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Abstract: This paper describes a computational study to understand aerodynamic 
and flight dynamic behaviors of a finned body with rear-fin (flap) control. 
Numerical simulations have been performed for this projectile with flap control 
using an advanced coupled computational fluid dynamics (CFD)/rigid body 
dynamics (RBD)/flight control system (FCS) technique.  Special emphasis is on the 
FCS coupling for guided controlled flight simulations using an in-house 
MATLAB-based RBD/FCS code.  An interface was developed for easy transfer of 
both the RBD state variables and the FCS variables of interest between the CFD 
flow solver and the RBD/FCS code. The coupled CFD/RBD/FCS capability has 
been exercised on a finned projectile with flap control and has been demonstrated 
using closed-loop pitch control and guided cross-range control maneuvers.  
Coupled results obtained show the resulting control flap deflection angles and their 
effect on the aerodynamics and flight dynamics of this projectile during the 
controlled maneuvers. 
Keywords:    Computational Fluid Dynamics, Coupled technique, Flight Controls. 

1. Introduction

Improved computer technology and state-of-the-art numerical procedures now enable solutions to
complex, three-dimensional problems associated with projectile and missile aerodynamics [1-3]. 
Detailed understanding of controlled flight behaviors is critical for enhanced vehicle maneuverability 
of these munitions.  Advanced computational techniques are being developed to understand flight 
behaviors of both unguided and guided projectiles.   One such technique couples computational fluid 
dynamics (CFD) and rigid body dynamics (RBD) for simultaneous prediction of unsteady 
aerodynamics and flight dynamics in an integrated manner [4].  The coupled approach is to capture 
static and dynamic aerodynamic behavior over short time durations with different motions.  
Performing coupled simulations in this manner allows for screening of situations where conventional 
aerodynamic models based on static wind tunnel or CFD techniques break down.  These instances are 
encountered more often as wider classes of munitions (small-medium-large caliber) feature control 
inputs and the associated flow complexity such as interactions, unsteadiness, and high angle of attack. 
Thus, a major benefit of these coupled simulations is to mitigate risk of unanticipated flight behaviors 
during unguided and especially guided free-flight experiments.   Also, in the traditional uncoupled 
approach, efforts are being directed at developing alternate CFD procedures such as angle of attack 
and Mach sweeps for rapid generation of aerodynamics for both simple and complex configurations at 
all speeds from subsonic to supersonic.  In the present work, research has been focused on the 



development and application of advanced a CFD-based coupled technique for accurate prediction of 
projectile aerodynamics and flight dynamics.  

The advanced CFD capability used here solves the unsteady Navier-Stokes equations, incorporates 
unsteady boundary conditions and a special coupling procedure.  This research is a big step forward in 
that it allows “virtual fly-out” of projectiles on the supercomputer, and it predicts the actual fight path 
of a projectile (flight dynamics) and all the associated unsteady free-flight aerodynamics in an 
integrated manner.  In the coupled CFD/RBD procedure, the forces and moments are computed every 
CFD time step and transferred to a six degrees of freedom (6-DOF) module that computes the body’s 
response to the forces and moments.  The response is converted into translational and rotational 
accelerations that are integrated to obtain translational and rotational velocities and integrated once 
more to obtain linear position and angular orientation. This method automatically takes into account 
flow interactions (e.g. canard-fin vortex interactions on a canard-controlled projectile) during the 
flight.  It also yields a wealth of data unavailable in experimental methods, but it does involve highly 
intensive computer calculations requiring large computational resources.  Flow fields, pressure 
distributions, forces and moments on various surfaces, and the complete twelve-state RBD history are 
available from the coupled solutions.  The aerodynamic coefficients are then determined using 
regression and parameter estimation techniques.   

Coupled CFD/RBD technique was first demonstrated on a finned projectile for the simulation of 
projectile free flight motion in a time accurate manner in 2008 [4].  This method has also recently 
been used for high-fidelity RBD and prescribed motion maneuvers of aircrafts and other flying 
vehicles [5-8]. This technique, also known as virtual fly-out method uses advanced CFD methods to 
characterize the unsteady aerodynamics at each instant in time during flight.  Coupled CFD/RBD 
technique has already been demonstrated for various finned- and spin-stabilized projectiles [9-14] and 
validated in some of these cases.  Recently, a flight control system (FCS) module [15] was added to 
the CFD/RBD technique resulting in a coupled capability for computation of unsteady aerodynamics 
and flight dynamics associated with guided control maneuvers [16, 17]. 

Current research efforts are focused on developing and implementing coupled CFD/RBD and 
CFD/RBD/FCS all using an in-house MATLAB-based 6DOF code.  An advantage of using the in-
house MATLAB code is its simplicity; it has just a RBD routine and an FCS routine.  The big 
advantage comes from the flight control design itself; simple to complex (tracking, adaptive) FCS 
designs can be implemented and integrated easily into the coupled calculations for simulations of 
guided control maneuvers.  The resulting coupled CFD/RBD/FCS technique can be used for open and 
closed loop control maneuvers where canards or fins are deflected in a desired fashion based on the 
control algorithm to provide control authority needed. The canard/fin deflection output vector of the 
flight control element is used to move the grid (locations and velocities) for the next CFD time step 
computation. CFD computes the aerodynamic forces/moments that dictates the projectile flight 
motion and subsequent controlled deflections subject to the control algorithm.   

2. Computational Methodology

2.1  CFD Technique 

The complete set of three-dimensional (3-D) time-dependent Navier-Stokes equations is solved in 
a time-asymptote manner to obtain converged steady-state solutions.  A commercially available code, 
CFD++ [18,19], is used and the 3-D, time-dependent Reynolds-averaged Navier-Stokes (RANS) 
equations are solved using the following finite volume method: 
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where W is the vector of conservative variables, F and G are the inviscid and viscous flux vectors, 
respectively, H is the vector of source terms, V is the cell volume, and A is the surface area of the cell 
face. 

Several techniques such as implicit scheme and relaxation are used to achieve faster convergence. 
Use of an implicit scheme circumvents the stringent stability limits suffered by their explicit 



counterparts, and successive relaxation allows update of cells as information becomes available and 
thus aids convergence.  Second-order discretization was used for the flow variables and the turbulent 
viscosity equation.  The turbulence closure is based on topology-parameter-free formulations.  A 
realizable two-equation k-ϵ turbulence model [20] was used for the computation of turbulent flows.  
These models are ideally suited to unstructured book-keeping and massively parallel processing due 
to their independence from constraints related to the placement of boundaries and/or zonal interfaces. 
The basic CFD solution technique described here is coupled with a RBD for simultaneous prediction 
of controlled and uncontrolled flights. 
  

2.2  Coupled CFD/RBD/FCS Procedure 
 
In the coupled CFD/RBD procedure, the forces and moments are computed every CFD time step 

and transferred to a six degrees of freedom (6DOF) module which computes the body’s response to 
the forces and moments.  The response is converted into translational and rotational accelerations that 
are integrated to obtain translational and rotational velocities and integrated once more to obtain linear 
position and angular orientation.  This coupled technique provides both the unsteady aerodynamics 
and the flight dynamics in an integrated manner.   

  A time-accurate numerical approach is used in the coupled CFD/RBD simulations.  This 
approach requires that the six-degrees-of-freedom (6DOF) RBD1 be computed at each repetition of a 
flow solver.  The CFD capability [18,19] used here solves the full Navier-Stokes equations and 
incorporates advanced boundary conditions and grid motion capabilities.  For time-accurate 
simulations of coupled flights, a dual time-stepping procedure is generally used to achieve the desired 
time accuracy in the time-accurate solutions.  The entire grid is moved to take into account the motion 
of the projectile. To account for rigid body dynamics, the grid point velocities were set as if the grid is 
attached to the rigid body with 6DOF.  

Typically, the coupled solution procedure requires three steps.  First, we begin with a computation 
performed in the “steady-state mode” with the grid velocities prescribed to account only for the 
translational motion component of the complete set of initial conditions.  At the second step, we also 
impose the angular orientations from the initial conditions.  At this stage, spin is normally added.  In 
the present study, we are interested in pitching motions only; thus, spin is set to zero.   Computations 
are performed in a time-accurate mode for a desired number of time-steps (500 to 1000).  Converged 
solution from this second step provides the initial condition for the third step.  In the third step, the 
remaining rotational velocity components (pitch and yaw) are added.  The solution from the third step 
should correspond to the complete set of initial conditions that includes all translational and rotational 
velocity components and accounts for initial position and angular orientations. For simulations of 
controlled maneuvers (open-loop or closed-loop), a procedure which integrates flight control into the 
coupled CFD/RBD method is used. 
 

2.3  MATLAB-Based 6DOF and Flight Controls 
 
An inhouse RBD/FCS that is completely based on MATLAB has been developed and 

implemented in the coupled procedure.  In addition to using the MATLAB environment, we added 
two significant enhancements to the existing in-house simulation framework.   

First, continuous states from all subsystems (plant, actuator, control laws) are concatenated in one 
long system state vector and integrated simultaneously for more realistic continuous time simulation.  
The current implementation provides for up to 300 continuous states, however, expansion is easily 
facilitated by modifications to the .c based interface.  To avoid difficulty compiling the MATLAB 
codes, we chose to make the MATLAB memory space completely volatile, requiring the state history 
to be stored entirely on the CFD++ side.  

Second, actuator and control system state derivatives are sequestered to a subfunction in order to 
achieve modularity.  Simulation users can provide their own actuator models and dynamic control 
systems without modifying the baseline CFD-RBD simulation engine. 

  The CFD++ simulation uses a twelve state input vector consisting of the vehicle position and 
mass center velocity in ground-fixed Cartesian coordinates, 𝐗𝐗 = {𝑥𝑥 𝑦𝑦 𝑧𝑧} and �̇�𝐗 = {�̇�𝑥 �̇�𝑦 �̇�𝑧} 



respectively, the vehicle orientation expressed as the standard set of aircraft Euler angles (𝚯𝚯 =
{𝜙𝜙 𝜃𝜃 𝜓𝜓}), and the three body-fixed angular rates (𝛚𝛚 = {𝑝𝑝 𝑞𝑞 𝑟𝑟}).  From these inputs it renders 
force/moment predictions in the ground-fixed frame.   

The relationships between ground-fixed and body-fixed coordinates are illustrated in Figures 1 and 
2.   

 

Figure 1: Ground-fixed Cartesian coordinates for projectile cg position defined 

 
Figure 2: Standard Euler angles defined 

 
Our six degree of freedom (6DOF) rigid body dynamic model uses a standard state vector 

consisting of the concatenation of: vehicle cg position in ground fixed Cartesian coordinates, 𝐗𝐗 =
{𝑥𝑥 𝑦𝑦 𝑧𝑧}, orientation as the customary set of Euler angles, 𝚯𝚯 = {𝜙𝜙 𝜃𝜃 𝜓𝜓}, velocity in the body-
fixed frame, 𝐔𝐔 = {𝑢𝑢 𝑣𝑣 𝑤𝑤}, and body angular rates in the body frame, 𝛚𝛚 = {𝑝𝑝 𝑞𝑞 𝑟𝑟}.  Thus, the 
overall state is 𝛇𝛇 = {𝐗𝐗 𝚯𝚯 𝐔𝐔 𝛚𝛚}. 

Since the CFD uses ground-fixed velocity, forces, and moments, the first step in the RBD 
simulation is the transform these quantities into the body frame.  Given 
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the body fixed velocity vector is found as: 
 𝐔𝐔 = 𝐓𝐓𝑖𝑖2𝑏𝑏�̇�𝐗 (2) 



the body fixed force vector 𝐅𝐅𝐑𝐑𝐑𝐑𝐑𝐑 = {𝑋𝑋 𝑌𝑌 𝑍𝑍} is given as: 
 𝐅𝐅𝐑𝐑𝐑𝐑𝐑𝐑 = 𝐓𝐓𝑖𝑖2𝑏𝑏𝐅𝐅𝐂𝐂𝐅𝐅𝐑𝐑 (3) 

and the body fixed moment vector 𝐌𝐌𝐑𝐑𝐑𝐑𝐑𝐑 = {𝑙𝑙 𝑚𝑚 𝑛𝑛} is given as: 
 𝐌𝐌𝐑𝐑𝐑𝐑𝐑𝐑=𝐓𝐓𝑖𝑖2𝑏𝑏𝐌𝐌𝐂𝐂𝐅𝐅𝐑𝐑 (4) 

The CFD force vector does not include gravity which is found as: 
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and simply added to render the total force on the projectile:  
𝐅𝐅𝒕𝒕𝒕𝒕𝒕𝒕 = 𝐅𝐅𝐑𝐑𝐑𝐑𝐑𝐑 + �⃗�𝐅𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 

Once the required quantities are found in the body frame, the derivatives of the state vector follow 
a standard formulation: 
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where 
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 . 
and [𝐈𝐈] is the three dimensional body-fixed inertia tensor.  
 The MATLAB RBD/FCS framework can facilitate the simulation of sophisticated control 
systems and has been used to demonstrate closed-loop model reference adaptive control. [21]  For this 
work, we use a Linear Quadratic Regulator with reference inputs.  A linearized model of the projectile 
dynamics is formed as 

Where the state vector x is defined in terms of the RBD states as 𝐱𝐱 = [𝝓𝝓 𝒑𝒑 𝒒𝒒 𝒈𝒈 �̇�𝒈 −�̇�𝒘 ] such 
that the last two states are lateral and normal acceleration in the body frame.  The feedback control 
law is then given by 

 𝐮𝐮 = −𝐊𝐊𝟏𝟏𝐱𝐱 + 𝐊𝐊𝟐𝟐𝐫𝐫 (10) 

Where 𝐫𝐫 is the vector of commanded bank, lateral and normal acceleration (𝐫𝐫 = [𝝓𝝓 �̇�𝒈 −�̇�𝒘]𝑪𝑪𝑪𝑪𝑪𝑪). 
𝐊𝐊𝟏𝟏 is found by solving the algebraic Riccati Eqn for P 

 𝟎𝟎 = 𝐏𝐏𝐏𝐏 + 𝐏𝐏𝑇𝑇𝐏𝐏+ 𝐐𝐐− 𝐏𝐏𝐑𝐑𝐑𝐑−1𝐑𝐑𝑇𝑇𝐏𝐏 (11) 
then computing 𝐊𝐊𝟏𝟏 = 𝐑𝐑−1𝐑𝐑𝑇𝑇𝐏𝐏.  Q and R are user defined weighting matrices.  The reference gain 𝐊𝐊𝟐𝟐 
is given by 

𝐊𝐊𝟐𝟐 = −�𝐄𝐄 ∙ (𝐏𝐏 − 𝐑𝐑𝐊𝐊𝟏𝟏)−𝟏𝟏𝐑𝐑�−𝟏𝟏 

 �̇�𝐱 = 𝐏𝐏𝐱𝐱 + 𝐑𝐑𝐮𝐮 (9) 



Where E is an output matrix that defines which states should track the reference commands.  In the 
examples that follow  
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For the four-finned projectile, the commanded deflections are found by multiplying the virtual 
control u by the control allocation matrix  

 𝛅𝛅𝐂𝐂𝐌𝐌𝐑𝐑 = 𝐂𝐂𝐏𝐏𝐮𝐮 (12) 

where  
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3.   Computational Model and Mesh 

 
The model geometry used represents a fin stabilized vehicle with four low-aspect-ratio fins 

symmetrically located around the body.  It has a total length of 10 calibers. (Figure 3).  It has an ogive 
nose that is approximately 3 calibers of the overall length of the body.  This is followed by a 
cylindrical section and then ends with a 7° boattail beginning 0.5 caliber forward of the base.  Also, 
this configuration has four independently actuated rear fin flaps for control.  These movable flaps are 
approximately 0.75 calibers in length.  The center of gravity is located at 5.6 calibers from the nose of 
the projectile.  The projectile mass and other physical properties are listed in Table 1.  

 

 
 

Fig. 3 Computational model 
 

Table 1. Physical properties 

Mass  19.718 kg 
CGX  588 mm from nose 

CGY, CGZ   on center line 
𝑰𝑰𝑿𝑿𝑿𝑿   0.0301 kg-m2 

𝑰𝑰𝒀𝒀𝒀𝒀, 𝑰𝑰𝒁𝒁𝒁𝒁   1.6664 kg-m2 
 
 

The computational mesh used was generated using multipurpose intelligent meshing environment 
(MIME) [22] an unstructured mesh generator developed by Metacomp Technologies, Inc. The total 
mesh size was approximately 65 M cells, consisting of triangular surface cells, with prism layers used 
along the surface and tetrahedral cells for the rest of the domain. The computational domain extended 
approximately 20 projectile lengths in all directions from the center of the projectile. The average cell 
size of the cylindrical density box (i.e., 2 cal. in radius, spanning 1 cal. forward to 5 cal. back of the 
projectile) was approximately 0.002 m. The first cell wall spacing of the prism layers was set to 3 × 
10-7 m to ensure y+ values of less than or equal to 1 along the surface of the projectile. The boundary 
layer spacing near the wall was selected so that a wall boundary condition that integrates all the way 



to the wall could be used for turbulent flow calculations.  A close-up view of the computational mesh 
near the body used for coupled simulations is presented in Fig. 4. An unstructured mesh was first 
obtained for the projectile w/o the movable flaps.  Unstructured grids were then generated about each 
rear fin flap separately (Figure 5).  The flap grids are then overset with the background projectile 
mesh to a Chimera overlapped mesh for the rear fin-controlled projectile.  The advantage is that the 
individual flap grids were generated once and the Chimera procedure was then applied repeatedly as 
required during the flap motion without the need to generate the meshes at each time step for 
simulations with flap control. 

 
 

 
 

Fig. 4 Computational mesh expanded near the body 
 

 

 
 

Fig. 5 Computational surface mesh showing one rear-fin flap deflected 10o. 
 

 
4.   Results 
 

Coupled numerical computations were performed and virtual flyouts were carried out to accurately 
and efficiently predict the flow field and aerodynamic coefficients for a flap-controlled projectile 
configuration. All calculations were performed at initial Mach = 1.2 and 3.0 using atmospheric flight 
conditions. All computations were 3-D and performed in the pitch plane i.e. for roll orientation of 0° 
with fins in the “X” orientation.  All numerical simulations of the virtual fly-outs have been carried 
out at DoD Defense Supercomputing Resource Centers (DSRC) using 384 - 512 processors on a Cray 
XC-40.  

Since the calculations were all performed in the 6-DOF mode, only the first step in the coupled 
simulation which required a steady state result to be obtained at a given initial velocity corresponding 



to only the translational motion of the projectile was used.  The twelve variables are the inertial 
position components of the projectile mass center {𝑥𝑥 𝑦𝑦 𝑧𝑧}, the standard Euler angles {𝜙𝜙 𝜃𝜃 𝜓𝜓}, 
the components of the projectile mass center velocity {𝑢𝑢 𝑣𝑣 𝑤𝑤}, and the body frame components of 
the projectile angular velocity vector {𝑝𝑝 𝑞𝑞 𝑟𝑟}.  Initially, the origin (0,0,0) was located at the CG of 
the projectile.  The initial Euler angles were set to zero.  Initial u was set to 408 and 1020 m/s for 
M=1.2 and M=3, respectively; initial 𝑣𝑣and 𝑤𝑤 were set to zero.  All initial rotational rates were set to 
zero in the present computations except for pitch rate,𝑞𝑞. 

Two specific scenarios that are highlighted in the present study are: (1) demonstration of closed-
loop pitch control maneuvers, and (2) demonstration of bank-to-turn cross-range maneuvers.  For 
each of these cases, an appropriate starting CFD solution was obtained before running the coupled 
CFD/RBD computation.  The first step in the coupled simulation required a steady state result to be 
obtained at a given initial velocity corresponding to only the translational motion of the projectile.  
The converged steady-state solution was used as the starting condition for the time-accurate run in the 
uncoupled mode for 500 time steps until mean values of the forces and moments converged.  The 
converged uncoupled solution formed the initial condition for the fully coupled CFD/RBD 
simulations along with the other initial conditions (e.g. pitch rate).  Each simulation was run for 
approximately 1.0 second.  A time step of 0.0005 sec was used in the time-accurate, coupled 
calculations.  To complete each coupled simulation with TVC, approximately 50 hours of CPU time 
were required using 512 processors on a Cray XC40 located at the Navy DSRC.  

 

 
As part of this solution process, computed results have been obtained at initial speeds, M = 1.2 

and 3.0 at zero degree angle of attack.  Computed pressure contours for these two cases are shown in 
Figure 6.  As expected, the flow field is symmetric for both cases.  The bow shock wave in front of 
the nose, flow expansion at the ogive/cylinder junction and base, and recompression shock in near 
wake are all clearly evident.  As Mach number increases from 1.2 to 3.0, on can see the bow shock 
getting stronger and the shock is closer to the body as is typical of supersonic flow.   

As stated earlier, a variety of initial conditions were used for closed-loop and cross-range 
maneuvers and coupled simulations were performed for the finned projectile with rear flap control.  
Appropriate FCS designs or controllers were developed and used in the coupled CFD/RBD/FCS 
calculations for these maneuvers.  Results obtained from the coupled calculations for these maneuvers 
are presented next.  
 
4.1  Closed-loop Pitch Control Maneuvers 

 
A first example considered is the pure pitch control of the finned projectile with flap control.  All 

four control flaps were deflected up or down as needed during the closed-loop pitch control 
maneuver.  The desired command is for the pitch rate to go to zero quickly.  Again, coupled 
calculations have been performed at a high transonic velocity, M=1.2 and a supersonic velocity, 

 

   
 

Figure 6. Computed pressure contours, M=1.2 (left), M=3.0 (right). 

 



M=3.0.  Initially, angle of attack, α was set to 0° for this projectile with flap control.  Three initial 
pitch rates (q = 0.3, 3.0, and 9.0 rad/s) were imposed.  Coupled computational results were also 
obtained for corresponding uncontrolled cases for direct comparison.   

The orientation of the projectile of course changes from one instant in time to another as the 
projectile flies down range.  Coupled results of the pitch rate histories obtained at M=1.2 are shown in 
Figure 7.  For all three controlled cases with various initial pitch rates, results show how quickly 
commanded zero pitch rate is reached.  For the small q=0.3 rad/s, it is reached in less than 0.1 sec and 
for q=3 and 9 rad/s, in less than 0.2 sec.  For the uncontrolled cases, we have free oscillatory pitching 
motions with the amplitude of pitching motion decreasing with time until eventually the mean pitch 
rate goes close to zero.  Coupled results for the pitch control cases are very similar even at a higher M 
=3.0 (see Figure 8).  For the uncontrolled cases at M=3, the frequency of pitch oscillations is larger 
than it is at M=1.2.  However, for the controlled cases with flap control, the commanded zero pitch 
rate is achieved quickly again in less than 0.2sec.  

Figure 9 shows the associated control flap deflections reaching a maximum of 1°, 9°, and 28° for 
the three pitch control maneuvers, respectively at M=1.2, and approximately 1°, 11°, and 28° for the 
three controlled pitch control maneuvers at M=3.0 (see Figure 10).  Computed Euler pitch angles 
obtained from the pitch control maneuvers are shown in Figures 11a and b respectively for M=1.2 and 
3.0.  The pitch angle, and hence, the angle of attack are held below 9°.   
 

 

A) Uncontrolled cases 

 

B) Controlled cases 
 

 Figure 7. Comparison of angular rates (uncontrolled and controlled), initial M=1.2. 
 

 

A) Uncontrolled cases 

 

B) Controlled cases 
 

Figure 8. Comparison of angular rates (uncontrolled and controlled), initial M=3.0. 
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A) Flap 1 response 

 

B) Flap 2 response 

 

C) Flap 3 response 

 

D) Flap 4 response 
 

Figure 9. Control flap deflection angles for controlled cases, initial M=1.2. 
 
 

 

A) Flap 1 response 

 

B) Flap 2 response 
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C) Flap 3 response 

 

D) Flap 4 response 
 

Figure 10. Control flap deflection angles for controlled cases, initial M=3.0. 
 

 
 
  
 

 

A) Initial M=1.2. 

 

 

B) Initial M=3.0. 
 

Figure 11. Euler pitch angle for controlled cases 
  
 
4.2  Bank-to-turn Cross-Range Maneuvers 
 

We designed a bank-to-turn scenario to demonstrate the full capabilities of the simulation with a 
realistic multi-axis maneuver.  Starting from level flight at Mach 1.2 or Mach 3, the projectile banks 
right to 75.5 degrees, then increases normal load factor to 4g.  This should result in a level 
coordinated turn as shown in Figure 12.  The reference commands and actual responses are shown in 
Figs 12a and b.  The missile rolls rapidly to the commanded bank with small overshoot, settling well 
before the normal acceleration command is initiated.  At ¼ second, the normal acceleration command 
steps up to 4g.  The system responds quickly, however the underlying control design is based on an 
inaccurate model of the system gain, so the actual acceleration settles to a value much larger than that 
commanded.   

Several other state variables are plotted in Figs 12c, d, e, and f.  Fig 12c contains the crossrange 
and altitude responses,  Note that crossrange increases during the maneuver in a quadratic fashion as 
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expected.  Constant lateral acceleration commands a different airspeeds render roughly the same 
crossrange response despite the large difference in airspeed as crossrange is merely lateral 
acceleration integrated twice with respect to time.  The high-speed case would trace a larger radius 
circle during the maneuver, but the crossrange achieved over 1.5 seconds is about the same.  Altitude 
remains essentially constant in both cases, indicating level flight.  Fig. 12d shows the yaw angle 
response.  It begins to ramp up quickly at ¼ second, then continues to ramp up gradually once the turn 
is established.  Note that the turn rate is much faster for M=1.2, as this is inversely proportional to 
airspeed for constant bank.  Even more striking is the time rate of change of crossrange shown in Fig 
12e.  This value ramps up linearly, indicating that constant acceleration in the lateral direction has 
been achieved.  Finally, Fig 12f shows the pitch angle.  Note that the axis scaling is an order of 
magnitude smaller than that for yaw.  Thus, level flight has been achieved.  

 
 



Fig. 12 Subset of state history, baseline LQR controller bank-to-turn scenario flown at M=1.2 and 
M=3.0. 

 
5.   CONCLUSIONS 

 
Advanced numerical simulations were performed on a finned body with flap control using a new 

MATLAB-based coupled CFD/RBD/FCS procedure and a three-dimensional unsteady unstructured 
Navier-Stokes computational technique.  In the coupled calculations, unsteady aerodynamics and 
flight dynamics were computed simultaneously and the response of the vehicle was determined at 
both M= 1.2 and 3.0 for two maneuver scenarios. 
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The first scenario was used to demonstrate the new coupled simulations for closed-loop 
maneuvers with flap control and compare these results with corresponding uncontrolled cases.   
Coupled calculation automatically captures the relevant unsteady aerodynamics associated with flap 
control.  Rear flaps were deflected to provide the control authority needed to bring the pitch rate to 
zero.  In each closed-loop maneuver starting with various initial pitch rates, desired zero pitch rate 
was achieved quickly in less than 0.2sec.  The bank-to-turn cross-range maneuver scenarios 
demonstrated increasing complexity in the coupled simulations and flight control designs.  These 
bank-to-turn maneuvers resulted in cross-range of over 30m in less than 1.5s for both M=1.2 and 3 
cases.  Each of the control scenarios showed both the expanded capabilities of the simulation and the 
ease with which the user can import highly complex control systems using MATLAB. 
 This study is a significant step forward in the development of a coupled capability for prediction of 
flight behaviors of complex munitions for closed-loop control and guided control maneuvers.  Further 
research is needed to implement, test, and validate highly complex tacking and adaptive flight control 
designs using coupled CFD/RBD/FCS technique and extend its application to complex maneuvers 
involving non-linear high angle of attack flights. 
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