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Synthesizing Turbulent Channel Flow 

A Proposed Form of Solution to Steady Turbulence in Channels 

Dr. John William Poduska, Sr. 
Weston, MA  USA 

Yaglom and Lumley in “A Century of Turbulence, 2001” whimsically state: 

“We believe that, even after 100 years, turbulence studies are still in their infancy.  We are 
naturalists, observing butterflies in the wild.  We are still discovering how turbulence behaves, 
in many respects.  We do have a crude, practical, working understanding of many turbulence 
phenomena, but certainly nothing approaching a comprehensive theory, and nothing that will 
provide predictions of an accuracy demanded by engineers.” 

Abstract:  There has long been a need for a fully theoretical basis for describing turbulent flows.  We pro-
pose a formal representation of the random velocities using a few ordinary smooth non-random functions 
together with an ordinary Stochastic Integral.  We call this the Gaussian Transform or GXF.  For exam-
ple, for 3D Channel Flow, we need only two CDF’s (Cumulative Distribution Functions) and four ordi-
nary correlation functions.  The simpler case of 2D Channel Flow requires only one CDF and one correla-
tion function.  Decaying Isotropic Turbulence (HIT) requires only one CDF and two correlations func-
tions.  We will develop these functions for 2D Channel Flow; we will describe how to compute them nu-
merically from DNS results; we will describe the synthesis of multiple realizations of the flow; and we 
will apply the NSE to this representation to come to a full solution to 2D Channel Flow. 

We will show that there IS a comprehensive theory which provides a complete closed form solution to 
certain turbulence problems.   

We show the existence of such a theory.  We do not (yet) provide the complete answer. 
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Metalog CDF approximations, Stationary Ergodic Stochastic Processes 
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1.  Introduction 

1.1.  The Base Case 

 We study steady state turbulence in the PPF configuration – fully-developed turbulence in a high aspect 
ratio rectangular channel with x-streamwise, y-cross channel (±L), z-spanwise.  We adopt the usual assumptions:  
Newtonian Fluid, constant viscosity and density, incompressible, smooth no-slip walls, stationary on time, station-
ary/homogeneous on x and z.  “Reynolds Averaging” applies.  Our parlance is that the flow is stationary and er-
godic on (x,z,t). 
 

 

 
 
Figure 1.1.1.  Standard configuration 
for 3D PPF – Steady channel flow be-
tween two smooth Parallel Plates.  The 
flow is along the x-axis, and the wall 
normal is the y-axis.  The z-axis is 
spanwise.  For 2D PPF, the z-axis 
quantities and dependencies are elimi-
nated. 
 

 
 Over the past few years, there have been several comprehensive DNS studies1 of PPF over a range of 
Reynolds numbers.  These studies provide an excellent database for developing insight into the functions needed to 
describe PPF turbulence. 
 
Our Goal:  We seek a closed-form equation for the velocities of this steady turbulent channel flow – much like: 
 

 i A closed-form expression involving a few deterministic functions
u (x, y, z, t)

and a simple random function, namely Brownian Motion

 
  
 

 (1.1.1) 

 

With this, we can synthesize the flow from first principals.  And we can approximate the solution to the equations 
of motion as close as we like with (say) a Best Fit methodology.  All to be shown below. 
 
 It is worth noting that physical assumption of the continuum together with the mathematical assumption of 
ergodicity (Reynolds Averaging) are severe constraints and make the stated goal possible. 
 
 
1.2.  The Random Turbulent Velocities We Want 

 Each DNS run (and every experimental record) yields a sample ui(x,y,z,t) – one member of an ensemble of 
solutions.  Following Wiener [1] and Lumley2 [3], we choose to represent the ensemble of velocities by 
ui(x,y,z,t,) where the parameter [0,1] selects a sample from the ensemble.  Thus, any average is obtained by 
simple (perhaps Lebesgue) integration: 
 

 
1

0
foo(y) = foo(x, y, z, t, α) dα   (1.2.1) 

 

A useful way to view this representation is this:  ui(x,y,z,t,) is a simple deterministic function of 5 parameters – 
x,y,z,t, – and  is selected at random from [0,1].  This allows us to treat ui(x,y,z,t,) like any other ordinary func-
tion with a specific value for a given set of parameters. 

 
1 See for examples, the Lee-Moser [4] and Mortensen-Langtangen [5] listed in the references. 
2 Also, by Steinhaus, Kolmogorov, and Yaglom [2] – among others. 
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 Our principal goal is to show that closed-form formulas exist to represent ui(x,y,z,t,)  with a few smooth 
functions and the Wiener Process r(s,) – aka Brownian motion. 
 
 
1.3.  Organization of this Paper 

 Our research is based on a tool we call the Gaussian Transform or GXF for short.  This paper is organized 
as follows: 
 

1. Develop the GXF tool in 1D. 
          This simple case will illustrate the basic principles. 

2. Develop the Solution for 2D PPF. 
          The 2D case is much simpler than the 3D case. 
          The 3D case follows with simple concepts but complex algebraic gymnastics. 

3. Measure the cdf’s and Autocorrelation Functions. 
          Tailored DNS runs of 2D PPF provide numerical approximation of the required analytic functions. 

4. Approximate the cdf and Autocorrelation Functions: 
          Use existing approximation tools to approximate the cdf and Autocorrelation Functions with a few 
          parameters.  Then optimize these parameters with some “Best Fit” and/or Galerkin process. 

 
 There is much more to be said and done to exploit this GXF mechanism.  The promise is great:  the ability 
to synthesize – i.e. compute – ANY statistical quantity – including velocities and pressures from a fixed closed-form 
equation.  Our goal is to show that such closed-form equations exist to represent ui(x,y,z,t,) with a few smooth 
functions and a convolution integral using the Wiener Process r(s,). 
 
 

2.  Using the cdf – Cumulative Distribution Function 

2.1.  A Simple Scalar Velocity Example 

 Ultimately, we want to find an equation for ui(x,y,z,t,) with [0,1].  To illustrate the process, we con-
sider PPF – channel flow – and we pick a scalar velocity at a fixed point in (x,y,z) space in a direction specified by 
the unit vector i thus: 
 

 i iu(t, α) = λ u (x, y, z, t, α)   (2.1.1) 
 

So, u(t,) is stationary and ergodic on “t”. 
 
This random function has a cdfu(..) (cumulative distribution function for u) defined as: 
 

   uu(t, ) cdf ( )    stationary, i.e. not-dependent on "t"    Pr  (2.1.2) 
 

To illustrate, consider a Gaussian Random Variable. 
 

 

 
 
Figure 2.1.  The cdf and pdf for 
the Standard Normal Gaussian 
Distribution.  In this case the 
mean is 0 and the variance is 1 
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This has the well-known monotone, strictly-increasing cdf and the famous “bell-shape” pdf. 
 
For physical situations, cdfu(..) has very “nice” properties – it is monotone strictly-increasing with a range=[0,1] 
and domain=[∞].  It has a smooth derivative known as the pdfu(..) (probability density function for u), often 
shaped like the “bell” curve. 
 
 
2.2.  The Associated “quantile” Random Function 

We construct the associated “quantile” Random Function as follows: 
 

  uq(t, ) cdf u(t, ) Compose the  with the velocity   cdf  (2.2.1) 
 

What is the Cumulative Distribution Function (cdf) of q? 
 

 
   

u

u u u

u u u u

q( t, )

{u(t, ) } cdf ( ) Standard Definition

u(t, ) cdf (u(t, )) cdf ( ) Apply cdf ( ) to both sides

{cdf (u(t, )) cdf ( )} cdf ( ) Because cdf ( ) is monotone

{q(t, ) } !!! 

   

    

       

     

    
 

  

Pr

Pr

Pr The Uniform Distribution

 (2.2.2) 

 

So, q(t,) has a linear-rectangular distribution, regardless of the original u(t,)!  This demonstrates – as expected – 
that ALL single point statistics of u(t,) are derived from the cdfu. 
 
 
2.3.  The Associated “Normal” Random Function 

 Now the Standard Normal distribution is a Gaussian distribution with mean=0 and variance=1.  The Nor-
mal cdfN(..) and its inverse (quantile function) are3: 
 

 

 

N

N

1
cdf ( ) 1 erf The "Normal" Distribution

2 2

icdf ( ) 2 ierf 2 1 The "Normal" Quantile Function

      
  

   

 (2.3.1) 

 

Then, construct another random function as: 
 

    N N u
u2(t, ) icdf q(t, ) icdf cdf (u(t, )) M (u(t, ))        (2.3.2) 

 

This (t,) is a Normal Gaussian Random Function with Mean=0 and Variance=1!  Moreover, (t,) is smooth, 
stationary, and ergodic on “t” because u(t,) and q(t,) are so.  The inverse is: 
 

  u N
2uu(t, ) icdf cdf ( (t, )) M ( (t, ))       (2.3.3) 

 

Thus (as expected) all single point statistics – including mean, variance, skewness, kurtosis/flatness, characteristic 
function, etc. – are contained in cdfu(..) independent of “t”. 
 
Note that both M2u and Mu2 are monotone strictly-increasing because each is the composition of two monotone 
strictly increasing functions. 
 
Summary:  This demonstrates that there exist monotone strictly increasing functions: 
 

 
3 The Wikipedia article “Normal Distribution” is quite good. 
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 
 

N u
u2

u N
2u

M ( ) icdf cdf ( )

M ( ) icdf cdf ( )





 

 




 (2.3.4) 

 

Such that 
 

 
 
 

u2

2u

(t, ) M u(t, )

u(t, ) M (t, )





   

   
 (2.3.5) 

 

So, we represent u(t,) exactly by a Monotone Function M2u(..) and a Normal Random Variable (t,). 
 
It is worth repeating that (t,) is indeed a standard Normal Random Variable which completely and faithfully rep-
resents u(t,).  It is differentiated from other Normal RV’s by its Autocorrelation Function, often referred to as 
B() for Gaussian RV’s. 
 
 

3.  The Wiener Machinery 

3.1.  The Wiener Process 

 The “Wiener Process” is an idealization of “Brownian Motion” named for the Scottish Botanist Robert 
Brown.  The Wiener Process r(t,) is continuous on t for any [0,1]. 
 

 

 
 
Figure 3.1.1.  A construction of 
the Wiener Process.  Four Thou-
sand Bernoulli Trials were inte-
grated (summed) to form this 
sample function.  The striking 
characteristics of a curve that is 
continuous, but not differentia-
ble, and not bounded in varia-
tion are apparent.  The fractal 
dimension is 3/2. 
 

 
 We choose a version of the function r(t,) which has some interesting and convenient properties.  With 
regard to t:  for every , r(t,) is:  continuous on t, unbounded in variation, and a fractal with fractal-dimension 
3/2.  With regard to :  for almost all t, r(t,) is: continuous on , and for all t it is Square Integrable.  Moreover, 
r(t,) has increments which are Gaussian distributed and are mutually independent for non-overlapping intervals. 
 
 These properties are enough to completely specify the Wiener Process r(t,).  Most important, this simple 
process has enough power to be the basis of a complete representation of any Stochastic Process. 
 
 
3.2.  The Wiener Stochastic Convolution Integral 

 The Wiener Stochastic Convolution Integral is: 
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 (t, ) (t s)dr(s, )       Usually taken over infinite limits       (3.2.1) 
 

Here (t,) is a Gaussian Process which is stationary and ergodic over all time.  It is defined as the convolution of 
an unknown deterministic function (s), and the known Wiener Process r(s,)4.  It is an ordinary Riemann-
Stieltjes integral where dr(s,) is an increment whose variance is ds. 
 
The derivative and the autocorrelation function are defined by: 
 

 

 

d d
(t, ) (t s) dr(s, ) The derivative is well defined

dt dt

B( ) (t ) (t) dt (s) Uniquely defines Autocorrelation Function

       
 

      




 (3.2.2) 

 

Moreover, (s) is square-integrable and has a proper Fourier Transform.  These characteristics are critical to solv-
ing the NSE. 
 

It is also well established5 that every Stationary, Gaussian random function with finite mean and variance is 
completely specified by its mean and auto-correlation function, and any autocorrelation function can be generated 
with the appropriate kernel to the Wiener Integral. 
 
 
3.3.  Principal Conclusion for 1D  

Any physical velocity u(t,) which is stationary and ergodic on “t” and has bounded mean and variance is com-
pletely defined by two smooth functions and the Wiener Process as follows: 
 

 
   u N

2u 2uu(t, ) M (t, ) where : M (..) icdf cdf (..)

(t, ) (t s)dr(s, )

    

     


 (3.3.1) 

 

With a kernel completely defined by the autocorrelation function of (t,). 
 
Importantly, these two functions – M2u(..) and (..) – can be measured experimentally and/or by DNS results. 
 
 
3.4.  Extension to Two or More Stationary Parameters 

 Recall the Wiener Stochastic Convolution Integral for one stationary parameter – “t”: 
 

 (t, ) (t s)dr(s, )       (3.4.1) 
 

We now extend this integral to two stationary parameters – “x” and “t” – as: 
 

 1 1 1 1(x, t, ) (x x , t t )dr(x , t , ) Taken over the whole {x,t} surface        (3.4.2) 
 

This integral is a surface integral, and dr(x,t,) is a surface element whose variance is d(x,t) – the area of the 
surface element.  This heuristic description can be made fully rigorous.6 
 
Of particular importance, note that (x,t,) is: 
 

 
4 Said in a jocular but informative way, we represent an extraordinary function (t,) (perhaps a velocity) as the convolution 
of an unknown but ordinary function (..) with a known but bizarre function r(s,)!  The Stieltjes form integral does indeed 
exist because (..) is bounded in variation and r(s,) is continuous.  The literature has a persistent and annoying error in claim-
ing that the integral does not formally exist as a Stieltjes Integral.  Yaglom noted that this is an example of the classic “separa-
tion of variables” technique. 
5 See Yaglom [2] “Stationary Random Functions”, especially section 1.3. 
6 See Wiener [1] and Poduska [6]. 
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1. Stationary and Homogeneous on “x” and “t” independently.  So, all statistical properties of (x,t,) are 
independent of “x” and/or “t”. 

2. Ergodic on “x” and “t” independently.  So, Ensemble () Averages, Space (x) averages, and Time (t) aver-
ages are all equal. 

 
Extending the 1D case, the derivatives and the autocorrelation function are defined by: 
 

 

 

1 1 1 1

1 1 1 1

(x, t, ) (x x , t t ) dr(x , t , )
x x

(x, t, ) (x x , t t ) dr(x , t , )
t t

B( , ) (x , t ) (x, t) dxdt

           
           

        







 (3.4.3) 

 

Moreover, (x,t) is square-integrable and has a proper Fourier Transform.  These characteristics are critical to solv-
ing the NSE.  Finally, by extension from the 1D case, every 2-parameter, Stationary, Gaussian random function 
with finite mean and variance is completely specified by its mean and auto-correlation function, and any autocorre-
lation function can be generated with the appropriate kernel to the Wiener Integral. 
 
 

4.  Steady 2D Plane Poiseuille Flow 

4.1.  Basic Random Quantities 

 2D flows are rare in the physical world – two examples are large scale atmospheric flows and soap-films.  
Nevertheless, we expect the study of 2D PPF to yield valuable insights into the full 3D flow.  So, we examine this 
simplified case first before we come to the full 3D PPF flow. 
 

Steady, fully developed, 2D PPF is stationary and ergodic on “x” and “t” independently.  Since – by con-
servation of mass – the divergence of the velocity is zero, the flow is completely defined by one stream function 
s(x,y,t,) with a double order zero at y=±L.  So: 
 

 x
y

y
x

s(x, y, t, )      is the 2D PPF Stream Function

u (x, y, t, ) s(x, y, t, )

u (x, y, t, ) s(x, y, t, )



   

   

 (4.1.1) 

 

Thus for 2D PPF we need only one scalar stream function, viz s(x,y,t,). 
 
The procedure for implementing the GXF for 2D PPF follows closely the 1D case covered above. 
 
 
4.2.  The 2D PPF Associated quantile Function 

The cdfx(,y) of s(x,y,t,) is independent of “x” and “t” but is dependent on “y”, hence: 
 

  
 

s

s s

s N s

cdf ( , y) cdf of s(x, y, t, )

q (x, y, t, ) cdf s(x, y, t, ), y Associated Quantile Function

(x, y, t, ) icdf q (x, y, t, ) Associated Normal Function

 
  

   

 (4.2.1) 

 

Restated:  s(x,y,t,) is a Normal Gaussian function directly derived from s(x,y,t,) by: 
 

 
 

   
s s

s2

s N s
s2

(x, y, t, ) M s(x, y, t, ), y

M , y icdf cdf ( ,y)





   

  
 (4.2.2) 

 

The  s
s2M λ,y  is continuous and strictly increasing on .  Thus, it has a proper -inverse namely  s

2sM λ,y . 
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4.3.  The Autocorrelation Function 

 Any stationary Gaussian Random Function is completely defined by its mean and auto-correlation func-
tion7.  The associated x(x,y,t,) is Standard Normal – i.e. =0 and =1 – but with an unspecified auto-correlation 
function.  The 2D Wiener Stochastic Convolution Integral applied to this case is: 
 

 s s
1 1 1 1(x,y,t, ) (x x ,y,t t )dr(x ,t , )        (4.3.1) 

 

The auto-correlation function is: 
 

 s s sB ( ,y, ) (x ,y,t ) (x,y,t)dxdt        (4.3.2) 
 

Given any Bs(,y,), a corresponding s(x,y,t) can be readily defined8. 
 
 
4.4.  The Principal Conclusion for 2D PPF 

 The s(x,y,t,) thus obtained is statistically identical to any other 2D Standard Normal Random function 
with the same autocorrelation function s(x,y,t,).  Thus we can formulate the random variable s(x,y,t,) from the 
Wiener integral as follows: 
 

 
 

s s
1 1 1 1

s s
2s

(x, y, t, ) (x x , y, t t )dr(x , t , ) Gaussian Process

s(x, y, t, ) M (x, y, t, ) Physical Stream Function

      

   


 (4.4.1) 

 

So, we claim this:  With two smooth functions and an integral with a 2D Wiener process, we can compute any sta-
tistical property of 2D PPF flow.  We can also generate a “DNS” run with a computer-generated Wiener Process 
and visualize the result.  QEF 
 
 

5.  Outline:  Measuring cdf’s and Autocorrelation Functions 

5.1.  A Prototypical DNS Run for 2D PPF 

 Suppose we run a DNS simulation with a high enough Re to have fully developed turbulence in a 2D PPF 
setting.  Suppose this DNS is discretized with enough points on the x-axis, y-axis, and t-time to get a reasonably 
accurate picture of the flow.  Assume the stream function, velocity and pressure data is stored in a Nx*Ny*Nt ar-
ray.  In fact, we will want this array for many Reynolds numbers. 
 
A promising structure is this: 
 

1. Nx=210, Lx=6, Discretized using Discrete Fourier Transform 
2. Ny=210+1, Ly=2, Discretized using Cubic or Quintic Splines 
3. RK4 Runge-Kutta, Time stepping 

 

Then the procedure is: 
 

1. Time step the NSE (in convective form) for the two velocities ux and uy. 
2. Solve the Poisson equation for the stream function s, using cubic/quintic splines. 
3. Derive updated ux and uy. which automatically satisfy Mass Conservation. 
4. Record the Nx*Ny*Nt array. 

 

 
7 See Yaglom “Stationary Random Functions”, especially section 1.3. 
8 Essentially, the Fourier Transform of Bx(..) is the Fourier Transform of x(+)*x(-). 
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This structure yields Nx=Ny=Nt=210=1k axis points.  Assuming 32 bytes of data per entry, we need 32GB storage 
for the whole array.  This is a manageable task for 2D PPF.  It is a much harder task (at least Nz times harder) for 
3D PPF. 
 
 This simulation can be done in Python and run on a robust desktop computer in quite reasonable time. 
 
 
5.2.  Estimating the cdf 

 For 2D PPF, we want to estimate the cdfs(,y) based on the DNS results.  For each of the y-axis points, the 
stored array has Nx*Nt values of s.  We could make a histogram of the Nx*Nt values, but a far simpler process is 
to simply sort the Nx*Nt values for each y-point.  Then normalize the ordinal by the total count Nx*Nt to get a rea-
sonable piecewise linear approximation to the cdf9.  There are some much more sophisticated approximation tech-
niques – such as Pearson distributions and Metalog equations – but I think the simple sort is good enough for now. 
 
 With this simple sort technique, we have the cdfs(,y) for Ny points.  It will be interesting to see just how 
the cdfs(,y) varies with y. 
 
 Using this approximate cdfs(,y), we can compute the related quantile function qs(x,y,t) by table lookup in 
the cdfs(,y).  From this we can compute the related Normal function s(x,y,t). 
 
 
5.3.  Estimating B(..), the Autocorrelation Function ofs(x,y,t) 

 We can now compute B(x,y,t) from the computed values of s(x,y,t) using standard software packages – 
especially convenient in SciPy. 
 
 Some caution is well advised in computing the autocorrelation function on the x-axis.  The x-discretization 
is based on a repeating box.  So, autocorrelations beyond Nx/2 are very suspect.  Perhaps wise to limit bounds of 
the autocorrelation function to NX/4 with no wrapping.  There is much computer-experimentation to be done here. 
 
 The Wiener Stochastic Convolution Integral for two stationary parameters is: 
 

 1 1 1 1(x,y, t, ) (x x , y, t t )dr(x , t , )        (5.3.1) 
 

The corresponding autocorrelation function is: 
 

 B( , y, ) (x , y, t ) (x, y, t) dxdt          (5.3.2) 
 

And the corresponding Fourier transform of B(..) on x and t is: 
 

 B( , y, ) ( , y, ) ( , y, )          (5.3.3) 
 

 
Thus the discretized (,y,) can be computed and from this (x,y,t) comes by a FFT.    
 
 
5.4.  Summary of the GXF Measurement Process 

The measurement and synthesizing process described requires these steps: 
 

1. Design and run a DNS package especially for 2D PPF 
The design is more oriented to flexibility and modification than to ultimate accuracy.  So, Python is the pre-
ferred language. 

 
9 This algorithm can be somewhat improved by using quantum cell midpoints.  There are several more refined algorithms for 
estimating the cdf. 



- 10 - 

2. Compute Approximate cdf by simple sort 
This will give reasonable quantile and related Normal RV’s.  But this may be lacking in determining the 
tails of the cdf. 

3. Compute the Numerical Autocorrelation Function 
This will likely require smoothing of the experimental B(,y,) before deriving (,y,).  Possibly by fre-
quency truncation, or perhaps a Gaussian Filter. 

4. Approximate the Kernel of the Wiener Integral. 
After smoothing B(,y,), deriving the (,y,) is in essence a “sqrt” operation, reminiscent of the Wie-
ner-Hopf equation/process.   

5. Use these results to synthesize 2D PPF Turbulence 
The synthesis process – i.e. generate a sample flow – can be done numerically by discretizing the Wiener 
Stochastic Convolution Integral.  We use a random number generator for r(x,t) and a suitable (x,y,t) to 
generate a discrete sample (x,y,t,) by the summation:  
          p q p qp,q

(x,y, t) (x ,y, t ) r( , )         

Then apply the M2s(..) to generate a discrete sample stream function s(x,y,t).  QEF 
 
The end result is a good and refinable mechanism to measure the functions needed by the GXF. 
 
 

6.  Outline:  A Ritz-Galerkin Approximate Solution to NSE 

6.1.  Approximate Computed Solutions 

 There are several ways to compute an approximate solution to the NSE in 2D PPF configuration.  One tra-
ditional way – DNS – is to directly simulate the NSE over a space lattice and time-step the equations.  The result is 
a large array of data which is very useful, but quite specific to a given flow situation. 
 
 In contrast, we seek to approximate the smooth functions of the GXF process with a few parameters to be 
optimized as a “Best Fit” in the NSE.  We explore here the Galerkin Error Residual Method sometimes known as 
the GERM method.   
 
 
6.2.  The Basic Best-Fit Process 

 We describe a Ritz-Galerkin method for obtaining an approximate solution to the NSE in 2D PPF configu-
ration using the Gaussian Transform method described above. 
 
The process is as follows: 
 

1. Define a parameterized class of convergent approximate solutions which match the boundary conditions 
and other constraints, i.e., Conservation of Mass.  This is fundamentally the Galerkin methodology. 

2. Insert this approximate solution into the NSE resulting in an error residual. 
3. Define a scalar norm to be the Mean Square Residual integrated across the channel. 
4. Minimize the scalar norm with regard to the free parameters in the approximation. 

 
Specifically: 
 

1. Approximate the CDF using an n-term Metalog Distribution 
2. Approximate the Wiener integral kernel (x,y,t) by an m-term truncated Hermite-Function Series  

 
This process automatically satisfies all boundary conditions as well as the Conservation of Mass equation.  It can be 
refined by increasing the number of n-terms and m-terms, ultimately converging to the exact answer. 
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6.3.  Some Observations and Considerations 

 There are many possible refinements and improvements to this process.  But at a minimum, we have 
demonstrated a convergent path to a full solution.  And from this – or other – approximation to the two basic func-
tions, we can synthesize a realization of the turbulent flow. 
 
 We expect the DNS results to provide guidance to the structure of the CDF and (x,y,t) especially to 
gauge how these functions vary with Reynolds Number. 
 
 

7.  A Quick Look at 3D PPF Flows 

7.1.  Basic 3D Random Quantities 

 Incompressible 3D PPF are completely characterized by two velocities (say) ux(x,y,z,t,) and uz(x,y,z,t,).  
From these, the third velocity uy(x,y,z,t,) is obtained from the Conservation of Mass equation.  We say that 3D 
PPF has two degrees of freedom or 2DOF.  A simple and satisfactory way to account for this is to use two inde-
pendent Wiener Integrals shown schematically as follows10: 
 

 

x x1 1 x2 2

z z1 1 z2 2

( , ) ( )dr ( , ) ( )dr ( , )

( , ) ( )dr ( , ) ( )dr ( , )

            

            

 
 

 (7.1.1) 

 

Where r1(-,) and r2(-,) are two independent Wiener processes. 
 
 If the flow were compressible, there would be 3DOF.  If the flow were incompressible MHD assuming 
Bullard’s equation, there would be 4DOF. 
 
 
7.2.  The Associated 3D quantile and Normal Functions 

The Associated Quantile Functions are: 
 

 
 
 

x x x

z z z

q (x, y, z, t, ) cdf u (x, y, z, t, ), y

q (x, y, z, t, ) cdf u (x, y, z, t, ), y

  

  
 (7.2.1) 

 

The Associated Normal Functions are: 
 

 
      
      

x x x x N x
u2 u2

z z z z N z
u2 u2

(x, y, z, t, ) M u (x, y, z, t, ), y    M , y icdf cdf , y

(x, y, z, t, ) M u (x, y, z, t, ), y    M , y icdf cdf , y

 

 

      

      
 (7.2.2) 

 

 These functions – x(x,y,z,t,) and z(x,y,z,t,) – are Standard Normal random functions, stationary and 
ergodic on (x,z,t), and parametrically dependent on “y”.  The appropriate Wiener Integral is: 
 

 i i
1 1 1 1 1 1(x, t, z, y, ) (x x , t t , z z , y)dr (x , t , z , ) For i={x,z}, ={x,z}           (7.2.3) 

 

This integral is a volume integral, and dr(x,t,) is a volume element whose variance is d(x,t) – the volume of the 
element. 
 
 Also, i(..) can be determined from the vector autocorrelation function Bij(..).  So, the 3D PPF velocities 
are determined by 4 smooth L2 correlation functions having 3 parameters, together with 2 smooth strictly increasing 
functions  i

2uM λ,y  having 2 parameters.  Schematically, the construction is: 
 

 
10 This heuristic argument can be made fully rigorous. 
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i

i

i i
Wiener Integral

dr (.., )

i
( )

Normal cdf( )

i

inverse cdf ( ,y)

(x, y, z, t) (x, y, z, t, )

q (x, y, z, t, )

u (x, y, z, t, )

 



 

 




  


 

 

 (7.2.4) 

 
 These 6 functions are deterministic – Not Random.  So, they can be determined from the equations of mo-
tion analytically if possible; approximately (say) by a Galerkin process; or numerically if necessary.  Moreover, 
they can be measured from experiment or DNS runs. 
 
 
7.3.  Comments on 3D PPF Solution 

Comparing 3D PPF to 2D PPF:  The two sections above show that 3D PPF is much more complex in detail – 4 
correlation function vs. 1, and 2 cdf functions vs. 1.  But 3D PPF involves no greater conceptual complexity.  This 
supports – if not justifies – the initial study of the 2D cases for guidance in the study of the full 3D cases. M. Le-
sieur and U. Frisch seem to agree. 
 
Other Flows:  Many other flows can be analyzed by similar techniques including:  HIT Homogeneous Isotropic 
turbulence, turbulent wakes behind spheres and cylinders, and the MFD cases of all these flows. 
 
 

8.  Summary and Conclusions 

8.1.  Basic Results 

 We have demonstrated that there is a closed-form solution to many stationary and ergodic turbulent flows 
which consists of: 
 

1. A few very regular real functions 
2. Wiener’s Stochastic Convolution Integral 

 

This solution allows us to calculate and visualize any specific instance of a flow – as does a DNS run. 
 
For example, for 2D PPF, the method used is this schematically: 
 

 
 s M ,y Physical Stream Function from Normal Process

dr Normal Gaussian Process from Wiener Integral

 

  
 (8.1.1) 

 
Or more formally and precisely: 
 

 
 s s

2s

s s s
1 1 1 1

s(x, y, t, ) M (x, y, t, ), y    s from 

(x, y, t, ) (x x , y, t t )dr(x , t , )     from Wiener Integral

    

       
 (8.1.2) 

 
There are two very ordinary functions involved: 
 

1.  s
2uM λ,y  very smooth on both parameters and strictly increasing on   

2. s (x, y, t)  very smooth and square integrable on all parameters 
 
For 3D PPF, a similar analysis leads to two M’s and four ’s with similar smooth properties. 
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8.2.  Next Steps 

This analysis leads to (at least) three fruitful avenues to explore: 
 

1. Use DNS results to numerically determine the M’s and ’s for many Reynolds Numbers 
2. Approximate M’s and ’s with parameterized functions and Optimize by a Galerkin Process 
3. Attempt to solve the equations of motion directly for the M’s and ’s 

 
For 1:  We intend to develop 2D PPF runs with modest accuracy over a range of Reynolds Numbers.  This will 
provide a basis for seeing the dependence of the M’s and ’s on Re and y. 
 
For 2:  Guided by the results of “1” above, we will use standard models for both M’s and ’s – e.g. parameterized 
Metalog Distributions for M’s and various rapidly decreasing formulations of the ’s. 
 
For 3:  This will be an extremely difficult task.  We do have guidance from “1” and “2” above, as well as a host of 
symmetry and boundary conditions, but the task is daunting even with Symbolic Math packages, e.g. Maple.  The 
prospects for Isotropic turbulence are somewhat brighter because there is only one M function and the ’s must 
have an Isotropic structure. 
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