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Abstract: We revisit coarse-grained simulation strategies for turbulent material mixing driven
by shocked / accelerated material interfaces, based on LANL’s Radiation Adaptive Grid Eulerian
(xRAGE) – Implicit Large-Eddy Simulation (ILES), and dynamic bridging xRAGE-ILES and
Besnard-Harlow-Rauenzahn (BHR) – Reynolds-Averaged Navier-Stokes (RANS), using Low-Mach-
Corrected (LMC) xRAGE hydrodynamics. Tests of the new simulation paradigms demonstrate
improved scale-resolving, enabling higher simulated mixing and turbulence levels on coarser grids.
Impact assessments are carried out based on simulations of shock-tube experiments.
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1 Introduction
In shock-driven turbulence applications such as inertial-confinement-fusion capsule-implosion experiments,
we are interested in predicting the mixing consequences of material interpenetration and hydro-dynamical
instabilities arising from perturbations at shocked/accelerated material interfaces. The 3D variable-density
hydrodynamics depends on initial conditions (IC) and involves transition to turbulence, non-equilibrium
turbulence development, and late-time relaminarization. Such flow physics can be captured with a coarse
grained simulation paradigm [1], presuming the spectral cascade transfer of energy (the rate limiting step)
is determined by the initial and boundary condition constrained large-scale dynamics, and using mixing
transition criteria and effective turbulence Reynolds numbers (Re) for macroscopic convergence metrics [2].
Because shocks and turbulence are involved, resolving all relevant physical scales in shock-driven turbulence
simulations becomes prohibitively expensive. ILES addresses the seemingly insurmountable issues posed by
underresolution [4] by combining shock and turbulence emulation capabilities based on a single numerical
model [1].

Strategies bridging large-eddy simulation (LES) and RANS are the aerospace and automobile industry
standard for full scale simulations [5]. Blended hybrids such as the Flow Simulation Methodology [6, 7] scale
the closure terms on the RANS equations by a contribution function 0 < f(∆/L) < 1, where ∆ is the local
grid size, and L is a reference bridging length. Balance between modeled and computed dissipation is based
on the RANS stress model Rm

ij locally morphing into SGS Favre-averaged LES stress SGS model R̃s
ij ,

R̃s
ij ≡ f(∆/L)Rm

ij , (1)

where the contribution function f(∆/L) vanishes in the high fidelity limit (∆ → 0) and approaches unity
at the low resolution limit (pure RANS). Formal relations such as (1) – involving ensemble-averaged RANS
and spatially-filtered LES quantities, are interpreted in a generalized-function (integral) sense. Hybrids
exploit the structural similarity of equations for RANS and LES, and use relationships between filtering and
averaging operations [8].

FSM was originally intended to locally bridge direct numerical simulation (DNS) and RANS as a function
of grid resolution. More generally, FSM can be used to locally blend a high-fidelity simulation strategy such
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as ILES with RANS to generate a sophisticated LES strategy in-between. The issue of interest is the
computation of the dissipation which has to be suplemented by the model for underresolved flow conditions.
For sufficiently fine resolution the dissipation range is resolved and the RANS contribution should switch
itself off – i.e., f(∆/L) → 0 as ∆ → 0. In the FSM aproach first proposed in [6] – and subsequently pursued
in various forms by others, empirical ad hoc forms for the contribution function f were prescribed.

Dynamically solving for f based on decomposing the full stress into modeled and resolved components
and using a differential filter as secondary filtering operation to define the resolved part was first proposed in
[9], and recently extended [12, 13] by additionally requiring the resolved stress to approach the full stress with
grid resolution refinement to ensure realizability of the bridging-based LES. In our dynamic FSM paradigm
for turbulent material mixing applications, the full stress is decomposed in terms of modeled R̃s

ij and resolved
Tij parts,

Rfull
ij = R̃s

ij + Tij . (2)

We use ILES as high-resolution limit strategy in the formalism, so there is no explicit LES SGS model,
and the hybrid R̃s

ij is directly related to the RANS stress Rm
ij in terms of f through (1).

For consistency and realizability of the generated LES in approaching the high resolution / fidelity limit,
we require that Tij → Rfull

ij as ∆/L → 0. We enforce this additional modeling constraint, in terms of
γ = (∆/L)l, for l ≥ 1, by assuming that Rfull

ij can be approximated by a resolution-dependent weighted-
average of the RANS and resolved stresses,

Rfull
ij ∼ γRm

ij + (1− γ)Tij . (3)

We substitute equation (1) into (2), use (3), and after contracting with a generic tensor quantity qij –
e.g., qij = Tij , we solve for f – see full derivations in [12, 13],

f(∆/L) = γ{ 1− [ qijTij ]/[ qijR
m
ij ] }. (4)

For consistency we also require f ≡ 1 for γ ≥ 1.
By design, the contribution function enforces realizability of the bridging-based LES through (1) in

the high fidelity limit ∆ → 0 when LES → DNS. The choice of l controls how the numerics-based ILES
SGS model is supplemented by the explicit SGS model generated by the bridging strategy for intermediate
resolutions. For xRAGE numerics – 1st-order near shocks and 2nd-order in smooth flow regions, l ≥ 2 is a
suitable choice.

Present ILES is based on the newly available directionally-unsplit LMC xRAGE numerical hydrodynamics
[11, 12, 13, 14]. The default 2nd-order split xRAGE hydrodynamics [15] was used in our earlier sequential
ILES/RANS simulations of the CEA shock-tube laboratory experiments [16] running pure ILES at early
times to generate RANS initialization at a selected prescribed start time. In contrast, the present dynamic
bridging LES/RANS paradigm acts at all times as the reference ILES.

The Dynamic BHR formalism uses the Besnard-Harlow-Rauenzahn (BHR) multi-equation RANS frame-
work [25] in the BHR3.0 version [26, 24]. Similar BHR extensions with the more recent BHR3.1 [27] version
are expected to be straightforward. Detailed discussion of BHR initialization issues can be found in [12, 13].

In the original FSM modeling bridging DNS and RANS [6, 7], the bridging lengthscale L was an esti-
mated Kolmogorov length scale. Choosing L ∼ Kolmogorov scale amounts to choosing L as the smallest
hydrodynamic length-scale in the turbulent flow, or, a small fraction of the Taylor microscale character-
izing the smallest vortices of the turbulence. Likewise, for bridging ILES and RANS, a computed Taylor
microscale of the velocity fluctuations (λc) characterizing the CGS cutoff and simulated turbulence can be
usefully considered (see Fig.6). Such computed Taylor microscale λc can be directly evaluated in terms of
suitable volumetric-averaged functions of the raw velocity data {ui}, [17] by

λc =

[
i=3∑
i=1

√
⟨u2

i ⟩/⟨ui,i
2⟩

]
/3; (5)

As λc is typically found to be ≳ 10 cells for xRAGE ILES [18], choices of L ∼ few cells in what follows,
amount to choosing L as small fraction of λc.
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Figure 1: Schematic of the CEA planar shock tube configuration.

Figure 2: SF6 mass-fraction isosurface visualizations of 0.05mm resolution ILES predictions.

2 CEA Planar Shock Tube
We revisit the CEA shock-tube laboratory experiments [19], involving high (SF6) and low (air) density gases,
Atwood number, At = 0.67, presumed geometries of the membranes and the wire mesh initially separating
the gases, and reshock off an end-wall. A shocked SF6 region is created upstream in terms of a higher-density
higher-pressure SF6 region for a Mach 1.45 shock (strength 0.54). The planar primary shock propagates
through unshocked SF6 , and then through the SF6 /Air contact discontinuity. The shock eflects at the end
of the simulation box where purely reflecting boundary conditions are enforced – to enable reshock simulation
(Fig. 1).

In the recent sequential xRAGE-ILES/BHR-RANS hybrid simulation studies [16], xRAGE-ILES gener-
ated data was used to provide physics-based IC to BHR-RANS just before 1st reshock, and was also used
as reference for its assessment. By prescribing ILES generated 3Dand allowing for 3D convection with just
enough resolution in [16], the computed dissipation in 3D RANS (vs. 2D RANS) was found to effectively
supplement the modeled dissipation following 1st reshock. However, the 3D RANS cannot resolve well the
subsequent consequences of a new transitional flow event at 2nd reshock [16]. This limitation is typical of a
standalone RANS and motivates our pursuit of suitable blended LES/RANS capable of dynamically adapting
the simulation model to local flow conditions for applications driven by multiple shocks.
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1st reshock 2nd reshock

captures Rankine-Hugoniot’s 4.7E+03 cm/s
does not capture wall effects

4.7E+03 cm/s

~1.4

Figure 3: Axial velocity at x=161mm, ILES vs. CEA data.

Spectral content and standard deviation need to be prescribed for the initial material sharp-interface
conditions. Following [16] IC are defined as superposition of six equally-weighed wavelengths in the neigh-
borhood of h (characteristic initial egg-crate lengh and mix thickness), in addition to (red-noise) ∼ k−2

deformations with standard deviation 0.04h and shortest wavelength of at least 4 coarsest cells.
Mix width, as well as velocity magnitude and variance data from the experiments [19, 20] are used for

benchmarking the ILES predictions – see [13] for more detailed discussion of validation results and analysis.
In turn, ILES is then used as detailed reference for bridging results for same domain, resolution, and IC.

Compared to the actual CEA laboratory experiments [19], the computational domain in the present
simulations (Fig.1) had the same (30cm) initial interface-to-wall distance. As runtime compromise – as
in [16], we focused again on the center 5cm × 5cm transverse portion of the laboratory channel window
section with periodicity imposed in the transverse (y,z) directions – in contrast with 8cm × 8cm channel
cross-section limited by no-slip wall boundaries in the laboratory experiments. Thus, late-time discrepancies
between computational and laboratory studies can be again expected due to effectively different boundary
conditions in transverse directions, and unaccounted-for effects of near-wall momentum deficit in the actual
experiments [20]. In [16], we found such disagreements after first reshock, for times ⪆ 1.4ms.

Miscible gas-material interface modeling strategies have used various superpositions of perturbation
modes [1] in the simulation of shock driven turbulence. The initial material interface thickness δo in the
CEA laboratory experiments is not reported in the original paper [19] and was chosen in [20] to be a fraction
the egg crate wavelength in the laboratory experiments (h=1mm). Our convenient computational resolution
choice here is to use a single initial condition slength-scale, with the same characteristic initial wavelength h
used to prescribe δo=h.

Compared to the actual CEA laboratory experiments [19], the computational domain in the present
simulations (Fig.1) had the same (30cm) initial interface-to-wall distance. As runtime compromise – as
in [16], we focused again on the center 5cm × 5cm transverse portion of the laboratory channel window
section with periodicity imposed in the transverse (y,z) directions – in contrast with 8cm × 8cm channel
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1st reshock 2nd reshock à

Figure 4: Axial velocity variance at x=161mm, ILES vs. CEA data.

Figure 5: Transverse velocity variance at x=169mm, ILES vs. CEA data.
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cross-section limited by no-slip wall boundaries in the laboratory experiments. Thus, late-time discrepancies
between computational and laboratory studies can be again expected due to effectively different boundary
conditions in transverse directions, and unaccounted-for effects of near-wall momentum deficit in the actual
experiments [20]. In [16], we found such disagreements after first reshock, for times ⪆ 1.4ms.

2.1 xRAGE ILES Results
The present 3D simulations use between two and eight levels of AMR with finest resolutions ranging between
0.2mm and 0.05mm, respectively; the (more-practically motivated) 3D dynamic xRAGE-BHR bridging sim-
ulations below use 2 – 4 levels of AMR with 0.100mm 0.200mm resolution. The simulations typically used
0.1Billion (0.2mm resolution), 0.5B (0.1mm resolution), and up to 5.2B (0.05mm resolution) computational
cells. We use the 3rd-order directionally-unsplit LMC xRAGE numerical hydrodynamics [11, 12] as main
strategy – vs. default directionally-split 2nd-order xRAGE used in [16].

Figures 2 illustrate SF6 mass fraction distributions near first-shock time – reflecting on IC characteristics,
and at later times, before first reshock and after second reshock. Figures 3 and 4 compare the axial velocity
magnitude and variance evolution vs. those in the reported CEA experiments [20]. As in the experiments,
Fig. 3 shows a first velocity plateau near 130m/s corresponding to air accelerated by the incident shock wave,
followed by a brief drop at 0m/s corresponding to air decelerated by the first reflected shock on the end
wall, and then by a second perturbed plateau which includes the crossing of the turbulent mixture reflecting
gradually on the density gradient in the turbulent mixing zone.

The present mean axial-velocity results for the latter plateau agree well with the experiments up to
approximately t ∼ 1.3 ms, and then agree with the theoretical mean velocity of 47m/s computed in [19]
based on the Rankine–Hugoniot relations for transversely unbound flow (not affected by wall boundary
layers). Reported differences between laboratory measured mean velocity (59m/s) and the said theoretical
expectation (47m/s) have been attributed to the wall boundary-layer reversal effects in the SF6 at shock
crossing.[20] As noted, the present simulations do not account for the wall boundary layer effects – and that
consistently also underlies the discrepancies with experiments in Figs. 4 and 5 for t ≳ 1.4ms. In agreement
with the laboratory experiments, the second velocity plateau ends with the arrival of the second reflected
shock wave on the end wall. The presently reported computed axial-velocity results are fairly independent
of grid resolution.

Laboratory axial velocity variance (R11) data with ±15% estimated uncertainty was reported at locations
of 161, 169 and 178.5 mm,[19] covering a range where turbulent mixing zone passages occur between its
interactions with first and second reshock associated with the reflected shocks. Laboratory transverse velocity
variance (R22) data was reported at the location 169 mm [20, 21]. At the location 161 mm – just after first
reshock, Fig.4 shows a strong increase of the axial velocity variance was observed reaching a peak laboratory
value of 117 (m/s)2, as the axial variance in the gaseous mixture has been excited by the first-reflected
shock. Our results for R11 are consistent with those reported in the laboratory experiments – particularly so
immediately after first reshock (finest 0.1mm and 0.05mm resolution LMC-xRAGE ILES results fall within
reported ±15% uncertainty bar at the location 161 mm), and are fairly stable as function of grid resolution
changes also for R22 (Fig.5). Highest values for R11 and R22 occur mostly just after the first reshock as in
[19]. The peak R22 values quoted in [20] and [21] are fractions ∼ 1/3 of their R11 counterparts – which is
also consistent with our present findings.

2.2 Dynamic BHR Contribution Function and Mixing Simulation
As in [12], our 3D dynamic BHR simulations in this work use qij = Tij in conjunction with l = 2. We used
between 2 – 8 levels of AMR with finest resolutions ranging between 0.2mm and 0.05mm, respectively. The
(more-practically motivated) 3D dynamic xRAGE-BHR bridging simulations used 2 – 4 levels of AMR with
finest 0.100mm resolution. The CEA shock-tube simulations used between 0.1-5.5×109 computational cells.

Mixing measures less sensitive to subgrid contributions may enable accurate prediction of quantities of
interest with the bridging-based generated LES with less resolution than typically required with the ILES
high-fidelity option. Such potential benefits were noted in [12] with regard to having scalar-mixing predictions
converged on coarser grids with the more-accurate LMC xRAGE. In what follows, we examine the impact
of choices of the bridging length L in this context.
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Figure 6: Bridging length L for RANS/DNS and RANS/LES hybrids.

Figure 7: Dynamic BHR vs. ILES for 0.2mm resolution (two-level AMR).
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Figure 8: CEA shock-tube Dynamic BHR simulations; PDF of the contribution function vs. ∆x/L for the
0.2mm resolution case (two-level AMR)

Figure 7 shows centerplane predicted mass-fraction distributions associated with dynamic bridging and
LMC-xRAGE ILES for the coarsest 0.2mm resolution (2-level AMR) case. Prediction accuracy is determined
by ability to capture the vortical structures responsible for the onset and development of turbulence, and
bridging modeling efficiency is directly determined by how much less resolution is required to resolve the
flow scales not amenable to modeling [22]. Results with bridging length L ∼ 2, and L ∼ 4 (smallest) cells
are shown at selected times before, after, and between the reshock events.

Varying the bridging length directly impacts the detailed captured content of space/time fluctuations
effects with Dynamic BHR. Figure 8 shows probability distribution functions (PDF’s) of the contribution
function f over the whole 3D domain vs. ∆x/L. Significantly smaller values (f ∼ 0.1 − 0.3) indicate less
contribution of RANS for ∆x/L = 0.26, consistent with the corresponding results in Figure 7 – for which
case increased captured content of space/time fluctuations effects are depicted. The suitability of this ∆x/L
sweet spot value is confirmed in the Appendix in terms of the chevron shock-tube case [23, 24, 12].

For the sake of quantitative mix analysis, we consider here a frequently used integrated mixing measure
– e.g. [23], TMX = 4

∫
ρ2 Y airY SF6 dx , in terms of the mass density ρ, SF6 and air mass fractions YSF6
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Figure 9: Axial velocity variance at x=161mm, ILES and Bridging vs. resolution, ∆/L = 0.26, 0.49, and
CEA data; ILES based on (present) LMC-unsplit and (previous [12]) split xRAGE are compared.

and Yair = 1− YSF6
, and using transverse-plane averaging, ϕ(x) =

∫
ϕ(x, y, z) dydz /

∫
dydz.

The top portion of Figure 10 compares TMX vs. resolution and bridging length L. The ability of the
dynamic bridging model to capture the basic mixing features with less resolution is well apparent between first
and second reshock, where the 0.2mm and 0.1mm bridging predictions for ∆/L = 0.26 are nearly the same
and in very good agreement with the finest (0.05mm) ILES – suggesting preferred bridging/resolution trade-
offs and robust mixing capturing with coarser gridding. On the other hand, we note the axial velocity variance
results in Fig.9 – between first and second reshock – exemplify similar velocity turbulence features captured
with dynamic bridging and ILES as function of grid resolution, indicating that the dynamic bridging modeling
does not appear to provide much added improvement on the turbulent velocity fluctuations predictions for
a given resolution. This suggests that an explicit subgrid scale component in (1) may be needed for the
coarsest grid resolutions – see [13] for the extended dynamic bridging formalism.

Beyond second reshock, bridging with 0.1mm resolution and ∆/L = 0.26 still provides good predictions –
albeit RANS corrections to better converged (resolved) ILES appear unnecessary there. This is confirmed in
the bottom part of Figure 10, where the focus is on the case ∆/L = 0.26, and on examining Dynamic BHR
simulations restarted at time 1.6ms (before 2nd reshock) and continued thereafter with RANS contributions
turned off (i.e., pure ILES); significantly improved mixing predictions are thus achieved after 2nd reshock
for both resolutions. The latter results suggest that imposing additional late-time constraints on f might be
helpful, e.g., by requiring that f vanish at late times when conditions are met in terms of a suitable progress
variable characterizing transition and small-scale population (e.g., as function of λc).

3 Summary and Conclusions
We revisited coarse-grained simulation strategies for turbulent material mixing applications involving shock-
driven turbulence in the context of LANL’s Eulerian xRAGE hydrodynamics and BHR RANS codes, using
the newly-available more-accurate LMC xRAGE hydrodynamics. xRAGE ILES and a recently proposed
[12] dynamic ILES/RANS bridging strategy for applications involving variable- density turbulent mixing
applications were tested. The bridging approach is based on the FSM [6, 7], locally blending a high fidelity
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Figure 10: TMX for LMC-xRAGE ILES and Dynamic BHR vs. resolution for ∆/L = 0.26, 0.49 (top); for
∆/L = 0.26, results for Dynamic BHR + late-time ILES are also included (pure ILES after time 1.6ms) –
focusing on improved mixing prediction after 2nd reshock (bottom).

computational strategy with RANS modeling – depending on how much of the turbulence is resolved at
given resolution, and providing a realizable LES strategy in-between. How much dissipation is modeled and
how much is computed is decided based on having the RANS model locally morph into an LES SGS model,
through the contribution function.

Our bridging strategy follows a proposal by Germano [9] to solve for f dynamically, based on decomposing
the full stress into modeled and resolved components, using a differential filter as secondary filtering operation
[10] to define the resolved stress, and additionally requiring the resolved stress to approach the full stress
with grid resolution refinement [12] to ensure realizability of the bridging-based LES. This is in contrast
with the classical FSM defining the contribution functions explicitly in terms of local ∆ in empirical ad hoc
fashion [6, 7]. We expect the present dynamic hybrid strategy to be also applicable for converging geometries
and to be applicable as well with other LES and RANS approaches.

Case studies of interest involved relevant shock tube experiments prototyping shock-driven turbulent
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mixing for which evolution of mix-width, velocity magnitude and variances are available for benchmarking.
Much improved scale-resolving with LMC-xRAGE ILES and with dynamic LMC-xRAGE / BHR bridging
enables higher simulated mixing and turbulence levels on coarser grids. For the tested planar shock tube case,
the more-accurate models can achieve the same level of accuracy with less resolution than required with the
highest-fidelity turbulence simulation models typically used at scale with default xRAGE hydrodynamics
[13]. Two levels of grid-coarsening savings can be achieved for mixing predictions in these comparisons:
one associated with the more-accurate LMC xRAGE hydrodynamics, and an additional one from using the
dynamic xRAGE-BHR bridging. Savings of 2× to 4× on grid size are possible – i.e., 8× to 64× fewer points
over the 3D domain.

4 Appendix: Additional Contribution function analysis.
We revisit here the chevron shock-tube simulations[23, 24, 12] involving high (SF6) and low (air) density gases
initially separated by membranes and wire mesh as indicated schematically in Figure 11. ILES computations
simulating these experiments have been previously reported [23, 24]. The growth of the Richtmyer-Meshkov
(RM) instability and characteristic turbulent mixing measures were studied using interface perturbations
involving prescribed spectral content and standard deviation s.d.. The SF6 and air are assumed to be
initially in temperature and pressure equilibrium at 1 bar, with densities of 6.34 kg/m3 and 1.184 kg/m3,
respectively, yielding γ = 1.4 and γ = 1.076. A shocked air region is created upstream in terms of a higher-
density higher-pressure region chosen to satisfy the Rankine-Hugoniot relations for a Ma = 1.26 shock. The
simulations are carried out in a reference frame in which the air-SF6 interfaces are initially at rest. The
shock propagates in the (x) direction through the contact discontinuity and reflects at the right (reflective)
boundary. Uniform cartesian gridding with smallest grid sizes ∆ of 1/16 cm and 1/32 cm were employed in
our earlier simulations [24, 12] – having ∆/L = 0.21, 0.10, respectively [11].

AMR with grid sizes ranging between (1/4 cm - 1/16 cm) and (1/4 cm - 1/32 cm) and fixed ∆/L = 0.25
were considered. Figure 12 illustrates the centerplane full-domain AMR fine-resolution gridding at late-time
(t=3.09ms), and the dotted-contours indicate the selected sub-domain in the visualizations. Representative
temporal evolution of centerplane visualizations of SF6 mass-fraction and f distributions are shown in Figures
13. Corresponding full-domain PDF’s of f for the selected times and both grid resolutions presented in Figure
14, indicate relatively-small RANS contributions (f < 0.3) for ∆/L = 0.25 – consistent with ∆/L = 0.26
being a convenient working choice for Dynamic BHR in the CEA shock-tube case above. Finally, sensitivities
to grid resolution shown in Figure 15 clearly depict robustness of the late time mixing predictions.
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Figure 11: Schematic of the chevron shock tube.

Figure 12: Chevron shock-tube Dynamic BHR simulations; late-time (t=3.09ms) full-domain AMR fine-
resolution (1/4cm-1/32cm grid for ∆/L = 0.25; dotted-contours indicate the selected sub-domain in the
visualizations.

Figure 13: Chevron shock-tube Dynamic BHR simulation results for ∆/L = 0.25.
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Figure 14: Chevron shock-tube Dynamic BHR simulations; PDF of the contribution function for ∆/L = 0.25.

Figure 15: Chevron shock-tube Dynamic BHR simulations, late-time (t=3.09ms) sample results vs. grid
resolution for ∆/L = 0.25.
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