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Abstract

A methodology combining Large Eddy Simulation (LES) trained data and a physics driven wave-

packet model to obtain a reduced order reconstruction for broadband, three-dimensional, temporally

stationary but spatially inhomogeneous, incompressible turbulence. Wake turbulence generated by an

axisymmetric dragging disk with a turbulent co-flow serves as the benchmark test case. We begin by

studying the proper-orthogonal decomposition of the turbulent fluctuations taken from a high-resolution

LES to first identify whether the fields demonstrate a low-rank character. It is argued that the presence

of the turbulent co-flow results in a largely broadband character lacking any tonal properties. This is

especially true for Strouhal numbers greater than 1 and only a small fraction of energy is contained in

the leading order Kelvin-Helmholtz modes. As such reconstructions and reduced order modeling purely

relying on data from LES does not appear to be a lucrative solution - contrary to problems with strongly

tonal character. To supplement the missing energy from a low order truncated mode expansion, we

utilize a physics based super-resolution (enrichment) algorithm that relies on spatio-temporally localized

Gabor wavepackets whose time evolution is described using a set of ordinary differential equations. The

reconstructed flow has single- and two-point correlations that are consistent with the reference high-

resolution simulation data.

1 Introduction
Many computational problems involving turbulent flows are characterized by figures of merit that in large part
rely on a numerical simulation’s ability to resolve a large range of spatio-temporal scales. Some examples
include the study of scalar dispersion in atmosphere[1–3] and investigation of unsteady loading in wind
turbines and wind farms[4, 5]. Examples in engineering include applications where aero-acoustics is of
relevance such as airframe/landing gear noise[6] and jet noise[7, 8]. While the subject of reduced order
modeling and reconstruction of mean flow has matured substantially over the past few decades[9–12], very
limited progress has been made in reconstruction of fluctuations. The scope of this paper is to discuss
the potential of data-driven modeling for temporally stationary, but spatially inhomogeneous turbulence
fluctuations. It is argued that obtaining large bandwidth fluctuations using purely data driven approaches
is likely impractical - due to slow convergence of the discovered modes as well as the need for large amount
of high resolution data which is computationally expensive to generate. Physics driven modeling based on
spatio-temporally localized wavepackets, Gabor modes can help mitigate shortcomings of the data driven
model by providing highly accurate super-resolution for the data-driven model.

∗Science and Technology Corporation, aditya.s.ghate@nasa.gov
†Dept. of Aeronautics & Astronautics, Dept. of Mechanical Engineering, lele@stanford.edu

1



Figure 1: Problem configuration. Inflow homogeneous isotropic turbulence is generated using a concurrent
forced HIT simulation with the desired integral length scale and dissipation rate.

2 Problem setup
We consider the problem of interaction between homogeneous isotropic turbulence advected by a uniform
mean-flow, and a dragging actuator disk at a fixed thrust coefficient. The schematic of the problem set up
is shown in Figure 1. This problem was studied in detail by Ghate et al.[13] for a variety of different inflow
turbulence intensities controlled via two parameters: a) turbulence dissipation rate, and b) integral length
scale of the inflow turbulence. Present work focuses on inflow based on Case 10 described in that work -
this corresponds to an integral length scale of roughly 25% of the actuator disk diameter. Fully periodic
domains are used enabling the utilization of a fully spectral (Fourier collocation with 2/3rd dealiasing)
discretization along with an RK4 time-stepping scheme. A concurrent simulation of forced homogeneous
isotropic turbulence is run which serves as the inflow for the domain of interest; the fringe method of
Nordstom et al. [14] is used. The simulation is performed at the Re ! 1 limit and as such a subgrid scale
model[15] is used to capture the loss of energy to subfilter scales.

The analysis and modeling presented in the remainder of this paper focuses on data extracted on a single
transverse (y-z plane) located 6.66D units downstream of the actuator disk.

3 Modal representation of wake turbulence
The present work addresses the reconstruction problem for spatially inhomogeneous but temporally sta-
tionary turbulence by proposing a reconstruction of the turbulent flow field on an arbitrary (y � z) plane
as

u(y, z, t) = U(y, z) + uSPOD(y, z, t) + ugab(y, z, t), (1)

where U is the mean velocity (not the focus of present work), while uSPOD and ugab are portions of the
velocity field that are represented using SPOD and Gabor modes, respectively.

3.1 Spectral Proper Orthogonal Decomposition

The flow field sampled on the y�z plane located 6.66D downstream from the actuator disk is first decomposed
into an ordered set of orthogonal SPOD modes in polar coordinates (r � ✓):

û(r,m, f) =
1

NTM✓

NTX

n=0

M✓X

j=0

u(r, ✓j , tn)e
i(m✓j+2⇡ftn/T ) =

JX

j=1

aj(m, f) j(r,m, f), (2)

where  j(r,m, f) is the SPOD mode shape (in r) corresponding to the mth azimuthal wavenumber at a
discrete frequency, f . The total number of modes, J , at each frequency–wavenumber pair is controlled by
the number of realizations used to compute the SPOD modes, with each realization defined over a finite
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Figure 2: Modal energies and shapes for SPOD of wake turbulence taken at a transverse plane located 6.66D
downstream for the drag disk

sampling interval, T = 5.12D/U1 discretized uniformly using NT sampling points (time steps). We take
J = 117 and M✓ = 768 (to avoid aliasing) in what follows; our numerical experiments with different choices
of J and T showed that the most energetic wavepackets associated with the Kelvin-Helmholtz instability
were adequately captured using this sampling. The modes are sorted according to their modal energy,
�j(m, f) =

⌦
a?j (m, f)aj(m, f)

↵
, which defines the contribution of each mode to the total kinetic energy of

the flow. The modal energies and mode shapes are shown in Figure 2 up to a Strouhal number of 25. The
Strouhal number corresponding to the Nyquist frequency of the temporal sampling is approximately 50; the
upper half of the frequency range is excluded for the present analysis to avoid spurious artifacts associated
with numerical/discretization error and spatial dealiasing.

Figure 2a, which shows the modal energies as a function of Strouhal number, suggests that a truncated
representation consisting of the first 10 leading modes (and all values of m) is only likely to produce accurate
second order correlations for St < 1. Furthermore, at the axial downstream location being considered
(6.66D), we do not observe any dominant tone (frequency) in the primary varicose mode (m = 0). Figure
2b suggests that there is substantially more energy in the m = 1 mode compared to the m = 0 mode,
especially at low Strouhal numbers (St < 1). It is also interesting to see that high wavenumbers do contain
a substantial amount of energy as shown in Figure 2b; the energy decays only as a power law, as a function
of the azimuthal wavenumber, m (see Figure 2b). The mode shapes shown in Figures 2c suggest that
the bulk of the energy in the low order modes (small m and j) at lower frequencies corresponds to the
shear layer turbulence. The azimuthal homogeneity embedded by the Fourier representation in ✓ is very
efficient at isolating the shear-layer/inflectional turbulence from the free stream, including scales entrained
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Figure 3: Decomposition of instantaneous flow (evaluated on a 180⇥ 180 grid) into truncated SPOD repre-
sentation (evaluated on a 36 ⇥ 36 grid) and the resulting residual fields (evaluated on a 180 ⇥ 180 grid) at
an arbitrary sampling time. The velocity components in the Cartesian frame are obtained using an SPOD
expansion truncated at mmax = 30, jmax = 15 and fmax = 1.4.

and subsequently distorted by the mean shear in the wake. Finally, an important consequence of finiteness
of the data available to compute this modal representation is the uncertainty associated with higher order
modes, since the overall representation only converges as pnsamples [16], where nsamples can only be increased
by running longer simulations. As such, while higher order (in both m and j) modes do contain non-negligible
amounts of energy, in order to estimate them, we need to run very long simulations on very high resolution
numerical grids. In contrast, the lower order modes at low-Strouhal numbers can be obtained using few
nsamples using a sufficiently accurate coarse grid simulation with a good subgrid scale closure.

3.2 Truncated SPOD

A truncated/filtered representation corresponds to the following expansion:

utrunc(y, z, t) = I(y,z)
(r,✓)

8
<

:
X

|f |<fmax

X

|m|<mmax

X

j<jmax

aj(m, f) j(m, f, r)e�i(m✓+ft)

9
=

; (3)

where aj(m, f) can be computed using the appropriate orthogonality relations [17], and I(r,✓)!(y,z) is the in-
terpolation operator. We will take velocity uSPOD(y, z, t) in Equation 1 to be the truncated SPOD expansion,
utrunc(y, z, t).

The truncated description being considered in the remainder of the paper uses fmax = 1.4 (Strouhal
number), mmax = 30 (azimuthal wavenumbers) and jmax = 15 (leading modes); however, we note that all
arguments presented here apply for arbitrary choices of truncation parameters as long as the large scale
coherent motions, in this case related to the Kelvin-Helmholtz instability, are captured by the truncated
SPOD expansion.
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We can define a residual field, ures as

ures(y, z, t) = u(y, z, t)� utrunc(y, z, t) (4)

where u is the instantaneous (fluctuating) component in the independent sample. Due to the orthogonality
properties of the SPOD representation, it is easy to show that the total domain averaged Reynolds stresses
are given as the following superposition:

huiuji =
⌦
utrunc

i utrunc

j

↵
+

⌦
ures

i ures

j

↵
. (5)

Figure 3 shows an example of such a representation using an arbitrary sample from the simulation that was
not used to compute the modes,  j(m, f). It is important to note that the truncated representation can be
evaluated on a 32⇥36⇥36 Cartesian grid in (y�z�t) space without any aliasing, as opposed to a 180⇥180⇥
512 grid needed for the full fluctuating field. These results indicate that the expansion given in Equation
3 serves as an excellent surrogate to isolate large-scale, space-time coherent flow features in the y � z � t
domain being considered. Figure 3 clearly suggests that the residual scales are primarily fine scale features
that also appear to display quasi-homogeneity, i.e. spatial homogeneity at length scales corresponding to the
filtering length scale implied by the SPOD truncation. The profile of the residual single point correlations
(Figure 6) further indicates that these small scales are devoid of major radial inhomogeneity, and hence can
be interpreted as the scales corresponding to the distorted free stream turbulence.

4 Gabor mode enrichment

4.1 Stationary Gabor modes

In the present application, the temporal evolution equations (see Equations 2.16-2.22 in [18]) for each Gabor
mode can be simplified substantially by neglecting the inter-scale sweeping in the planar directions (y and
z) since Uy+uspod

y

Ux+uspod
x

, Uz+uspod
z

Ux+uspod
x

⌧ 1. The planar reconstruction region (y� z) is decomposed into 18⇥ 18 quasi-
homogeneous regions, each seeded with 80 Gabor modes. Under these assumptions, each Gabor mode is
simply assumed to be advected in the streamwise direction according to the local streamwise time averaged
velocity (Taylor’s Hypothesis) and hence we refer to these modes as stationary Gabor modes. The energy
exchange between the mean and SPOD scales and Gabor modes is captured via the straining/distortion
effect. The temporal evolution of each Gabor mode located at (y, z) carrying a complex valued velocity, û,
and a real valued wavevector, k, from time step N to N + 1 separated by �t can be summarized by the
following four step procedure (see [18] for further details):

ûi
? = exp

�
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m
� �ij

#
û??
j , (6)

where Um(y, z, t) = Um + uSPOD
m (y, z, t). In Equation 6, the first stage corresponds to advection of enriched

turbulence in the direction normal to the sampling inflow plane (y � z) by the time averaged velocity. The
second and third steps represent the straining of enriching small scales by the larger SPOD (and mean)
scales and the modification of the wavevector is a forward Euler approximation to the Eikonal equation.
Finally, the projection implied in the fourth step is primarily used to discretely impose the divergence-free
constraint; since the second and third steps are forward Euler approximations to the governing ODEs (see
[18]), they inherently possess a spurious divergence (O(�2

t )), which can be removed at virtually no additional
computational cost. The time-step is chosen based on the smallest scale enriched (kmax) and the advective
velocity Ux. The choice of kmax is rather arbitrary and based on the Nyquist criterion of the physical space
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Figure 4: Model inputs used to generate stationary Gabor modes. Dissipation is normalized as "(r)/"(r ! 1)
and the length scale measure is normalized as Liso(r)/Liso(r ! 1)

numerical grid on which the enriched fields are rendered.
To initialize the Gabor modes in each quasi-homogeneous region, we begin by randomly sampling isotropic

modes over log-spaced wavenumber-shells with a prescribed energy spectrum (see Equation 2.26a in [18])
parameterized using a dissipation rate, ", and a length scale measure, Liso; both parameters vary only radially
in the present application. The dissipation rate is modeled as

"(r) = "1 �
⌦
uSPOD

i uSPOD

j

↵ @ hUii

@xj
, (7)

where "1 is the dissipation rate of the turbulent co-flow (ambient/freestream) which is typically known or
can be computed using a RANS model or an SGS model. The length scale measure is computed as

Liso(r) = cL⌧(r) [hUi (r)] , (8)

where the constant cL = 1/0.816 ensures that Liso(r ! 1) corresponds to the integral length scale of
the isotropic co-flow. The integral time scale, ⌧ , is computed as the integral time scale of the large scale
axial velocity, uspod

x . Figure 4 shows the profiles of the two model inputs as computed using the SPOD
data. These isotropic modes are then distorted using the local mean velocity profile in accordance to Rapid
distortion theory through a wavenumber-dependent time scale [18, 19] which results in anisotropic, small
scale turbulence that is consistent with the mean velocity gradients in the quasi-homogeneous regions. An
example description of this procedure is shown in [18] in the context of sheared boundary layer turbulence.

Once initialized, the dynamics represented by Equation 4.1 account for the following physical processes:
a) rapid time-scale energy transfer from the large SPOD scales into the enriched small scales that occurs due
to large scale strain, b) consistent temporal decorrelation of small-scales since this occurs primarily due to
large scales sweeping enriched scales, c) effect of pressure as a Lagrange multiplier to impose the divergence
free constraint (ensured by the Eikonal equation for k), and d) decay of the intense small-scale Burgers
vortices generated by the non-local (in scale space) interactions of the straining term by representing the
local interactions (in scale space) due to the non-linear relaxation as a spectral viscosity obtained using a
Renormalization group (RNG) model [20].

Finally, it is important to emphasize the computational efficiency of the enrichment algorithm. The
overall computational cost can be decomposed into two steps: a) temporal evolution of Gabor modes and
b) rendering (transform into physical space). Log-spaced sampling of Gabor modes results in substantial
compression in representing small scale turbulence (> 95% in 3D and > 20% in 2D) and the time advancement
for each mode is an entirely local operation as detailed in Equation 4.1. The rendering step which is required
to obtain the enriched velocity field on a numerical mesh requires a non-uniform Fast Fourier Transform
(NUFFT); in the present application the cost of each 2D transform is equivalent to approximately 5-6
uniform 2D FFTs. Further details of the algorithm are provided in [21].
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Figure 5: Instantaneous snapshot of enriched flow fields. Sample time is comparable with that in the
representative snapshots shown in Figure 3.

While the application discussed in this paper focuses on planar reconstruction of wake turbulence, the
use of Gabor modes for enrichment is more broadly applicable to a variety of three-dimensional complex
flows, including wall-bounded turbulence. The algorithm requires some representation of domain/geometry-
influenced large scales, either via a coarse LES [2] or other data-driven techniques such as deep neural
networks [22], which explicitly influence the small-scale dynamics modelled by the Gabor mode representation
of the flow. The choice of SPOD basis used in the present work to represent temporally stationary large scale
flow physics is particularly convenient due to its orthogonality properties and spectrally sharp time-filtering
of the truncated expansion.

4.2 Enrichment

Figure 5 shows an instantaneous snapshot of the inflow field taken at the same time as the one shown
in Figure 3. A qualitative comparison of the Gabor mode induced fields with the residual fields suggests
good overall agreement. Perhaps the one striking differentiating feature is the somewhat higher azimuthal
imprinting in the Gabor mode induced instantaneous fields compared to the instantaneous residual fields
(see Figure 3). While the small scales induced by the Gabor modes are indeed coupled with the truncated
SPOD fields due to the localized straining (stage 2 in Equation 6), the overall azimuthal symmetry is a
consequence of the model inputs, which only vary radially.

In order to facilitate more quantitative comparisons of the enriched field with the true full fields, several
statistical measures are shown in Figure 6 through Figure 8. Figure 6 shows the single point correlations
computed for the Gabor mode induced and residual fields, time and ensemble averaged. While the number
of ensembles used for the residual fields is not sufficiently large to fully converge the statistics, the primary
purpose of this figure is to demonstrate that an 18⇥ 18 grid of Cartesian quasi-homogeneous regions on the
y � z plane is sufficient to obtain the expected azimuthal symmetry in statistics. Fewer quasi-homogeneous
regions would result in reduced spatial localization for the induced flow fields.

Assuming azimuthal symmetry, single point correlations as a function of radial location are shown in
Figure 7. While the truncated SPOD expansion significantly under predicts the correlations, the Gabor-
mode-enriched field shows excellent statistical agreement with the original field. Through the bulk of the
shear layer, the physical anisotropy (huxuri) is well captured by the Gabor modes; the slight under-prediction
of the turbulent kinetic energy at the shear layer centerline is notable. Upon closer inspection of the model
inputs, we can explain this deficiency in terms of the estimated dissipation rate in Equation 7. This definition
predicts "(r = 0) = "(r ! 1) which appears to be a substantial under-prediction. In this model, the core
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Figure 6: Time and ensemble averaged contours of single point small-scale second order correlations. The
panels on the left correspond to covariances obtained for the Gabor mode enriched velocities (fields shown
in the top panel of Figure 5) and the panels on the right correspond to covariances obtained for the residual
scales (fields shown in the bottom panel of Figure 4).

Figure 7: Single point correlations for the enriched fields
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Figure 8: Temporal auto-spectra for the three velocity components extracted at two radial locations of
r/R = 1 and 1.5 where R is the radius of the wake-generating actuator disk.

Figure 9: Azimuthal auto-spectra for the three velocity components extracted at two radial locations of
r/R = 1 and 1.5 where R is the radius of the wake-generating actuator disk.
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turbulence entrained by the shear layer is not neglected. Since E(k) / "2/3, any underprediction of the
dissipation rate results in underprediction of variances.

The 1D power spectra in frequency (Strouhal number) and azimuthal wavenumber (m) are shown for the
velocity components in Figures 8 and 9 at two different radial locations. These spectra further corroborate
the effectiveness of the current approach. It is interesting to note from Figure 9 that the enrichment using
Gabor modes leads to an increase in energy for m < 30, since it is able to generate smaller azimuthal scales
that are truncated due to filtering in time and radial direction in the truncated expansion. Further discussion
of 1D spatial spectra in the context of subfilter-scale enrichment can be found in [21] for highly anisotropic
near-wall turbulence.

Overall, our results show that spatially inhomogeneous turbulent flows can be effectively reconstructed by
combining a few SPOD modes to capture the energy containing coherent modes, which capture the large scale
inhomogeneity, enabling enrichment using Gabor modes. While in [18], Gabor mode enrichment was assessed
on wall-bounded turbulent flows using filtered LES data, it is promising to note the ability of the algorithm
to accurately provide enrichment for a more conventional data-driven reduced order modeling algorithm.
A potential step towards future improvement is to address the energy deficiency that is seen in azimuthal
and radial velocity components, near the cutoff frequency of the truncated SPOD reconstruction (St = 1.4).
This is a consequence of an inconsistency between the geometric anisotropy implied by the resulting quasi-
homogeneous regions (parameterized by Fco) and the true Reynolds stress anisotropy of the subfilter scales.
For the present choice of Fco = 1.4, the resulting aspect ratio of the [t, y, z] quasi-homogeneous regions is
rather skewed (⇡ [5⇥ 1⇥ 1]); this can be mitigated by a Reynolds-stress informed choice of Fco.

5 Conclusions
A flow reconstruction method that combines data-driven modal analysis with physics-based turbulence en-
richment is developed and tested for incompressible wake turbulence. For the actuator-disk wake considered
in this paper, the circumferential symmetry of the shear layer is leveraged to represent the shear-layer driven
turbulence using a compressed set of SPOD modes. The orthogonality of SPOD modes allows us to in-
terpret such a truncated representation as a filtering operation which subsequently enables generation of
subfilter scales via Gabor mode enrichment. This juxtaposition of data-driven modeling with physics-based
enrichment enables efficient representation of statistically stationary flow fields that contain both large-scale
coherent motions associated with inflectional instabilities and broadband k�5/3 turbulence. Hence, the cou-
pled formulation is more broadly applicable to a variety of statistically stationary turbulent flows including
wall-bounded turbulence. We further emphasize that once the SPOD mode shapes are determined using
data, an arbitrarily large number of random ensembles of statistically equivalent flow realizations can be
generated via randomizing the phase of the complex valued amplitudes, aj(m, f) in Equation 3. Each of these
random realizations can be further enriched on-the-fly with smaller scales using randomly sampled Gabor
modes, which provide a consistent extrapolation of the spectral content present in the SPOD representa-
tion. This procedure could be useful for generating ensembles of statistically equivalent inflow conditions
containing both inhomogeneous large scale and homogenous small scales motions.
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