids [29, 30]. SANS
is advantageous because it ensures that the discretization errors are negligibly small. This allows the code to

5



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, July 11-15, 2022

ICCFD11-2022-3201

be useful in turbulence and chemical model development, as well as code comparison studies. The results of
SANS often highlight areas of large numerical error in other simulations and also define areas for improvement
in physical modeling. In hypersonic simulations, shocks are anisotropic by nature and are generally a very
challenging part of finite volume simulations with structured grids [31]. Since shocks result in very high
gradients in physical properties, any numerical method is reduced to virtually first-order accuracy in their
vicinity. Any misalignment of the mesh near shocks will introduce non-physical numerical features which
propagate throughout the solution and lead to poor prediction of output quantities such as heat transfer
[32]. Without solution adaptive grids and numerical error estimates, researchers have found it difficult to
produce resolved grids for geometries that result in unpredictable flow features such as separation bubbles
on hypersonic compression corners [11]. Furthermore, solution adaptive grids have been proven to be robust
across several discretization methods. Galbraith has shown that an output-based mesh produced in a FEM
discretization also improved the solution for a separate FEM code and an FVM code [30]. Hu has even
shown that adapted meshing for turbulent boundary layers tends to place more nodes in the buffer layer
than in the viscous sublayer or log layer [33]. Therefore, while the mesh produced by adaptation may not
adhere to normal meshing standards, it can effectively reduce the numerical error when applied in several
environments. The progress in unstructured meshes coupled with output-based grid adaptation has proved
finite element solvers as a very useful tool not only for engineering prediction but also for model validation
without the influence of significant numerical error.

SANS uses output-based adaptation to update the mesh until the error estimate in an integral output
quantity, such as drag or heat flux, has reached a minimum for a target number of degrees of freedom (DOF)
[34]. The Metric Optimization through Error Sampling and Synthesis (MOESS) algorithm [35, 34] is utilized
via the Dual Weighted Residual method [36] to provide a local error estimate. This optimization occurs on
a continuous metric field, M, rather than on the actual mesh. The metric is optimized with respect to a
cost model, C, such that the resulting mesh should have less than or equal to the given target DOF, N . The
new optimal metric is found to be the one that minimizes the error model, E , which, in turn, is made up of
local error contributions, η, as shown in Eq. 17.

E (M) =

∫
Ω

η (M (x) , x) dx. (17)

M∗ = argmin
M∈M(Ω)

E (M) , s.t. C (M) ≤ N, (18)

Since it is infeasible for one adaptation step to reduce the discretization error to convergence, small steps
of grid adaptation are performed to allow for better solver stability. Adaptation starts with an isotropic mesh
generated from simple dimensions through the Triangle software [37]. The metric field from the MOESS
algorithm is employed by the AVRO software to generate a new mesh over several adaptation steps [38]. An
example of this may be starting with an isotropic mesh of approximately 300 DOF, and taking 50 steps to
a final adapted mesh of about 16,000 DOF.

SANS solves the Reynolds-averaged Navier-Stokes (RANS) equations to complete 2D laminar and turbu-
lent RANS simulations. These equations are represented below, where the fluctuation terms are zero when
running a laminar simulation.

∂ρ

∂t
+

∂ρûj

∂xj
= 0 (19)

∂ρûi
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+

∂σij
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−

∂ρu′
iu

′
j

∂xj
(20)

∂ρÊ

∂t
+

∂ûjρĤ

∂xj
=

∂(σij ûi + σijui
′)

∂xj
−

∂(qj + cpρuj
′T ′ + ûiτij +

1
2ρui

′ui
′uj

′)

∂xj
(21)

When completing a turbulent simulation, we follow the Boussinesq hypothesis for linear eddy viscosity
and use the SA-CatrisCons [39, 40] turbulence model to represent the eddy viscosity. In these equations
ū represents a Reynolds ensemble-averaged velocity, û represents a Favre-averaged velocity, and all other
variables are as defined by NASA TMR [39]. This model has been shown to perform well for the simulation
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of 2D hypersonic flat plates and compression corners [11, 40]. SA-CatrisCons is used in both steady RANS
simulations of US3D and SANS in this study.

∂ρν̃

∂t
+

∂ρuj ν̃

∂xj
− ρν̃

∂uj
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(
cw1fw − cb1

κ2
ft2

)[ ν̃
d
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+

1
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(
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∂xj
+

ν̃2

2

∂ρ

∂xj

)
+ρcb2

∂ν̃

∂xi

∂ν̃

∂xi

]
+

cb2
σ

(
ν̃
∂ρ

∂xi

∂ν̃

∂xi
+

1

4

ν̃2

ρ

∂ρ

∂xi

∂ρ

∂xi

)
(22)

In this study, SANS simulations are run with further assumptions, such as gradient diffusion heat flux with
a constant turbulent Prandtl number. Two viscosity coefficient models are used: one assumming a perfect
gas with viscosity calculated by Sutherland’s law, and the other, a kinetic theory approach using collision
integrals. A Lennard-Jones-like phenomenological intermolecular potential model for collision integrals [41]
is used in conjunction with the Armaly-Sutton mixing rule [42, 43] to calculate the equilibrium air mixture
viscosity coefficient directly from kinetic theory from 50K to 2,000K. It should be noted that the Nitrogen
and Oxygen mole fractions for equilibrium air change by less than 1% over this range of temperatures,
indicating it is reasonable to neglect any gas composition effects. For computational efficiency, the results
are curve-fit in the form of equation (23):

µ(T ) = exp (C)T (A ln (T )+B), (23)

where A = −0.064482, B = 1.5591, and C = −15.286.

2.3 BuBL
BuBL is a steady, laminar, compressible boundary layer code for 2D geometries developed in the MIT
Hypersonics Research Lab [44, 45]. BuBL is the lowest fidelity and least computationally expensive solver
that is explored in this study. BuBL manages its computational speed-up by using fluid boundary layer
equations and the inviscid Euler equations rather than the full Navier-Stokes equations. The boundary layer
equations are useful here, as we are not concerned with the full flowfield. Rather, our aim is to model
quantities at the surface of our geometry. BuBL solves the compressible boundary layer equations in a
transformed coordinate system. The resulting equations are known as the Lees-Dorodnitsyn boundary layer
(LDBL) equations [46]. The coordinate transformation is given by:

ξ =

∫ x

0

ρeueµe dx (24)

η =
ue√
2ξ

∫ y

0

ρe dy (25)

where the subscript ‘e’ denotes the edge of the boundary layer.
The LDBL are a set of equations derived from the Thin Shear Layer approximations to the Navier-Stokes

Equations [47] and are given below:
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ρ

]
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(
f ′ ∂f
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)

(26)

∂p

∂η
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C
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g′
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+ fg′ = 2ξ
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+
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∂he

∂ξ
− g′

∂f
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+
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]
− C

u2
e

he
(f ′′)2 (28)

where f is a stream function, g is an enthalpy ratio, and C is the Chapman-Rubesin factor [46]. BuBL
uses a non-linear Newton-Raphson iterative solver to evaluate a second order finite-difference method (FDM)
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discretization of the LDBL equations [47]. This discretization is a compact, implicit, "box" computational
stencil as described in [48].

While BuBL is primarily a boundary layer solver, external flow conditions are required as a boundary
condition for the boundary layer calculations. These external flow calculations comprise a separate set of
flow pre-calcuations that take place prior to the solution of the boundary layer. As an input, they take a
prescribed pressure gradient, which must be found or computed a priori, and solve the Euler inviscid flow
equations. The Euler inviscid equation for the edge of the boundary layer is

dpe = −ρeuedue (29)

This gives

dpe
dξ

= −ρeue
due

dξ
(30)

in the LDBL coordinate system. The Euler equations are paired with isentropic relations, transformed into
the LDBL coordinate system, and solved as a 1-D, boundary-value, FDM problem. The solution of the
system is then used as the edge boundary condition for the main boundary layer solver.

An important feature of BuBL is that it has the capability to model temperature dependence in flow
properties namely viscosity, specific heat, Prandtl number, and thermal conductivity. By allowing for these
variable quantities, BuBL can accurately treat calorically and thermally perfect gases. It does so using the
Vincenti and Kruger harmonic oscillator model for diatomic molecules such as air, which is modeled as a
mixture of Nitrogen and Oxygen [49] resulting in (31) for the specific heat of air. Sutherland’s law (16) is
used for viscosity with Tref = 288K, TS = 110K, and µref = 1.789 × 10−5 kg

m s . In BuBL, various models
can be used to find thermal conductivity and then subsequently to find the Prandtl number [44]. However,
in this work, the thermal conductivity is set based on a constant value Prandtl number of 0.72.

cp,air = RN2
mN2

7

2
+

(
Θvib,N2

2T

sinh
Θvib,N2

2T

)2
+RO2

mO2

7

2
+

(
Θvib,O2

2T

sinh
Θvib,O2

2T

)2
 (31)

BuBL achieves solutions for a flat plate by assuming zero variation in flow quantities at the edge of the
boundary layer. Namely, the boundary layer is taken to have zero pressure gradient. BuBL will be used to
run 2D laminar simulations for both calorically perfect and thermally perfect gas assumptions.

Table 1: Code comparison summary

Method Laminar RANS LES Chemistry Total Simulations

BuBL FDM LDBL - - cp(T ) 2

SANS FEM NS SA-CatrisCons - µ(T ) Collision Integrals 3

US3D FVM NS SA-CatrisCons Wall-Resolved - 3

3 Uncertainty Quantification
We employ an approach to uncertainty quantification inspired by Roy and Oberkampf [12] and consistent
with Gnoffo et al. [11]. Here, it is important to clarify a distinction in our definition of uncertainty, namely
how it differs from error. Both lead to a loss of accuracy, but errors are knowable and correctable, whereas
uncertainty is due to a genuine lack of knowledge [50]. For this work, we focus primarily on uncertainty, but
also approximate the amount of error in the simulations.

We identify three sources of uncertainty: numerical approximation, model form, and experimental error
[12]. Numerical approximation uncertainty is due to errors introduced by the mathematical implementation
of the simulation. It has three sources: iterative error, discretization error, and round-off error [12]. We
neglect numerical round-off and iterative error as we can reasonably expect their magnitudes to be small
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compared to that of the discretization error. This latter type of error can be characterized using knowledge
of the codes and through convergence studies, which are also a form of code verification. Convergence studies
are also used to estimate the numerical error in the results section of this paper.

Model form error, Emod, is the degree to which the mathematical model represents the reality of the
physical system. Emod can be quantified using the following procedure: first, the codes are compared by
running the test case (see Section 4) at a sufficiently high resolution as a two-dimensional (2D) simulation
[51]. Heat flux outputs compared to the experimental data give a benchmark comparison between the
codes for solving the 2D laminar Navier-Stokes (NS) equations in the hypersonic regime. Next, different
levels of chemical modeling are tested on the laminar case to identify how modeling assumptions such as
assuming a calorically perfect gas, a thermally perfect gas, or a real gas impact the solution for a flat
plate. We then compare each code to assess how they predict heat flux over the hypersonic flat plate with
a turbulent boundary layer using a methodology similar to the laminar cases. This is completed using
Reynolds-Averaged Navier-Stokes (RANS) simulations with the SA-CatrisCons turbulence model [40, 39],
along with a comparison to a 3D wall-resolved Large Eddy Simulation (LES). This turbulent boundary
layer study will focus on quantifying the uncertainty in the heat flux to the surface when compared to the
experimental data.

Finally, the experimental uncertainty, Eexp, is comprised of measurement error Emeas, error due to inac-
curacies in measuring the experimental data, and model input uncertainty, Einp. Model input uncertainty,
Einp, is the uncertainty due to the parameters used in the model and the data describing the surroundings
of the system of interest [12]. In this case, model input refers to uncertainty in the experimental conditions.
This type of uncertainty can be found through a sensitivity study which will be described in further detail
later in this paper.

3.1 Uncertainty Metrics
To move from a qualitative to a quantitative approach for uncertainty analysis and code comparison, this
study uses uncertainty metrics. These metrics provide a quantifiable means to anticipate how different
numerical and modeling approaches affect a computational solution. Such insight can inform an engineer of
the important factors to include when performing design simulations.

Coarse grained uncertainty quantification utilizes two main types of metrics to simply quantify the
uncertainty in hypersonic flows [11]. All of these metrics compare surface values as functions of the x-
coordinate along the geometry, since this is the most common method for supplying experimental data. The
first metric type compares statistical quantities of the experimental and CFD datasets with each other and
is denoted by E(F ). For example, E(F ) can compare the mean of experimental and simulated heat fluxes
over the x-direction of a flat plate. The second finds the difference between the interpolated CFD values
and the corresponding experimental points to compute a statistical quantity, and is denoted by E(f). An
example of calculating an E(f) value would be finding the relative difference between the function values
at three experimental points and the predicted CFD function values at the same x locations and then
determining the average of these differences. In summary, E corresponds to a statistical uncertainty metric,
F corresponds to comparing statistical quantities of different data sets’ distributions, and f corresponds to
comparing individual points of each data set and finding the statistical quantities from these differences.
More specifically, fCFD(xexp) corresponds to pointwise surface CFD predictions at experimental x-locations.
In the code, we use the later metric, E(f), as it is less sensitive to extreme values. When quantifying the
modeling uncertainty in our results, we use E(favg) as the metric to understand how the simulation modeling
assumptions affected the solution across the entire domain of interest. This choice is due to the flat plate
geometry, where the prediction of a quantity over the entire plate is more important than having the lowest
uncertainty at one point on the plate. For the overall uncertainty metric, we take the conservative approach
of assuming that all errors are additive. We use the E(favg) metric as the modeling uncertainty metric for
all cases in this study.
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Table 2: Uncertainty metric definitions

Uncertainty Metric Type Simplified Equation

Average of compared points: E(favg) mean
(∣∣∣ fCFD(xexp)−fexp(xexp)

fexp(xexp)

∣∣∣) ∗ 100

Maximum of compared points: E(fmax) max
(

fCFD(xexp)−fexp(xexp)

fexp(xexp)

)
∗ 100

Overall Error Metric [11] Eall = E(favg)num + E(favg)mod + E(favg)exp

4 Test Case

Figure 3: Flat plate geometry with Holden[52] input conditions

As a case study, we examine the Mach 11.1 Holden flat plate test case [9, 51]. The experimental conditions
are summarized in Table 3. The generalized boundary conditions for the simulation are shown in Figure 3.
Note that these boundary conditions are slightly modified for each solver, as BuBL only produces a boundary
layer solution, and US3D does not require an exit symmetry wall for solution stability. This flat plate test
case is a benchmark experiment which includes regions of laminar and turbulent flow. A flat plate is one
of the most simple geometries for laminar and turbulent predictions, as many self-similar solutions to the
problem can also be formed [53]. The lowest uncertainty metrics are expected for this type of geometry
since the flow does not involve any other complex, hypersonic flow features such as (Shockwave-Boundary-
Layer Interaction) SBLI or shock interactions. This case allows us to compare both fully laminar and fully
turbulent solutions against each other to assess how the predictions of each code differ. In addition, we can
perform analysis for a simulation that directly captures the laminar-turbulent transition.

Table 3: Test case conditions from the Holden experiment [9, 51]

Description M∞ ρ∞(kg/m3) T∞(K) Tstag(K) Tw Fluid

Holden Flat Plate 11.1 0.09483 64 1641 300 Air

5 Results
Quantitative results of the uncertainty assessment are presented in this section for the test case. The codes
of focus in this study have a wide range of experience and equipment needed for successful simulation. These
are important considerations in engineering design. Therefore, in addition to modeling uncertainty metrics,
the user and computational cost of each code are also discussed.
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5.1 Sensitivity Study
We are interested in quantifying the bias in the experimental outputs due to model input uncertainty, Einp.
A sensitivity study is a means of assessing the impact of input parameters on the output of a model [54].
To perform a sensitivity study, we first characterize the uncertainty of the model as epistemic. Epistemic
uncertainty is defined as uncertainty due to a lack of knowledge or ignorance of the relevant factors [55].
Without further information on the experimental setup, we cannot assume that uncertainty in model inputs
can be modeled with a probability distribution. Instead, we treat the uncertainty as an interval. Then, we
use interval analysis to find for a particular set of input intervals the corresponding interval in the output [56].
An additional benefit of these studies is that they allow us to identify the most relevant input parameters,
a critical part of CFD validation [2].

There are many approaches to sensitivity studies. Perhaps the most popular is Monte Carlo sampling [12].
With the uncertainties characterized, two Monte Carlo methods can be used to quantify how uncertainty
propagates through our system. Both methods are types of orthogonal array studies [54]: Latin Hypercube
sampling [57, 58] and a full factorial design study [56]. These methods use sampling of the input/feature
space to inform the interval analysis. Latin hypercube sampling is a form of stratified random sampling that
selects points in a distributed fashion over the feature space. Conversely, the full factorial design not only
allows us to examine the extreme edges of the feature space, but also allows us to determine main effects
and potential parameter interaction effects. For the full factorial study, we neglect higher-order interaction
effects due to their low likelihood of occurrence. Schematics of these two sampling methods are given in
Figure 4.

(a) Latin Hypercube design (b) Full factorial design

Figure 4: Schematics of orthogonal array sampling designs, (a) is given with increased resolution due to its
sparsity

While there may be additional relevant parameters, we chose to focus on the specific factors whose uncer-
tainty is quantified in or derived from the original study. Marvin et. al. provide that there is experimental
uncertainty in the measured Mach number M∞, stagnation enthalpy h0, and the dynamic pressure p∞ [9].
These uncertainties are 1.5%, 5%, and 5% respectively. To convert the dynamic pressure q∞ into a more con-
venient quantity for our calculations, we use isentropic relation (32a) rearranged into (32b), combining Mach
number and dynamic pressure to find an estimate for the uncertainty in the static pressure. Subsequently,
the parameters used for the sensitivity study are Mach number, static pressure, and total enthalpy.

q∞ =
γ

2
p∞M2

∞ (32a)

p∞ =
2

γ

q∞
M2

∞
(32b)

From the isentropic relation (32b), it is determined using standard uncertainty metric combination properties
that p∞ has a 5% + (2× 1.5%) = 8% uncertainty.

For tractability, we perform the sensitivity study with BuBL, the lowest fidelity but fastest running code
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examined in this study. We also perform this study for the simple case of a laminar flow with a calorically
perfect gas. To minimize computational expense, simulations are conducted for a slightly unresolved grid
after verifying that these results are expected to be within 0.2% of the finer grid solution. Because the
results for this case are found to be so similar to those of the higher-fidelity CFD codes, we assume that the
trends found generalize to those codes as well. Heat transfer outputs are generated for the five x-locations
corresponding to the laminar experimental data points.

For both sampling procedures, sample sizes were selected by examining trade-offs between granularity of
input space and computational/time requirements, as it is not possible to directly estimate the sample sizes
required for exact results [54]. 300 samples were generated for the Latin Hypercube and 5 levels or 53 = 125
samples were selected for the full factorial experiment. More samples were required for the Latin hypercube
design given its sparsity (Figure 4). The results of the Latin hypercube and full factorial experiments are
given by the box-and-whisker plots in Figure 5. It is observed that the two orthogonal array studies had
similar values for their ranges and medians. Furthermore, these medians were nearly identical to the heat
flux values predicted using the nominal values of Mach number, stagnation enthalpy, and static pressure.
However, the full factorial design resulted in a slightly wider range of heat transfer values and slightly lower
medians. Notably, all of the experimental data points fall within the range of the calculated model input
uncertainty.

Figure 5: Summary of the sampling results using both the Latin Hypercube design and the full factorial
design. Experimental values are also included.

Each of the outputs for the five data locations exhibits similar trends. Figure 6, which is for data point
1 but is indicative of the results found for all five outputs, shows that heat transfer is positively correlated
with Mach number, stagnation enthalpy, and static pressure. The correlation is slight for Mach number
and most pronounced for stagnation enthalpy. This indicates that the input parameters have an order of
significance is static pressure, then stagnation enthalpy, then freestream Mach number. We also note that
no significant interaction effects were found during the orthogonal vector study. However, in the production
of those values for the study, an important result is found. When the parameter combinations representing
the extremes of the parameter input space are calculated, the worst-case uncertainty bounds for the model
input are found. This is expected given the results of the main effects analysis. For each of the laminar data
points the upper bound on the input uncertainty, Einp, is +11.4% and the lower bound is -10.9% – a slightly
asymmetric result. We note that Gnoffo et al. calculate a value of 7.6% using an alternative methodology
derived from energy calculations [11].
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Figure 6: Results of main effects analysis for data point 1

5.2 Laminar Comparison

Table 4: Modeling uncertainty metric, Emod, results for the laminar flow portion of the Holden [51] data
(0.0508m < x < 0.1778m)

Uncertainty Metric BuBL BuBL-C SANS SANS-C US3D US3D-L

E(favg) 4.81 5.22 4.93 10.73 4.68 7.20

E(fmax) 7.03 7.71 7.29 14.22 7.44 12.93

The first analysis of the test case is the comparison of BuBL, SANS, and US3D in the laminar portion
of the flat plate flow. Each of these codes are compared with the five experimental data points closest to
the leading of the Holden geometry. We expect relatively small uncertainty metric values for this laminar
section because of the few modeling assumptions made when simulating laminar flow compared to turbulent
flow. The main sources of uncertainty in hypersonic laminar simulations come from numerical error in
the simulation, the simplification of the Navier-Stokes equations using assumptions based on geometry, the
equation discretization, and the modeling of the fluid chemistry. The chemical modeling aspect is unique
to high speed flows. The default assumptions in many solvers include a constant ratio of specific heats,
γ = 1.4 for air, a constant thermal conductivity, and a fluid viscosity based on Sutherland’s law. In the
Holden experiment [51], the freestream fluid temperature falls below 100K, and the fluid temperature near
the stagnation region of the flat plate can reach nearly 1600K. From chemical experiments, we know that
the specific heats of air can vary in this temperature range by more than 20% [44].

For this reason, this study has investigated several chemical models to examine how varying fluid viscosity
or specific heat according to more physically accurate models (as discussed in Section 2) can impact results.
The base steady solvers of BuBL, SANS, and US3D use very similar chemical modeling assumptions. As
such, they have very similar uncertainty metric results in the laminar region, as shown in Table 41. These
codes also have lower uncertainty predictions than the SANS, BuBL, and US3D simulations that used more
advanced chemical modeling processes or modeled unsteadiness. Specifically, by modeling the fluid viscosity
with collision integrals rather than Sutherland’s law, the average error between the simulation data and the
Holden experimental data increased from 4.93% to 10.73%. In this case, collision integrals led to a higher
fluid viscosity prediction than those predicted using Sutherland’s law, as shown in Figure 7. An increased

1Where "-C" stands for a chemical modeling modification, and "-L" stands for the LES
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prediction of heat flux resulted due to its positive correlation with viscosity [49]. In general, the changes
in viscosity modeling led to a freestream viscosity prediction difference of 15% and a maximum viscosity
prediction difference of 20%.

(a) Sutherland’s law viscosity (b) Collision integral viscosity

Figure 7: Difference in viscosity predictions over the leading edge of the Holden flat plate plate for the
different SANS viscosity models where µFreestreamSutherland = 4.29e-06 Pa-s

A similar result was observed with the BuBL solver. Allowing relations for a varying specific heat resulted
in simulation results that were slightly less representative of the experimental results. This is unexpected
given that, in reality, the specific heat is a function of temperature. The specific heat of diatomic gases
generally increases with temperature, and these increases lead to a specific heat that is larger in magnitude
than the constant approximation. Therefore, it would be reasonable to assume that simulations that account
for this variation in specific heat, whether through collision integrals or the harmonic oscillator model, would
be more accurate. However, these solutions tend to overpredict the experimental data. This result is
consistent with the increase in specific heat, given that specific heat positively correlates with heat transfer.

During this study, a simulation in US3D with equilibrium chemistry was another expected result. How-
ever, the addition of chemical reactions creates additional challenges in finding time scales to resolve a steady
simulation, especially near the leading edge. For this reason, this study was unable to compare chemically
reacting US3D results with BuBL or SANS.
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(a) Overall laminar solution comparison (b) Magnified view of solver solutions

Figure 8: Holden laminar heat flux experimental data comparison

To fully explain the discrepancies between expectation and the observed experimental results, more
information would be needed on the experimental test case, or other similar experimental test cases could be
used. One simple explanation is that this is the worst case scenario in which the modeling error associated
with the simulations (see Table 4) happens to constructively add to the other types of error. In coarse grained
uncertainty metrics quantification we assume that error sources are orthogonal and adding them together
produces a conservative, but feasible, uncertainty approximation. We also assume that the experimental
results are accurate. Instead, our analysis suggests that the measured experimental values may underpredict
the heat flux for the reported experimental setup, and it is possible that the cases with the more involved
chemical modeling are the more accurate representations of the flow physics. This is just one hypthesis,
though, and higher-fidelity simulations are required to confirm or deny this thought. Moreover, if we account
for a a true worst-case scenario and include the model input uncertainty (-10.9%/+11.4%) determined from
the sensitivity study (see Section 5.1), it becomes impossible to make a definitive assessment of the accuracy
of these laminar simulations. In short, our results suggest that the experiment is not sufficiently precise in
this region, and any of the laminar simulations could be the most accurate.

Since these laminar heat flux predictions generated by BuBL, SANS, and US3D are so similar to each
other, the choice of which tool to use comes down to the user’s goals. If the focus is on simpler geometries,
the Naiver-Stokes equations can be simplified into equations that can be more easily solved. A tool like BuBL
does just that and is very useful for fast and accurate 2D, hypersonic, laminar boundary layer solutions.
SANS is advantageous for more complicated geometries, especially in situations where meshing must change
with successive simulations, such as in a trade study with a deflection of a control surface. This is because
SANS’s output-based adaptation ensures a negligibly small numerical error. US3D is a useful baseline for
all simulations, since it is capable of reliably finding steady and unsteady laminar and turbulent solutions.

5.3 RANS Comparison
The RANS uncertainty metrics are expectedly much larger than their laminar counterparts. Previous studies
have detailed several reasons for uncertainty in RANS modeling, including the form of the equations and the
assumptions involved in Reynolds stress modeling such as those in the Boussinesq hypothesis [40, 59, 58].
This section compares the results between the steady RANS solvers in SANS and US3D. The uncertainty
metric results show very similar simulated heat flux predictions, with differences in the maximum and average
predictions only being a few percentage points. This difference could be due to the implementation of the
turbulence model itself. Discrepancies are common in the implementation of turbulence models, as users
find that small modifications often lead to better results. This has been especially true in the SA-CatrisCons
model, where researchers sometimes modify coefficients or neglect production or destruction terms in their
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Table 5: Uncertainty metric results for the turbulent flow portion of the Holden [51] data (0.4064m < x <
1.2718m)

Uncertainty Metric SANS SANS-C US3D US3D-L

E(favg) 22.25 24.10 21.17 21.16

E(fmax) 37.62 40.31 35.93 -50.04

implementations [11, 40]. With the small discrepancies in our study, it is unlikely that turbulence modeling
varies much between the codes. It is more likely that the implementation of other numerical aspects such
as flux limiters, shock capturing algorithms, grid resolution, or simply the differences in finite element and
finite volume discretization leads to the few percentage point differences in the results.

In general, RANS results suffer in accuracy for transitional cases because of differences in boundary layer
thickness compared to those in experiments. In this test case, the RANS simulations assume a turbulent
flow from the beginning of the plate, while the experiment experiences a transition near the x = 0.3m
location. This difference leads to very different boundary layer profiles in the downstream turbulent flow. A
better test for a high-speed turbulence model would involve turbulence modeling with a separate equation or
method for boundary layer transition specification. This would allow for a similar turbulent boundary layer
thickness to be present at the comparison locations downstream on the plate. While the uncertainties in the
RANS simulations are greater than those in the laminar case, this study has resulted in a useful comparison
between SANS and US3D in turbulent simulations.

Figure 9: Plot of turbulent heat flux predictions within the turbulent section of the Holden flat plate

5.4 LES Comparison
LES simulations are very similar in functional form to RANS simulations, except that their accurate capture
of larger kinetic energy scales allows for a time-accurate simulation capable of predicting laminar-turbulent
transition. As such, LES simulations have boundary layer thicknesses comparable to those of the experi-
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ment downstream of transition, unlike the previous RANS simulations. This paper examines using an LES
simulation in US3D as the highest fidelity simulation in the code comparison.

(a) Heat flux as a function of x over the flat plate (b) Visualization of LES vortices on the fine grid

Figure 10: US3D LES results over the length of the Holden flat plate

The LES simulation in US3D is comparable to the results obtained in both the steady laminar and
turbulent results of the previous section. The only difference being that it required only one simulation to
capture both the laminar and turbulent flow behavior and also includes a prediction of the laminar-turbulent
transition location. The US3D simulation had slightly higher uncertainty in the laminar section when
compared to the steady solver results without the chemistry modifications, and had very similar uncertainty
quantities predicted compared to the RANS turbulent results. If an engineer needed to estimate the physical
transition location over a vehicle while also finding a reasonable estimate of laminar and turbulent heat
flux, an LES simulation may be a good place to start to better inform future steady simulations. However,
one problem with the results of this LES simulation is that it significantly underestimates the maximum
heat flux to the surface by almost 50%. This is different from the normal behavior of high-speed RANS
predictions, which tend to overpredict heat flux to the surface [8]. This underprediction can be partially
accounted for by the later transition location prediction in comparison to the experimental data. As we can
see from the RANS data, early turbulent flow along the flat plate results in a higher maximum heat flux
downstream of the leading edge. One more important result of the LES simulation is the comparison in
run times between the RANS and LES simulations. While the RANS simulation took 950 CPU-hours to
complete a low-numerical error solution, the LES simulation took 13500 CPU-hours to complete a simulation
with significantly higher numerical uncertainty.

5.5 Uncertainty Summary
From the Holden experiment, we know that the experimental uncertainty, Emeas, is estimated to be 5%,
and we approximate Einp as 11.15%, the average of the upper and lower bounds (see Section 5.1). We also
assume that Einp generalizes to the turbulent case. Thus, we define EallLam

and EallTurb
using the definition

of Eall (see Section 3.1) for each code’s respective simulation area. These results are summarized in Table 6.
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Table 6: Performance summary for the three codes without additional chemistry modeling

Code Simulation Time Enum EallLam
EallTurb

BuBL ≪ 1 CPU-hrs 0.2% 21.16% -

SANS 250 CPU-hrs 0.1% 21.18% 38.5%

US3D 950 CPU-hrs 0.1% 20.93% 37.42%

US3D-L 13500 CPU-hrs 3.0% 26.35% 40.31%

The uncertainty metrics are very similar between the three codes. One of the largest differences in
uncertainty is in the numerical error estimate. The output-based grid adaptation involves a more detailed
error estimation process, which ensures that the discretization error is very small in the final solution. Several
convergence studies were performed in SANS to ensure that this final heat flux result had a negligible
numerical error, Enum, contribution. It is more difficult to quantify the numerical error in the results
from the other simulations. Convergence studies for the two other codes were performed to ensure "grid
independent" solutions. However, the term "grid independent" can have different meanings when comparing
different solvers against each other, especially in regards to the acceptable magnitude of numerical error. To
find the numerical error estimate for BuBL and US3D, this study looks at the most resolved grid and the
grid one step below for each solver. We then compare the heat flux predictions for these simulations, and the
E(fmax) value is what we take as a numerical error estimate. This methodology follows in the same spirit of
coarse grained uncertainty quantification for which estimates are generally very conservative. This leads to
a numerical error estimate of approximately 0.1% for the steady solutions of SANS and US3D, and 3.0% for
the LES US3D results in this study. BuBL has a comparable numerical error estimate to that of SANS due
to its much more simplified finite difference discretization scheme and the ability to run very fine meshes at
a low computational cost. US3D-L, on the other hand, has an order of magnitude greater numerical error
estimate due to user decisions for meshing, especially near the leading edge region, and because of the much
greater computational cost of running the LES simulation on a grid that is finer than those required for the
other flow solvers.

Simulation times in terms of CPU-hrs are also included. These times provide context for the simulation
calculations. BuBL has an almost negligible run time compared to the other codes. The laminar and
RANS solutions from SANS and US3D require substantially more time, and the LES simulation requires
several orders of magnitude more CPU-hrs than the former solutions. These times only include the time
and computational requirements required for the simulation itself. There is no consideration of the resources
required to generate the computational meshes used for the simulations. The time and effort required to
produce a grid for BuBL is almost negligible given that it is a uniform grid for a FDM method whereas
SANS and US3D would require much more time and expertise to develop a satisfactory grid.

6 Conclusion
In this paper, we compare three hypersonic codes: SANS, US3D, and BuBL. Using coarse-grained uncertainty
metrics, we have assessed the uncertainty in simulations of a hypersonic flow over a flat plate geometry. We
found similar levels of modeling uncertainty in the laminar section of the geometry for each of the three codes.
This was also the case for the turbulent results, although the uncertainty values were higher. Furthermore,
the overall uncertainty is significantly affected by the uncertainty of the experimental input parameters.
These findings suggest that it is not sufficient to quantify uncertainty using this particular experiment,
although it is regarded as a benchmark case [9]. A significant amount of uncertainty is related to the
experiment itself, the exact operating conditions, and the measurement errors. Reducing these uncertainties
would substantially improve our ability to use CFD to predict experimental results.

Our findings are not uncommon, as both Gnoffo et al. and Roy and Blottner arrive at the same conclusion
[11, 8]. It is critical that future research focus on producing precise experimental data that can be used for
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CFD validation. Accurate data are still needed for modeling turbulence. Initiatives such as the Hypersonic
Vehicle Simulation Institute (HVSI) aim to address these shortcomings and improve researchers’ ability
to simulate hypersonic flow [60]. HVSI has determined that there is particular importance in developing
improved turbulence models, including those based on experiments. With such experiments, analyses such
as the one included in this paper would be able to produce more concrete results.

With uncertainties not definitively quantified, other, more qualitative aspects of running these simulations
become increasingly important. A key result of this analysis is the impact of the experience required to run
these codes. Running these simulations and producing accurate, convergent results requires a particular
experience due to the varying levels of complexity in the codes’ implementations. The lack of results for the
chemistry case in US3D is indicative of this. One must weigh the difficulty of using each code when deciding
which solver to use. Generally, complexity is also associated with longer run times. In this study, the code
with the simplest implementation was found to be able to produce results similar to those of the other codes
in the laminar region while only requiring a fraction of the time. Depending on the requirements of the
engineering application, it may not be necessary to use the highest fidelity code. In summary, these findings
support the view that selecting CFD codes for hypersonic simulations requires a level of discretion and that
further studies of this type are required before CFD can cement itself as a viable alternative to experiments
and flight tests.

Furthermore, this study suggests there may be benefit in running simulations using multiple codes with a
range of fidelities as the capabilities of each code my offer insight another does not. For example, the laminar
base flow can be captured by BuBL, while SANS could provide a correction for imperfect gas effects, and
US3D could offer a transition location. Experiments can inform simulations, but the opposite is also true
as experiments are not always perfectly controlled. For instance, it is possible the US3D prediction of the
transition location is accurate but it is being compared to an experiment in which transition is accelerated
by ambient noise. In short, no one code is definitively better than the others, especially when time is
of concern. As such, CFD solvers should include clear definitions of strengths and weaknesses to assist
in efficient engineering applications. Additionally, this study highlights the need to increase the focus on
quantification of experimental and numerical uncertainty. For future experiments, we recommend that more
effort be put toward wind tunnel characterization, including instrumentation to capture flow conditions for
each run. For future CFD simulation studies, more effort should be put towards convergence studies and
quantitative estimates for numerical uncertainty. With these types of change, the validation of CFD models
will become more effective as the associated uncertainties become smaller.
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