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Abstract: A well-designed numerical method for the shallow water equations (SWE) should ensure
well-balancedness, nonnegativity of water heights, and entropy stability. For a continuous finite
element discretization of a nonlinear hyperbolic system without source terms, positivity preservation
and entropy stability can be enforced using the framework of algebraic flux correction (AFC). In this
work, we develop a well-balanced AFC scheme for the SWE system including a topography source
term. Our method preserves the lake at rest equilibrium up to machine precision. The low-order
version represents a generalization of existing finite volume approaches to the finite element setting.
The high-order extension is equipped with a property-preserving flux limiter. Nonnegativity of
water heights is guaranteed under a standard CFL condition. Moreover, the flux-corrected space
discretization satisfies a semi-discrete entropy inequality. New algorithms are proposed for realistic
simulation of wetting and drying processes. Numerical examples for well-known benchmarks are
presented to evaluate the performance of the scheme.
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1 Introduction
In this paper, we develop a new property-preserving method for the shallow water equations (SWE) using
algebraic flux correction (AFC) tools to enforce relevant inequality constraints [1]. The proposed methodology
is based on the monolithic convex limiting (MCL) strategy developed in [2] for homogeneous (systems of)
conservation laws. We use continuous piecewise (multi-)linear finite elements as baseline discretization but
extensions to higher-order elements and discontinuous Galerkin approaches are expected to work similarly
[3, 4, 5]. Our scheme is provably well-balanced w. r. t. lake at rest equilibria, guarantees semi-discrete entropy
stability and preserves positivity of water heights under a mild time step restriction. Moreover, preservation
of local bounds is enforced for the water height and velocity components. Last but not least, we explore
new approaches to realistic simulation of wetting and drying processes. We are not aware of any other
unstructured grid method that provides all of the above properties at once. However, similar and alternative
approaches to enforcing individual constraints can be found in the literature on numerical methods for the
shallow water equations. We begin this paper with a brief introduction to the state of the art.

Many well-balanced methods use the hydrostatic reconstruction technique developed by Audusse et al. [6].
Originally proposed in the context of finite volume methods, it yields approximations that preserve lake at rest
scenarios, ensure nonnegativity of water heights under standard CFL conditions, and satisfy a semi-discrete
entropy inequality. Hydrostatic reconstructions achieve these properties by properly balancing flux and source
terms. However, even the original low order hydrostatic reconstruction method does not satisfy fully discrete
entropy inequalities [6, Sec. 2.2]. This issue is addressed by Berthon et al. [7], who increase the amount of
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artificial viscosity to construct a method that is entropy stable in the fully discrete sense. However, the final
numerical example of their study indicates that their scheme still violates the fully discrete entropy inequality
in the presence of nonflat bathymetry and dry states.

Noelle et al. [8] transform to equilibrium variables and use equilibrium-limited reconstructions in their
high order finite volume methods. The main focus of their work is on exact preservation of moving water
equilibria in addition to lakes at rest. They show that their method captures such states exactly if all
stationary shocks are located at cell interfaces and Roe’s numerical flux is employed. Additionally, they prove
a Lax–Wendroff-type theorem [8, Thms. 3.14 and 3.17, respectively].

Another type of well-balanced finite volume discretizations of the SWE is the family of central-upwind
schemes. The ones presented by Kurganov and Petrova [9] are well balanced for the lake at rest and
positivity preserving for the water height. As in [6], these properties are achieved by performing compatible
reconstructions for the conserved unknowns and the bathymetry. To ensure positivity preservation for the
water heights, the algorithm is enhanced with a generalized minmod limiter. Additionally, a modification for
numerical treatment of wetting and drying is proposed in [9]. In Section 5, we test this approach and some
new alternatives in the context of our flux-limited finite element schemes. In contrast to the central-upwind
methods presented in [9], the applicability of AFC tools is not restricted to Cartesian grids.

Fjordholm et al. [10] present well-balanced and entropy-conservative/-stable finite volume schemes for the
SWE with topography. Contrary to [6], their approach does not rely on reconstructions of the bathymetry.
Instead, a transformation to equilibrium variables is used to ensure well-balancedness for moving water
equilibria. Moreover, Fjordholm et al. generalize Tadmor’s entropy stability condition to the case of nonflat
topography and use it to design numerical fluxes. It is admitted in [10] that oscillations around discontinuities
may produce negative water heights. This shortcoming could be cured by employing a positivity-preserving
limiter.

In [11], Ricchiuto and Bollermann design residual distribution schemes for the shallow water equations.
As in our case, linear continuous finite elements are used in the baseline discretization. The method preserves
lake at rest scenarios and guarantees nonnegativity of the water height under CFL-like constraints. In the
SWE context, the use of residual distribution schemes introduces some complications, as mentioned in the
conclusions of [11].

Wintermeyer et al. [12] discretize the SWE using high order discontinuous Galerkin spectral element
methods. A proof of entropy conservation/stability is provided for suitable choices of numerical fluxes.
Well-balancedness w. r. t. lake at rest scenarios is achieved despite difficulties caused by the presence of metric
terms in the case of curvilinear elements. Although the entropy-stable DG scheme developed in [12] is not
bound preserving, it seems to be well suited for algebraic flux correction.

Azerad et al. [13] present a property-preserving finite element method that is well balanced w. r. t. the lake
at rest. Their scheme incorporates hydrostatic reconstructions into a nodal continuous Galerkin formulation.
Detailed analysis is performed in [13] for a low order version, which is a generalization of the algebraic
Lax–Friedrichs method to the case of a nonflat bottom. Second order of accuracy is recovered by adjusting
the numerical viscosity. Extensions [14] of the schemes developed in [13] are based on flux-corrected transport
(FCT)-type limiting and incorporate a regularized friction term into the model. The AFC methodology that
we propose in the present paper differs from the one developed in [13] in the formulation of the low order
method and in the limiting strategy. Our algorithm provides all desired properties without using hydrostatic
reconstructions.

This paper is based on [15, Ch. 4] of the first author’s Ph.D. thesis and is organized as follows. Following
this introduction, we summarize the general-purpose MCL methodology for conservation laws, aspects
regarding the shallow water equations and our primary objectives. Next, we carefully extend the MCL
framework to the nonconservative SWE system, whilst enforcing positivity of water heights and entropy-
stability in the semi-discrete sense. In addition, we discuss how to achieve exact preservation of lake at rest
configurations. Subsequently, we discuss existing and new approaches for simulating wetting and drying
scenarios. Numerical results are presented and conclusions are drawn in the last sections.
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2 Preliminaries

2.1 Monolithic convex limiting for conservation laws
Algebraic flux correction is a general framework for enforcing inequality constraints in numerical methods for
conservation laws [1]. In this section, we review recent advances in the field of AFC for hyperbolic problems
of the form

∂u

∂t
+∇ · f(u) = 0 in Ω× R+. (1)

Using a continuous (P1 or Q1) finite element space Vh = span{ϕi}N
i=1 for discretization in space, we obtain∑

j∈Ni

mij
duj

dt +
∑

j∈Ni\{i}

(fj − fi) · cij = 0, (2)

where

mij =
ˆ

Ω
ϕi ϕj dx, and cij =

ˆ
Ω
ϕi∇ϕj dx

are entries of the consistent mass matrix, and the discrete gradient/divergence operator, respectively. We
denote by Ni i the stencil of node xi and use the shorthand notation fi = f(ui) for nodal fluxes. Note that
many other space discretizations can be written in this generic form.

Since the Galerkin space discretization (2) may violate maximum principles and entropy conditions, we
replace it by the modified semi-discrete scheme [2, 1]

mi
dui

dt =
∑

j∈Ni\{i}

[dij(uj − ui)− (fj − fi) · cij + f∗ij ], (3)

where mi =
∑

j∈Ni
mij > 0 and f∗ij is a suitably constrained approximation to

fij = mij(u̇i − u̇j) + dij(ui − uj). (4)

The artificial viscosity coefficients dij = max{λmax
ij |cij |, λmax

ji |cji|} are defined using the maximum wave speed
λmax

ij of a one-dimensional Riemann problem with the initial states ui and uj [16]. The nodal time derivatives
u̇j = duj

dt are defined by the solution of system (2).
By construction, our AFC scheme (3) reduces to (2) for f∗ij = fij . The choice f∗ij = 0 corresponds

to an algebraic Lax–Friedrichs (ALF) method. Guermond and Popov [16] proved that this “first-order”
approximation to (2) is invariant domain preserving (IDP) in the sense that the nodal values ui stay in a
convex set A if all initial values belong to this set. Moreover, the validity of a fully discrete entropy inequality
can be shown for any convex entropy pair. The crux of the proofs presented in [16] is representation of the
ALF scheme in terms of the bar states

ūij = uj + ui

2 − (fj − fi) · cij

2dij
(5)

such that ūij ∈ A if A is an invariant set of (1) and ui, uj ∈ A. A “second-order” IDP scheme for general
hyperbolic problems was designed in [17] using convex limiting based on a localized flux-corrected transport
algorithm.

The monolithic convex limiting strategy that we favor in the present paper differs from FCT-like predictor-
corrector approaches in that the fluxes f∗ij are used to correct the right-hand side of (3) rather than a
low-order solution obtained with the ALF method. The semi-discrete IDP limiting criterion is given by [2]

ūij ∈ Ai ⇒ ū∗ij := ūij +
f∗ij
2dij

∈ Ai, (6)

where Ai ⊆ A is a convex set of admissible values and ū∗ij is a flux-corrected counterpart of the ALF bar
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state ūij defined by (5). Additionally, we constrain the fluxes f∗ij to satisfy an entropy stability condition
which implies the validity of a semi-discrete entropy inequality; see [18, 19] for details. Integration in time is
performed using a strong stability preserving (SSP) Runge–Kutta method [20, 21, 22].

2.2 The shallow water equations
In the previous section, we discussed monolithic convex limiting strategies and related concepts that were
developed in [2, 18] for conservation laws. We now extend these techniques to a system of balance laws. In
particular, we consider the shallow water equations with a nonconservative topography term. This important
nonlinear system of partial differential equations reads

∂

∂t

[
h
hv

]
+∇ ·

[
hvT

hv ⊗ v + g
2h

2I

]
+
[

0
gh∇b

]
= 0 (7)

Here h is the total water height, v ∈ Rd, d ∈ {1, 2} is the velocity vector, g is the gravitational constant,
I ∈ Rd×d is the identity matrix, and b is the bottom topography or bathymetry. Additional theoretical
and numerical challenges arise when it comes to solving (7) instead of the system of conservation laws
corresponding to the case b ≡ const. We refer to [23, Ch. 3] and references cited therein for a review of the
theory of balance laws and some aspects of the shallow water equations with topography.

2.3 Objectives
The goal of this paper is to generalize the bound-preserving and entropy-stable MCL schemes to the
inhomogeneous SWE (7). One key requirement that we deemed essential in the development of our algorithms
is that they represent generalizations of the corresponding schemes from Section 2.1 for the flat bottom
case. Another desirable property of numerical methods for balance laws is their well-balancedness. For some
hyperbolic systems, there exist certain steady states, i. e., solutions u(x) that are independent of t because
the flux and source terms are in equilibrium. A numerical method for solving such a system is called well
balanced if it captures the simplest steady states exactly in the discrete setting. In the derivation of the SWE
one uses the chain rule to rewrite the term gh∇(h+ b) as g

2∇h
2 + gh∇b. This decomposition suggests that

system (7) admits the so-called lake at rest steady state solution

v = 0, h∇(h+ b) = 0. (8)

This configuration corresponds to a still body of water that is unperturbed by external forces, such as in-
and outflows through domain boundaries. Note that the second identity in (8) does not imply that the free
surface elevation H = h + b has to be a global constant, as is the case for a classical lake at rest. In fact,
(8) allows variations in H, as long as the water height h is zero at the same physical location. This case
corresponds to a so-called dry state that occurs whenever the topography b exceeds the water depth h. For
an island that rises from a body of water, every point on the surface of the island represents a dry state.

Besides lake at rest configurations, other types of equilibria exists for the SWE. In the absence of friction
and/or Coriolis forces, (7) admits so-called moving water equilibria steady states. In 1D, such configurations
occur if the discharge hv as well as the expression 1

2v
2 + g(h+ b) remain constant [23, Ch. 3], [9]. While

lake at rest scenarios can be preserved with simple numerical treatments (see, e. g., [6, 7, 9, 10, 13]), moving
water equilibria require advanced well-balancing techniques (see for instance [8]). The incorporation of such
approaches into our flux correction schemes is a topic of its own and will not be attempted in this work.
Instead, we focus on well-balancing w. r. t. lake at rest configurations. Nevertheless, some numerical examples
of moving water equilibria are solved numerically in this paper.

Another important aspect of numerical methods for the SWE and related models is the need to deal with
wetting and drying scenarios (see, e. g., [11, 24, 25]) in which simulations may crash if no special measures are
implemented. In many examples of practical interest, there exist islands rising from the body of water but
the interface between these islands and the water surface is moving. The dry land masses are then modeled
by allowing the bottom topography to exceed the values of the free surface elevation at the same location.
Even in the case that the resolution is sufficient to capture the interface, it can be quite difficult to accurately
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resolve the moving shoreline with numerical methods. In Section 4, we present two new ways of dealing with
this issue and compare our results with some existing approaches.

3 Limiting for the shallow water equations with topography
Let us now extend the schemes discussed in Section 2.1 to the inhomogeneous hyperbolic system (7) step by
step. We first choose a target discretization suitable for flux correction procedures. Next, we derive a low
order method for which all desirable properties (conservation, numerical and physical admissibility, entropy
stability) are guaranteed. Then we recover the target scheme by including raw antidiffusive fluxes into the
algorithm. Finally, these fluxes are limited in a way that ensures preservation of both local and global bounds,
as well as semi-discrete entropy stability.

The most important considerations regarding the low order method and flux-corrected schemes were
already discussed in the context of general systems of conservation laws in Section 2.1. For brevity, we focus
solely on aspects that need to be modified and refer to [2] and [15, Sec. 3.3] for the rest. In particular, the
treatment of boundary terms does not present any additional difficulties because these terms are the same for
discretizations of (7) with constant and spatially variable bathymetry b. Therefore, we omit all boundary
terms in the following presentation but remark that they generally need to be incorporated into the algorithm.
This task is achieved by choosing appropriate external Riemann data based on the physics of the problem
and incorporating boundary contributions weakly via a numerical flux.

Conceptually, the only difference compared to the case of a flat topography is the presence of the
nonconservative term gh∇b in the momentum equation. The consistent Galerkin discretization of this term
produces the nodal contribution

g
∑

k∈Ni

hk

ˆ
Ω
ϕi ϕk∇bdx (9)

to the ith component of the momentum equation. In this formula, hk denotes the value of the discretized
water height at node xk and ϕk are the corresponding piecewise (multi-)linear continuous Lagrange basis
functions of the finite element space Vh. It is common [9] to approximate b by its piecewise (multi)-linear
continuous interpolant bh ∈ Vh, defined by

bh(x) =
N∑

j=1
bjϕj(x), bj ··= b(xj).

If the bathymetry b is discontinuous in node xj , one may set bj equal to any of the one-sided limits in cells
containing xj or to an average of these limits. Alternatively, a projection can be used to obtain bh from b.

In Section 2.1, we approximated the inviscid flux f(uh) using a group finite element formulation [26, 27]
to derive a quadrature rule for the corresponding integral. Discretization (9) of the source term must be
approximated similarly for our method to be well balanced. With this goal in mind, we replace (9) by the
quadrature-based version

g
∑

j∈Ni\{i}

hi + hj

2 (bj − bi) cij , (10)

which is similar to what is done, for instance, in [6, Eq. (3.8)], [9, Eq. (2.6)], and [10, Eq. (2.7)]. Note that
if hk ≡ const for k ∈ Ni, then (10) equals (9) with b replaced by bh. In this sense, (10) is similar to the
quadrature rule based on the group finite element approximation of f(uh). The approximation (10) to (9) is
second order accurate if hk is constant for k ∈ Ni and first order accurate otherwise.

Remark 1. In principle, it is possible to compensate the quadrature error due to the source term approximation
(10) in the process of flux correction. If this is desired, one needs to decompose the difference between (9)
and (10) into edge contributions, add the corresponding correction terms f b

ij to the raw antidiffusive fluxes
fhv

ij = −fhv
ji of the momentum equation, and modify the limiting formula because f b

ij 6= −f
b
ji in general. At

an early stage of developing our method, we performed a preliminary study that showed the feasibility of this
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approach. In the final version, we disregard first order quadrature errors caused by using (10) instead of (9)
because in real-life applications such errors are likely to be negligible compared to measurement errors in the
bathymetry data.

Inserting (10) into the semi-discrete momentum equation and approximating other terms as in Section 2.1,
we obtain the quadrature-based target scheme

N∑
j=1

mij
dhj

dt = −
∑

j∈Ni\{i}

((hv)j − (hv)i)Tcij , (11a)

N∑
j=1

mij
d(hv)j

dt = −
∑

j∈Ni\{i}

[
fhv
j − fhv

i + g
hi + hj

2 (bj − bi) I
]

cij , (11b)

where

fhv
i = 1

hi
(hv)i ⊗ (hv)i + g

2h
2
i I, i ∈ {1, . . . , N}.

It is worth checking at this stage whether (11) is well balanced for lake at rest configurations (8) and clarify
the meaning of well-balancedness in this context. If (hv)i = 0 for all i ∈ {1, . . . , N}, then (11b) reduces to

N∑
j=1

mij
d(hv)j

dt = −
∑

j∈Ni\{i}

g

2 [h2
j − h2

i + (hi + hj)(bj − bi)] cij

= −
∑

j∈Ni\{i}

g

2(hj + hi)[hj − hi + bj − bi] cij .

Assuming for now that hi ≥ 0 for all i ∈ {1, . . . , N} (a condition that we enforce later on), we see that the
right hand side of this expression is zero if and only if

hi = hj = 0 or Hi = Hj ∀i ∈ {1, . . . , N}, j ∈ Ni \ {i}, (12)

where Hi ··= hi + bi, i ∈ {1, . . . , N} are the coefficients of the discrete free surface elevation Hh ∈ Vh. If (12)
holds, the discharge is unperturbed, and thus the right hand side of the continuity equation (11a) is zero.

3.1 Low order method
As in the case of a system of conservation laws, we need to modify (11) to obtain a property-preserving semi-
discretization. To this end, we perform row sum mass lumping and include Rusanov (local Lax–Friedrichs)
artificial dissipation. However, the presence of the nonconservative term makes matters more involved. Special
care needs to be taken, for instance, to ensure semi-discrete entropy stability, positivity preservation for water
heights, and well-balancedness. To construct a low order method that meets all of our requirements, let us
begin with the straightforward generalization

mi
dhi

dt =
∑

j∈Ni\{i}

[
dij(hj − hi)− ((hv)j − (hv)i)Tcij

]
, (13a)

mi
d(hv)j

dt =
∑

j∈Ni\{i}

[
dij((hv)j − (hv)i)− (fhv

j − fhv
i ) cij

− g

2(hi + hj)(bj − bi) cij

]
(13b)
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of the algebraic Lax–Friedrichs method applied to the SWE with flat bathymetry. As before, the artificial
viscosity coefficients dij are defined by [28]

dij = max{λmax
ij |cij |, λmax

ji |cji|}, λmax
ij = max

{∣∣∣∣vi ·
cij

|cij |

∣∣∣∣+
√
ghi,

∣∣∣∣vj ·
cij

|cij |

∣∣∣∣+
√
ghj

}
. (14)

We will modify (13) step by step until we are able to prove the desired properties.
A first observation regarding (13) is that this scheme does not preserve the lake at rest (8) if the given

velocity is zero, the free surface elevation is constant (hi + bi = Hi = Hj = hj + bj for all pairs of nodes) but
hi 6= hj for some j 6= i. In this scenario, the flux dij(hj − hi) of the semi-discrete continuity equation (13a)
will disturb the equilibrium and produce nonphysical waves. This issue can be resolved by replacing (13a)
with

mi
dhi

dt =
∑

j∈Ni\{i}

[
dij(Hj −Hi)− ((hv)j − (hv)i)Tcij

]
. (15)

This discretization preserves the lake at rest in the case H ≡ const. However, the theory that was used to
prove positivity preservation the low order method does not carry over to systems of balance laws. For the
SWE with flat bottom, nonnegativity of water heights follows from the fact that the low order bar states are
averaged exact solutions of the Riemann problem [16]. If source terms are included, the so-defined intermediate
states may fail to stay in the admissible set Amax = {(h, hvT)T ∈ Rd+1 : h ≥ 0} of the homogeneous SWE.
Thus, we need to enforce the nonnegativity constraint for hi by modifying the discretization of the continuity
equation. To this end, we notice that Hj −Hi = hj − hi + (bj − bi) and introduce a bathymetry limiter
αb

ij ∈ [0, 1] that transforms (15) into

mi
dhi

dt =
∑

j∈Ni\{i}

[
dij(hj − hi + αb

ij(bj − bi))− ((hv)j − (hv)i)Tcij

]
(16)

=
∑

j∈Ni\{i}

2dij

[
h̄ij − hi +

αb
ij

2 (bj − bi)
]

=
∑

j∈Ni\{i}

2dij(h̄b
ij − hi).

Here h̄ij is the first component of the usual low order bar state (5) and

h̄b
ij
··= h̄ij +

αb
ij

2 (bj − bi). (17)

The correction factor αb
ij is used to ensure that h̄b

ij ≥ 0. This condition holds for αb
ij = 0 by definition of

h̄b
ij . However, the largest admissible value of αb

ij ∈ [0, 1] should be employed for consistency reasons. To
maintain the conservation property of the semi-discrete continuity equation, we impose the usual symmetry
condition αb

ij = αb
ji. Note that for bj − bi ≥ 0, the use of αb

ij = 1 in (17) cannot produce negative h̄b
ij provided

that h̄ij ≥ 0. In this case, however, the limiter may need to act to enforce the condition h̄b
ji ≥ 0. These

considerations lead to the definition

αb
ij =


min

{
1, 2h̄ji

bj−bi

}
if bi − bj < 0,

1 if bi − bj = 0,
min

{
1, 2h̄ij

bi−bj

}
if bi − bj > 0.

(18)

This approach to enforcing the nonnegativity of water heights in the low order method is equivalent to
the correction procedure proposed by Audusse et al. [29, Sec. 2.2]. The authors of [29] also impose the
conservation and positivity requirements, which yields a 1D finite volume version of our water height limiter
based on (18).

It is worth checking how the limiter (18) behaves for lake at rest configurations.

Lemma 2 (Well-balancedness of the positivity-preserving limiter). Let uh ∈ Vd+1
h be a lake at rest solution,
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i. e., assume that (12) holds in addition to hi ≥ 0 and (hv)h = 0. Then for any i ∈ {1, . . . , N} and j ∈ Ni\{i}
we have

i) αb
ij(bj − bi) = 0 if hi = hj = 0 and

ii) αb
ij = 1 if Hi = Hj.

In either case, the application of the bathymetry limiter (18) does not perturb the lake at rest state because
the right hand side of (16) is zero for the given data.

Proof: See [15, Pf. of Lem. 4.2]. �

At this stage, one may be tempted to use the spatial semi-discretization consisting of (16) and (13b) as a
low order method for algebraic flux correction. While this version is already usable, it does not yet ensure
semi-discrete entropy stability for general bathymetry. For this reason, we modify the momentum equation
(13b) as follows

mi
d(hv)i

dt =
∑

j∈Ni\{i}

[
dij

(
(hv)j − (hv)i + vi + vj

2 αb
ij(bj − bi)

)
− (fhv

j − fhv
i ) cij − g

hi + hj

2 αb
ij(bj − bi) cij

]
. (19)

The term 1
2 (vi + vj)αb

ij dij(bj − bi) is included for entropy stabilization purposes. For consistency reasons,
we apply the correction factor αb

ij to all bathymetry fluxes.

Remark 3. Even though the bathymetry plays the role of a parameter in the SWE model, the correction
factor αb

ij adjusts the source term contribution to the momentum equation. The consistency error introduced
in this way is acceptable because αb

ij 6= 1 is used only for (neighbors of) dry states. A similar concept is
employed in the popular hydrostatic reconstruction approach [6, 7, 13] in which topography values are locally
adjusted to guarantee nonnegativity of water heights and well-balancedness.

Let us now discuss how to generalize Tadmor’s entropy stability condition [30, 31] to our setting and
verify it for the low order method. An entropy pair of the SWE with nonflat topography is given by [12]

η(u, b) = 1
2
(
gh2 + h|v|2

)
+ ghb, q(u, b) =

(
g(h+ b) + 1

2 |v|
2)hv. (20)

As of now, our proofs of entropy stability are, in fact, limited to this entropy pair. The entropy variable and
potential corresponding to (20) read

v(u, b) =
[
g(h+ b)− 1

2 |v|
2

v

]
= v(u, 0) +

[
gb
0

]
, ψ(u, b) = ψ(u) = g

2h
2v. (21)

A generalized version of Tadmor’s entropy stability condition was derived by Fjordholm et al. [10, Sec. 2.1] in
the context of finite volume methods for structured grids. Adapting this generalization to our continuous
FEM setting, we arrive at

dij

2 Pij ≤ (ψj −ψi) · cij + (v(ui, 0)− v(uj , 0))T

2 (fj + fi) cij

+ g

[
hi + hj

2
vi + vj

2 − (hv)i + (hv)j

2

]T
cijα

b
ij(bj − bi) =·· Qij , (22)

where

Pij ··=
[
g[hi − hj + αb

ij(bi − bj)]− |vi|2−|vj |2
2

vi − vj

]T [
hj − hi + αb

ij(bj − bi)
(hv)j − (hv)i + vi+vj

2 αb
ij(bj − bi)

]
.
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Inequality (22) imposes the upper bound (ψj −ψi) · cij on the rates of entropy production/dissipation due
to low order fluxes and source terms. It turns out that the parameters dij of our low order method (16), (19)
can be chosen sufficiently large (overestimating the maximum speed if necessary) to ensure the validity of
(22).

Lemma 4 (Entropy stability of the low order method). There exist coefficients dij ≥ 0 such that condition
(22) holds for the numerical fluxes of the semi-discrete low order method defined by (16) and (19).

Proof: See [15, Pf. of Lem. 4.4]. �

To ensure entropy stability of the low order method (16), (19) in practice, we verify whether the coefficients
dij defined by (14) are large enough to satisfy dij

2 Pij ≤ Qij . If this is not the case, we set dij = dji =
2 min{0, Qij , Qji}/Pij . In practical applications, such adjustments seem to be necessary only in the vicinity
of dry states. For such configurations, our approach of increasing the artificial viscosity does not significantly
reduce the time step if an appropriate wetting and drying treatment is adopted.

Remark 5. As an alternative to adjusting the diffusion coefficients dij, condition (22) can be satisfied by
further reducing the value of αb

ij. Indeed, (22) reduces to Tadmor’s usual entropy stability condition [30, 31]
for αb

ij = 0. A formula to compute such αb
ij can be derived similarly to the IDP pressure fix for the Euler

equations discussed in [2, Sec. 5.1].

Let us now generalize the setting of Section 2.1 to derive local semi-discrete entropy inequalities. First,
we rewrite the low order method (16), (19) as follows

mi
dui

dt =
∑

j∈Ni\{i}

[gij − (fj + fi) cij + sij ] + 2fi

∑
j∈Ni\{i}

cij ,

where

gij = dij

[
hj − hi + αb

ij(bj − bi)
(hv)j − (hv)i + vi+vj

2 αb
ij(bj − bi)

]
, sij =

[
0

−g hi+hj

2 αb
ij(bj − bi) cij

]
.

Thus, gij = −gji for all i ∈ {1, . . . , N}, j ∈ Ni \ {i} and sij = sji if cij = −cji.

Theorem 6 (Local semi-discrete entropy inequality). Consider the low order method (16), (19) satisfying
dij

2 Pij ≤ min{Qij , Qji} for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. Define

Gij ··=
(vi + vj)T

2 gij + (vi − vj)T

2 [(fi − fj) cij + sij ],

Wij ··=
g

2(1− αb
ij)(bi − bj)[dij(hj − hi + αb

ij(bj − bi))− ((hv)i + (hv)j)Tcij ].

Then for all i ∈ {1, . . . , N} the semi-discrete entropy inequalities

mi
dηi

dt ≤
∑

j∈Ni\{i}

[Gij +Wij − (qj − qi) · cij ] (23)

hold w. r. t. the entropy pair (η, q) defined by (20).

Proof: See [15, Pf. of Thm 4.6]. �

The consistency errors Wij can be attributed to the occurrence of dry or almost dry areas, which require the
use of αb

ij < 1. For such states, even the validity of the continuous entropy inequality is questionable because
the momentum equation of the SWE model does not describe the underlying physics correctly. In particular,
the absence of friction terms becomes an issue. This argument justifies the presence of Wij in (23).

Corollary 7 (Global semi-discrete entropy inequality). Let the assumptions of Theorem 6 be fulfilled and
assume that the spatial semi-discretization (16), (19) satisfies

cij = −cji or ui(t) = uj(t) i ∈ {1, . . . , N}, j ∈ Ni \ {i},
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and, furthermore, the external Riemann data coincides with the semi-discrete approximation uh(t) in all
boundary nodes. (This assumption is true, for instance, at supercritical outlets.) If, in addition, αb

ij = 1 for
all i ∈ {1, . . . , N}, j ∈ Ni \ {i}, then the following semi-discrete entropy inequality holds

d
dt

ˆ
Ω

( N∑
i=1

ηi ϕi

)
dx+

ˆ
∂Ω

( N∑
i=1

qi ϕi

)
· nds ≤ 0.

Proof: See [15, Pf. of Cor. 4.7]. �

We conclude the discussion of the low order method by formulating the bar state form of the momentum
equation (19), which reads

mi
d(hv)i

dt =
∑

j∈Ni\{i}

2dij

(
(hv)

b

ij − (hv)i

)
.

Similarly to the bar state (17) of the water height, the bar state of the discharge

(hv)
b

ij = (hv)ij + vi + vj

4 αb
ij(bj − bi)−

g
hi+hj

2 αb
ij(bj − bi) cij

2dij

=
(hv)i + (hv)j + vi+vj

2 αb
ij(bj − bi)

2 −

(
fhv
j − fhv

i + g
hi+hj

2 αb
ij(bj − bi) I

)
cij

2dij

consists of symmetric and skew-symmetric terms.
Remark 8. A similar concept based on intermediate states is employed in the work of Audusse et al. [29].
We already mentioned the fact that their limiter for the water height [29, Sec. 2.2] is equivalent to (18). A
minor difference between our low order method and the well-balanced scheme of Audusse et al. is that their
finite volume method employs intermediate states based on the HLL Riemann solver [32] instead of local
Lax–Friedrichs-type bar states. More importantly, our discretization of the momentum equation includes
an entropy-stabilizing term, which is missing in [29]. The absence of this term might be the reason why no
conclusive evidence regarding the validity of discrete entropy inequalities could be provided in [29, Sec. 2.4].

3.2 Monolithic convex limiting
Having derived the low order method (16), (19), we now discuss the MCL methodology for the SWE
with topography. As in the case of conservation laws, we first need to define the raw antidiffusive fluxes
fij = −fji ∈ Rd+1, fij ··= (fh

ij , (f
hv
ij )T)T with which the target scheme (11) can be recovered from the low

order method. In contrast to (4), we have to include additional terms due to modifications that make our
low order method property preserving for nonflat topography. A straightforward computation shows that if
αb

ij = 1 for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}, then (11) can be recovered via

mi
dhi

dt =
∑

j∈Ni\{i}

[
2dij(h̄b

ij − hi) + fh
ij

]
,

mi
d(hv)i

dt =
∑

j∈Ni\{i}

[
2dij

(
(hv)

b

ij − (hv)i

)
+ fhv

ij

]
,

where

fh
ij = mij

(
ḣi − ḣj

)
+ dij

[
hi − hj + αb

ij(bi − bj)
]
,

fhv
ij = mij

(
˙(hv)i − ˙(hv)j

)
+ dij

[
(hv)i − (hv)j + vi + vj

2 αb
ij(bi − bj)

]
.

In our fully discrete scheme, we once more define the dotted quantities as low order time derivatives, which
are computed from (16) and (19), respectively. For steady state problems, these quantities are set to zero
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because mass lumping errors need to be compensated only for time-dependent problems.
We are now in a position to present the generalized sequential limiting technique [2, 33] with which we

obtain flux-corrected counterparts fh,∗
ij and fhv,∗

ij of fh
ij and fhv

ij . In the first step of the sequential MCL
algorithm, we limit the water height using

hmin
i
··= min

j∈Ni\{i}
h̄b

ij , hmax
i
··= max

j∈Ni\{i}
h̄b

ij

as local bounds of numerical admissibility conditions, which imply global positivity preservation for the water
height if the bathymetry correction factor αb

ij defined by (18) is applied. The limiting formula for the raw
antidiffusive fluxes fh

ij becomes (cf. [2, Eq. (46)])

fh,∗
ij =

{
min

{
fh

ij , 2dij min
{
hmax

i − h̄b
ij , h̄

b
ji − hmin

j

}}
if fh

ij ≥ 0,
max

{
fh

ij , 2dijmax
{
hmin

i − h̄b
ij , h̄

b
ji − hmax

j

}}
if fh

ij ≤ 0.
(24)

The corresponding flux-corrected bar states in the continuity equation can be written as

h̄b,∗
ij = h̄b

ij +
fh,∗

ij

2dij
= h̄ij +

αb
ij(bj − bi)

2 +
fh,∗

ij

2dij
= h̄∗ij +

αb
ij(bj − bi)

2 .

Next, we need to limit fhv
ij in a way that ensures the validity of numerical admissibility conditions for

individual velocity (rather that discharge) components. To construct local bounds for this step, we first define
the velocity bar states as (cf. [2, Eq. (80)])

v̄ij ··=
(hv)

b

ij + (hv)
b

ji

h̄b
ij + h̄b

ji

=
2dij

(
(hv)ij + (hv)ji

)
− g hi+hj

2 αb
ij(bj − bi)(cij − cji)

2dij(h̄ij + h̄ji)
= v̄ji,

which represents a generalization of the velocity bar states of the homogeneous SWE. Note that the components
1
2α

b
ij(bj − bi) and 1

4 (vi + vj)αb
ij(bj − bi) of the bar states h̄b

ij , (hv)
b

ij and the corresponding antisymmetric

components of the bar states h̄b
ji, (hv)

b

ji cancel out upon summation in the numerator and denominator of
the second ratio. The symmetric source terms add up in the numerator.

Let vmin
i , vmax

i ∈ Rd be vectors containing local bounds to be imposed on individual components of the
nodal velocity (alternative limiting strategies for vector fields, in particular ones that guarantee rotational
invariance, are discussed in [34]). Inequalities involving vectors should be understood componentwise. As in
the case of conservation laws, we limit the bar states of the momentum equation as follows (cf. [2, Sec. 5.1])

h̄∗ijv
min
i ≤ (hv)

b,∗
ij
··= (hv)

b

ij +
fhv,∗

ij

2dij
= h̄∗ij v̄ij +

ghv,∗
ij

2dij
≤ h̄∗ijvmax

i , (25)

where ghv,∗
ij is a limited counterpart of the flux

ghv
ij = fhv

ij + 2dij

(
(hv)

b

ij − h̄
∗
ij v̄ij

)
.

It is easy to verify that ghv
ij + ghv

ji = 0 by construction. This property must be preserved by the flux limiter.
From (25) we derive the flux constraints for

ghv,∗
ij =

{
min

{
ghv

ij , 2dij min
{
h̄∗ij (vmax

i − v̄ij) , h̄∗ji

(
v̄ij − vmin

j

)}}
if ghv

ij ≥ 0,
max

{
ghv

ij , 2dijmax
{
h̄∗ij
(
vmin

i − v̄ij

)
, h̄∗ji

(
v̄ij − vmax

j

)}}
if ghv

ij ≤ 0.

Note that this formula applies a scalar limiter of the form (24) to each component of the flux vector ghv
ij .
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Finally, we obtain the flux-corrected momentum bar states via

fhv,∗
ij = ghv,∗

ij − 2dij

(
(hv)

b

ij − h̄
∗
ij v̄ij

)
, (hv)

b,∗
ij = (hv)

b

ij +
fhv,∗

ij

2dij
.

What remains is to choose feasible bounds vmin
i , vmax

i . As for the SWE without topography source term, we
should include the generalized velocity bar states v̄ij in their definition. To prove that a subsequent entropy
fix based on (22) cannot cause violations of (25), we need to extend the bounds by including the states
(hv)

b

ij/h̄ij . For reasons discussed in [15, Lem. 3.16 & Sec. 4.3.2], we define the velocity bounds as follows

vmin
i
··= min

j∈Ni\{i}
min

v̄ij ,
(hv)

b

ij

h̄ij

 , vmax
i
··= max

j∈Ni\{i}
max

v̄ij ,
(hv)

b

ij

h̄ij

 .

Note that, contrary to the sequential approach for the SWE with flat bottom, the states (hv)
b

ij/h̄ij are
neither symmetric nor antisymmetric in general. Therefore, they need to be computed for all bar states, even
the ones corresponding to pairs of interior nodes.

3.3 Semi-discrete entropy fix
At the current design stage, the semi-discrete bound-preserving scheme reads

mi
dhi

dt =
∑

j∈Ni\{i}

[
2dij(h̄b

ij − hi) + fh,∗
ij

]
=

∑
j∈Ni\{i}

2dij(h̄b,∗
ij − hi),

mi
d(hv)i

dt =
∑

j∈Ni\{i}

[
2dij

(
(hv)

b

ij − (hv)i

)
+ fhv,∗

ij

]
=

∑
j∈Ni\{i}

2dij

(
(hv)

b,∗
ij − (hv)i

)
.

To enforce a semi-discrete entropy inequality, we employ limiting coefficients βij = βji ∈ [0, 1] and entropy
limited fluxes f∗∗ij = βijf

∗
ij = βij(fh,∗

ij , (fhv,∗
ij )T)T. Our approach represents a straightforward generalization

of the entropy limiter used for conservation laws. We adjust the Rusanov coefficients dij if necessary to
guarantee that the low order method corresponding to f∗ij = 0 satisfies the entropy stability condition
dij

2 Pij ≤ Qij , i. e., (22). The flux-corrected scheme with f∗ij replaced by f∗∗ij is entropy stable if

dij

2 Pij + βij

2 Rij ≤ Qij , (26)

where

Rij ··=
[
g[hi − hj + αb

ij(bi − bj)− 1
2 (|vi|2 − |vj |2)

vi − vj

]T

f∗ij = Rji.

Thus, we enforce (26) by setting

βij =


2 min{Qij , Qji} − dijPij

Rij
if Rij > 2 min{Qij , Qji} − dijPij ,

1 otherwise.
(27)

Since the Rusanov coefficients dij are chosen large enough for 2 min{Qij , Qji} ≥ dijPij to hold, (27) produces
βij = βji ∈ [0, 1].

The generalization of our monolithic limiting strategies for the SWE with topography is now complete.
Written in terms of the flux-corrected bar states

h̄b,∗∗
ij = h̄b

ij +
βijf

h,∗
ij

2dij
, (hv)

b,∗∗
ij = (hv)

b

ij +
βijf

hv,∗
ij

2dij
,
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the resulting semi-discrete method reads

mi
dhi

dt =
∑

j∈Ni\{i}

2dij

(
h̄b,∗∗

ij − hi

)
,

mi
d(hv)i

dt =
∑

j∈Ni\{i}

2dij

(
(hv)

b,∗∗
ij − (hv)i

)
.

By construction, this finite element method is provably well balanced, bound preserving, and entropy stable.
We summarize its properties in the following theorem.

Theorem 9 (Properties of flux correction schemes for (7)). The low order method and the flux-corrected
schemes presented in this section

i) reduce to the corresponding algorithms discussed in Section 2.1 if applied to the shallow water equations
with flat topography,

ii) produce nonnegative water heights under the CFL-like condition

1− ∆t
mi

∑
j∈Ni\{i}

2dij ≥ 0, (28)

iii) are well balanced for the lake at rest in the sense of Lemma 2, and

iv) satisfy the semi-discrete entropy inequalities (23) w. r. t. the entropy pair (20) if the correction factors
βij are either zero (low order method) or calculated using (27). In the flux-corrected version of the
scheme, the numerical fluxes Gij and consistency errors Wij appearing in (23) are replaced with

G∗ij ··= Gij + βij

2
([
g(hi + bi + hj + bj)− 1

2(|vi|2 + |vj |2)
]
fh,∗

ij + (vi + vj)Tfhv,∗
ij

)
,

W ∗ij ··= Wij + g

2(1− αb
ij)(bi − bj)βijf

h,∗
ij ,

respectively. Moreover, the statement of Corollary 7 remains valid.

Proof: See [15, [Pf. of Thm. 4.9]. �

4 Wetting and drying algorithms
Before moving on to numerical examples, we discuss some wetting and drying algorithms proposed in the
literature and present our own approach. Ricchiuto and Bollermann [11, Sec. 4.3] set the velocity to zero if
the water height is smaller than a prescribed tolerance for which they use the square of the normalized mesh
size (h/|Ω|)2. Admittedly, their wetting and drying approach is more involved. In particular, it incorporates
information on the topography slope in wet-dry transition regions. We have not tested this part of their
algorithm but ran experiments with the version that sets the velocity to zero in dry regions.

A velocity fix that does guarantee continuous dependence on data is given by

ṽ = 2h(hv)
h2 + max{h, ε}2 , (29)

where ε� 1. Azerad et al. [13] use ε = 10−16 maxx∈Ω h0(x) in this formula. A problem with this approach
is that if the water height approaches zero but the discharge does not, the use of (29) produces velocities
with magnitudes that tend to infinity, resulting in unrealistic CFL conditions and a blowup of kinetic energy.

Kurganov and Petrova suggest a similar fix [9, Eqs. (2.17), (2.21)] in which the velocity is computed via

ṽ =
√

2h(hv)√
h4 + max{h, ε}4

(30)
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and the parameter ε is set equal to the (normalized) mesh size. In our experience, this choice introduces
significant approximation errors because the mesh size is usually much larger than the thickness of a water
layer that can be considered as dry. On the other hand, this fix seems to be quite robust in practice.
Importantly, Kurganov and Petrova [9, Eq. (2.21)] emphasize the need for adjusting the discharge by setting
(hv) = hṽ after calculating the velocity via (30).

Many more algorithms for wetting and drying processes exist besides the ones already mentioned. Most
of them work in a fashion similar to the approaches discussed above. There are also schemes that can not
directly be applied in the context of continuous finite elements. For instance, Vater et al. [25] employ slope
limiters to handle wetting and drying scenarios.

Let us now discuss a new nodal velocity correction based on the entropy of the shallow water system. Here
we restrict ourselves to the case of a flat topography because it is currently unclear to us whether an extension
to the general case is feasible for our MCL schemes. The underlying idea is based on the observation that
unbounded velocities, which may occur in dry or nearly dry areas, result in blow ups of the kinetic energy
and, therefore, of the entropy. On the other hand, entropy analysis of the bar state form for the SWE with
flat bathymetry provides an upper bound for the nodal entropy. Violations of this bound (and the resulting
lack of discrete entropy stability in practice) are caused not by the discretization but by the numerically
unstable calculation of nodal velocities for the next step. Thus, for entropy stability reasons, the magnitudes
of nodal velocities should stay bounded in the vicinity of dry states. In physics, this property is enforced by
viscous friction, which is missing in our model.

Recall once more that for b ≡ 0, an entropy for the shallow water equations is the sum of potential and
kinetic energies (cf. (20)). By convexity, the entropy of the state ũi = (h̃i, (̃hv)i) produced by a forward Euler
update satisfies the estimate

η(ũi) = η
((

1− ∆t
mi

∑
j∈Ni\{i}

2dij

)
ui + ∆t

mi

∑
j∈Ni\{i}

2dij ū
∗∗
ij

)
≤
(
1− ∆t

mi

∑
j∈Ni\{i}

2dij

)
η(ui) + ∆t

mi

∑
j∈Ni\{i}

2dijη(ū∗∗ij ) =·· ηmax
i (31)

under the CFL condition (28). The value ηmax
i can now be used to prohibit the occurrence of unbounded

velocities that would lead to a violation of (31). Invoking the definition (20) of η, we enforce (31) by adjusting
the nodal velocities as follows

ṽi =


(̃hv)i

h̃i
if |(̃hv)i| ≤ hiQi,

Qi

|(̃hv)i|
(̃hv)i if |(̃hv)i| > hiQi,

where Qi ··=

√
2ηmax

i

h̃i

− gh̃i.

We then follow Kurganov and Petrova [9, Eq. (2.21)] and overwrite the nodal discharge by h̃iṽi. The
approach presented here for a forward Euler update directly carries over to other SSP RK methods, which
are convex combinations of forward Euler steps. Unfortunately, the entropy-based approach interferes with
the well-balancedness property for the lake at rest unless the topography is flat.

To keep our scheme well balanced, we developed a wetting and drying algorithm that is based on the
theory of laminar boundary layers (see for instance [35]). As suggested by the above discussion of our
entropy-based approach, a particular challenge for realistic treatment of wetting and drying processes is to
obtain a physically correct model for the velocities in wet-dry transition regions. According to the boundary
layer theory, viscous friction effects should not be neglected in these areas. For the SWE in particular, a
bottom friction term should be incorporated into the system. A derivation of the viscous SWE including
bottom friction can be found in [36]. In essence, a nonconservative term σv is added on the left hand side of
the momentum equation. Here σ > 0 is the bottom friction coefficient, which may generally depend on the
solution and parameters of the SWE. Particular models for σ are discussed, for instance, in [37, Sec. 2.7]
and [38, Sec. 9.8]. Physical intuition tells us that wet-dry transitions occur in a boundary layer of thickness
0 < δ � 1. According to [35, Ch. 2], one may assume that inertial and viscous forces are in equilibrium and
contributions of the material derivative can be neglected in the boundary layer, which in our case implies

gh∇H + σv = 0.
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For nodes belonging to wet-dry zones, i. e., for hi ≤ δ, we use this identity to compute a nodal boundary
layer velocity vBL

i via the lumped L2 projection

miv
BL
i = − g

σ
hi

N∑
j∈Ni

Hj cij . (32)

Then the nodal velocity ṽi = (hv)i/hi is adjusted as follows

ṽi = (hv)i

max{hi, δ}
+ max

{
0, δ − hi

δ

}
vBL

i . (33)

Finally, we overwrite the discharge by hiṽi as in the energy-based version and in the algorithm proposed by
Kurganov and Petrova [9, Eq. (2.21)].

Note that formula (33) ensures a continuous transition between ṽi for hi ∈ [0, δ] and vSWE
i

··= (hv)i/hi

for hi ≥ δ. Similarly to wall function models for turbulent flows, it uses the inviscid SWE model for hi > δ
but adapts (the solution of) the momentum equation in the boundary layer, where viscous friction effects are
dominant and some assumptions behind the derivation of the shallow water equations are invalid.

In all of the numerical experiments below, we set the bottom friction parameter and the boundary layer
thickness to σ = 10 and δ = 10−3, respectively. These values are chosen according to [36] and the boundary
layer theory [35, Ch. 2]. Note that our boundary layer has a thickness of 1 millimeter for the SWE without
nondimensionalization. In our opinion this constitutes a reasonable value for which a nodal state can be
considered as almost dry and friction should come into play.

Barros et al. [24, Sec. 3] propose an approach that models the impact of bottom friction on wetting
and drying in a different way. The underlying idea is to treat the sea bed as a porous medium. Based on
precomputed water depths, the authors of [24] distinguish between wet, dry, and transitional regions. The
water height and the bottom friction coefficient are adjusted in the latter two regimes. Since we consider the
SWE without a bottom friction term (our own fix based on boundary layer theory only adjusts the velocity
and discharge), this approach cannot be directly pursued here.

5 Numerical examples
Let us now apply the generalized flux correction schemes for the shallow water equations with topography to
various one-dimensional benchmarks. By default, we employ a uniform mesh consisting of 128 elements and
adaptive SSP2 RK time stepping (Heun’s method) with CFL parameter ν = 0.5, which is used to compute
the time step ∆t in the first SSP RK stage via

∆t = min
i∈{1,...,N}

ν mi∑
j∈Ni\{i} 2dij

.

Below we consider classical steady state examples and various dam break problems, before testing our
algorithms for an idealized parabolic lake. The strategies under investigation include the algebraic local
Lax–Friedrichs scheme, i. e., the low order method (LOW), the bound-preserving monolithic convex limiting
approach without entropy fix (MCL), as well as the MCL algorithm enhanced by the semi-discrete entropy
limiter (MCL-SDE).

5.1 Steady problems
We investigate the well-balancedness of our schemes by applying them to an exact lake at rest configuration
as well as moving water equilibria. By default, we employ the raw antidiffusive fluxes fij = dij(uj − ui) for
i ∈ {1, . . . , N}, j ∈ Ni \ {i} in this section. This choice is suitable for steady and weakly time-dependent
problems.
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5.1.1 Lake at rest

In our first test, we set Ω = (0, 1), g = 1, and b(x) = max(0, 0.25− 5(x− 0.5)2). Our initial conditions read
v0 ≡ 0 and h0(x) = max{0.2H(0.5− x) + 0.1H(x− 0.5), b(x)}, where H is the Heaviside function. This test
problem represents a lake at rest configuration, and is essentially the same as in [39, Sec. 4.2] but many
similar benchmarks exist in the literature. In our case, there are two bodies of water with different depths
that are separated from each other by a land mass. Boundary conditions are realized as reflecting walls.
However, this choice does not affect the numerical results.

We solve this problem numerically using the boundary layer-based wetting and drying approach (32)–(33)
and display the results in Fig. 1. All methods clearly preserve the lake at rest scenario, which is why the free
surface elevation profiles in Fig. 1a are perfectly on top of each other. Note that the oscillations observable in
discharge and velocity are of the order of machine precision and do not amplify in the course of the simulation.
The stability of the approach becomes evident by realizing that a total of 22898 time steps was performed
with each scheme to reach the very large end time T = 100.

(a) Free surface elevation
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Figure 1: A lake at rest for the shallow water equations. Approximations at T = 100 obtained with adaptive SSP2 RK time
stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

In this test, the employed combination of mesh and initial conditions does not capture the shorelines
exactly. Thus, the well-balancedness condition (12) does not apply here. As a consequence, elements
containing a wet-dry transition can only resolve the free surface in these cells by introducing an artificial slope
in the discrete water heights. One can see this artifact in the zoomed region of Fig. 1a. It was our intention
to show that, in practice, our methods remain well balanced for such practical examples, even if (12) does
not hold. We also ran a similar experiment where (12) is satisfied and well-balancedness is guaranteed by
Lemma 2. For such problems our schemes preserve the lake at rest configuration up to machine precision
without introducing any nonphysical slopes in the water height. The discharge and velocity profiles obtained
in this fashion are similar to those in Fig. 1.

5.1.2 Moving water equilibria

Next, we study three classical steady benchmarks [40, Sec. 5.3], [41, Sec. 3.1] as well a supercritical
modification thereof. In all cases, the spatial domain is Ω = (0, 25) and the bathymetry is set to b(x) =
max{0, 0.2− 0.05(x− 10)2}. At first, we assume that no nondimensionalization has been performed, thus we
use g = 9.81.

In the first example, we employ (h0, (hv)0) ≡ (2, 0) as initial condition and prescribe (hv)in = 4.42 at the
subcritical inlet on the left and hin = 2 at the subcritical outlet on the right. In fact the flow is subcritical
everywhere and the treatment of boundaries is in accordance with the physics of the problem. The exact
solution for this setup can be computed as discussed in [41, Sec. 3.1]. As a result of the bump in the
bathymetry, there appears a corresponding one in the free surface elevation.

Next, we consider a transcritical flow example without a shock, which is obtained with the initial and left
boundary data (h0, (hv)0) ≡ (0.66, 0) and (hv)in = 1.53, respectively. In this example, the type of the right
boundary changes in time and is determined numerically, by computing the eigenvalues of the flux Jacobian
for the internal state at the boundary. The external boundary state is then set according to the underlying
physics based on the available boundary data hin = 0.66 and (hv)in = 1.53. In this example, the flow becomes
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supercritical (this behavior is referred to as torrential flow) at the bathymetry bump and to the right of it
but remains subcritical at the left domain boundary.

Another transcritical example is obtained by setting initial and boundary data as (h0, (hv)0) ≡ (0.33, 0),
(hv)in = 0.18 on the left and hin = 0.33 on the right, respectively. Again, the region around the bathymetry
bump becomes torrential, and this time, a steady shock forms. In this example however, the flow is subcritical,
not only on the left of the area with elevated topography but also in the post-shock region. Respective
reference solutions obtained with the SWASHES software [41] on uniform meshes of 1 000 cells are displayed
in Fig. 2 for both transcritical examples.

The obtained free surface elevations for the three test problems are displayed in Fig. 2. With the employed
resolution, one can clearly see that the LOW profiles do not quite attain the exact values in regions where the
exact solutions are constant. As expected, LOW also smears the shock in Fig. 2c significantly. On the other
hand, the agreement of the flux-corrected approximations with the respective exact or reference solutions is
satisfactory.
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Figure 2: Moving water equilibria for the shallow water equations [40]. Approximations to the free surface elevation at T = 400
(a), T = 200 (b), and T = 800 (c) obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh
consisting of 128 elements.

All three of the above examples are classical steady benchmarks. Thus, we check, whether the approxima-
tions converge to steady states. Unfortunately, this is only the case for the low order method, not for the
flux-limited schemes. A variety of reasons for this lack of convergence can be imagined. In these examples it
can be due to the fact, that our schemes are not exactly well balanced for moving water equilibria.

In our final steady example, we modify the above configurations by assuming the system to be in
nondimensional form. Thus, we set g = 1. As initial condition we use (h0, (hv)0) ≡ (1, 2.1), which corresponds
to supercritical flow. Thus, supercritical in- and outlet boundary conditions are prescribed at x = 0 and
x = 25, respectively. Again, the bathymetry bump produces a corresponding feature in the free surface
elevation. Contrary to the subcritical case displayed in Fig. 2a, the bump is pointing upward in this example.
The exact solution to this problem can be derived as in [41, Sec. 3.1].

In this example, all three schemes under investigation do converge to the steady states displayed in Fig. 3.
These profiles were obtained on a uniform mesh consisting of 128 elements. To rule out that these are isolated
instances, we increased the spatial and temporal resolutions by factors of two and four. The steady state
residual in each run eventually drops below the threshold of 10−12, although our schemes are not exactly
well balanced for moving water equilibria. It is quite remarkable, that the displayed oscillatory discharge
profiles represent discrete steady states. Nevertheless, a combination of AFC with strategies that guarantee
well-balancedness w. r. t. to moving water equilibria (for instance, as in [8]) is an important topic for future
research.

If we include the term mij(u̇L
i − u̇L

j ) in the antidiffusive fluxes fij , the MCL-SDE method still converges
to steady state for all three resolutions under consideration, while the MCL method without entropy fix does
not. Therefore, it may be a good idea to employ an entropy fix in practical computations.

The fact that the low order discharge in Fig. 3 looks quite different from its flux-corrected counterparts
is due to the term 1

2 (vi + vj)αb
ij(bj − bi) present in the low order method. Its influence on the numerical

approximations is reduced in the process of flux limiting. A preliminary version of our low order method
without this term did not produce the slight phase errors visible in the low order approximations in Fig. 3a
and Fig. 2a. It is somewhat interesting that these deviations from the respective exact solutions are opposite
in the subcritical and supercritical cases.
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Figure 3: Supercritical moving water equilibrium for the shallow water equations. Approximations at steady state obtained with
adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

5.2 Dam breaks
Having studied some problems with steady state solutions in the previous section, we now perform experiments
for the generalized Riemann problem

∂

∂t

[
h
hv

]
+ ∂

∂x

[
hv

hv2 + g
2h

2

]
+
[

0
gh ∂b

∂x

]
= 0 in Ω× (0, T ),

h0(x) =
{
hL if x < x0,

hR if x > x0,
v0 ≡ 0,

where Ω ⊂ R. We use values hL > hR in the three below tests. This setup corresponds to an idealized dam
located at x0 ∈ Ω that is removed at time t = 0. As a result a water wave propagates into the region x > x0,
while a rarefaction wave travels in the opposite direction.

5.2.1 Wet dam break over flat topography

First, we set g = 1 and consider an example with flat bottom topography, i. e., b ≡ 0. Thus, we may apply
the standard limiting techniques for conservation laws, instead of their generalized versions for the SWE with
a topography source term. If both hL and hR are positive, the generalized Riemann problem is referred to a
wet dam break. Such tests represent relatively mild test cases, which are similar to Sod’s shock tube problem
[42] for the Euler equations. A difference is that there is one fewer unknown in the system, and the exact
solution does not feature any contact discontinuities.

We equip the spatial domain Ω = (0, 1) with reflecting wall boundaries (although other options are
feasible). In our first test, the dam is located at x0 = 0.5 and the two values for the water height are set to
hL = 1 and hR = 0.1. As end time we choose T = 0.3. The exact solution to this problem can be found in
[43, Sec. 4.1.1].

First, we perform a convergence study of LOW, MCL, and MCL-SDE schemes on a series of uniform
meshes. The convergence rates of the MCL and MCL-SDE approaches observed in Tab. 1, are optimal for
examples such as this one in which the solution is discontinuous.

1/h LOW EOC MCL EOC MCL-SDE EOC
32 7.93E-02 3.28E-02 3.66E-02
64 4.98E-02 0.67 1.67E-02 0.97 1.89E-02 0.95
128 3.00E-02 0.73 8.47E-03 0.98 9.59E-03 0.98
256 1.77E-02 0.76 4.28E-03 0.99 4.85E-03 0.98
512 1.06E-02 0.75 1.94E-03 1.14 2.24E-03 1.11

Table 1: Convergence history of the wet dam break for the shallow water equations. The ‖ · ‖L1(Ω) errors at T = 0.3 and the
corresponding EOC.

In Fig. 4, we display the approximations obtained on a uniform mesh consisting of 128 elements. The
low order profiles are significantly more diffusive than they tend to be in approximations to some scalar
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problems. Similarly to shock tube examples for the Euler equations, there are some non-IDP-violating under-
and overshoots in the flux-corrected solutions on the right of the rarefaction wave [16].
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Figure 4: Wet dam break for the shallow water equations. Approximations at T = 0.3 obtained with adaptive SSP2 RK time
stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

Let us briefly study a few variations of time stepping schemes and artificial viscosities. For completeness
we run this problem with the SSP3 RK (Shu–Osher) method and leave the rest of the setup unchanged. The
results for the water heights in Fig. 5a are indistinguishable from the ones in Fig. 4a. In this example, setting
ν = 0.67 was sufficient for the CFL condition (28) to be satisfied at all times while values ν ≥ 0.68 required
some repetitions of individual RK stages.

The theory presented in Section 2.1 suggests that we may also employ forward Euler (SSP1 RK) time
stepping and may even set the CFL parameter ν to one. Indeed, the resulting approximations do not
violate the IDP property, and one may assume the results to be reliable. We investigate the validity of this
assumption, first by using our nodal approximation (14) to the wave speeds, and, alternatively, the guaranteed
maximum wave speed (GMS) proposed in [13, Prop. 3.7], [14, Sec. 4]. In either case, oscillations and incorrect
approximations in the left part of the rarefaction waves are visible in Figs. 5b and 5c. The fact that even the
use of the GMS wave speed is not sufficient to prevent these nonphysical effects, implies that they are not
a result of an incorrect wave speed approximation. A reduction of the CFL parameter ν masks this issue
in the sense that the amplitude of the oscillations becomes smaller. The spurious approximations observed
in this study originate from the combination of forward Euler time stepping with continuous finite element
methods [44, Sec. 4]. Schemes based on discontinuous approximation spaces on the other hand can be safely
employed in combination with forward Euler time stepping. The fact that the low order method remains
stable can be attributed to its equivalence to the vertex-centered finite volume scheme of local Lax–Friedrichs
type [45]. For the shallow water equations we tested the GMS wave speed [13, Prop. 3.7], [14, Sec. 4] for
multiple examples. Although the low order method is derived based on assumptions that encourage the use
of GMS instead of our approximation (14), we encountered no example in which the use of GMS is actually
necessary. This observation was recently confirmed by Wu et al. [46, Thm. 3.1] who show that (14) preserves
the IDP property for the SWE.
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(b) SSP1 RK, ν = 1 with (14)
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Figure 5: Wet dam break for the shallow water equations. Approximations at T = 0.3 obtained with adaptive SSP RK time
stepping on a uniform mesh consisting of 128 elements.

Using SSPp RK time stepping with p ∈ {2, 3}, we observe satisfactory agreement of MCL and MCL-SDE
profiles with the exact solutions, not only for the conserved unknowns but also for the velocity. The situation
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may be different if the test problem features dry or nearly dry states, which is why we consider such an
example next.

5.2.2 Dry dam break over flat topography

Let us now set hR to zero, the end time to T = 0.15, and leave the rest of the setup from the previous example
unchanged. Here the exact solution does not feature a shock wave, only a rarefaction wave is produced as a
result of the dam break [43, Sec. 4.1.2].
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Figure 6: Dry dam break for the shallow water equations with new wetting and drying strategies. Approximations at T = 0.15
obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

This example already requires some form of treatment to correctly capture the wet-dry transition. If no
such approach has been implemented, one can simply run this example by setting hR to a very small value,
for instance 10−12. Instead of following this approach, we compare the results obtained with our new friction-
and entropy-based wetting and drying algorithms in Fig. 6. The approximations obtained with the existing
schemes of Azerad et al. [13], Kurganov and Petrova [9] as well as the one by Ricchiuto and Bollermann [11]
are shown in Fig. 7.

All wetting and drying approaches produce acceptable numerical solutions for the water height, whereas
approximations for the discharge close to the dry region are somewhat underresolved. Improvements can
only be obtained with refined meshes and time steps. Among the five approaches for wetting and drying,
the [9]-based fix (30) produces the most pronounced kink in the discharge and a similar artifact is visible
in the corresponding water levels. Moreover, this fix produces the smallest velocities among all considered
approaches. All other wetting and drying algorithms produce satisfactory results for this test problem. The
somewhat significant differences in the velocities, particularly for the low order solution are unsurprising to
us because the calculation of v = (hv)/h is quite sensitive to small water heights, which occur in almost dry
areas. Again, refinement is needed to obtain more accurately resolved velocity profiles.

5.2.3 Wet dam break over a bump

Next, we study a dam break problem proposed in [47, Sec. 5.6]. It involves a nonflat bottom topography. The
spatial domain Ω = (0, 20) is again equipped with reflecting wall boundaries and the gravitational constant is
g = 1. The bottom topography, and initial conditions read

b(x) =
{

sin(0.25πx) if |x− x0| < 2,
0 otherwise,

h0(x) =
{

1.6− b(x) if x < x0,

1.05− b(x) if x > x0,
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Figure 7: Dry dam break for the shallow water equations with wetting and drying strategies from the literature. Approximations
at T = 0.15 obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

where x0 = 10 and v0 ≡ 0.
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Figure 8: Dam break over a bump for the shallow water equations [47]. Approximations at T = 4.5 obtained with adaptive
SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 400 elements.

To facilitate a comparison of our results with the ones in [47], we solve this problem up to time T = 4.5
on a mesh consisting of 400 elements. A reference solution is obtained with a finite volume method on a
fine mesh consisting of E = 104 elements. Even though the initial water height on the right of the dam is
quite small, our friction-based wetting and drying algorithm is never activated in this problem. The results of
this study are displayed in Fig. 8, where we observe excellent agreement with our reference solutions. The
obtained profiles also agree well with the ones in [47, Sec. 5.6] with the exception that the peaks in the
velocity profiles are slightly lower in our results. This issue requires further investigations and comparisons
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with the methods in [47].

5.3 Oscillating surface in a parabolic lake
In our final numerical example, we apply our schemes to one of Thacker’s oscillatory lakes with a parabolic
basin [48]. Such benchmarks are challenging tests for wetting and drying algorithms. We use the same setup
as in Vater et al. [25, Sec. 4.4], where Ω = (−5000, 5000), g = 9.81, and b(x) = h0(x/a)2 with h0 = 10 and
a = 3000. In the absence of friction, the exact solution is periodic and reads [48, 39, 25]

x±(t) = − B

ω
cos(ωt)± a, B = 5, ω =

√
2gh0

a
,

H(x, t) =
{
h0 − B2

4g (1 + cos(2ωt))− Bx
a

√
2h0

g cos(ωt) if x−(t) ≤ x ≤ x+(t),
b(x) otherwise,

v(x, t) =
{

Baω√
2h0g

sin(ωt) if x−(t) ≤ x ≤ x+(t),

0 otherwise.

We employ a CFL parameter of ν = 0.05 in combination with our friction-based wetting and drying
approach to solve this problem numerically up to end time T = 3000. Larger CFL parameters lead to either
repetitions of single Runge–Kutta stages or increases of Rusanov diffusion coefficients for nodes around the
wet-dry transitions. For ν = 0.05, all schemes remain stable without the need for employing either of these
adjustments, even in the case of adaptive time stepping. Fig. 9 displays LOW, MCL and MCL-SDE water
levels at three different times along with the initial condition for illustrative purposes. From Fig. 9b we
can make out that the low order profile is trailing the exact solution and its flux-corrected counterparts.
Agreement of the flux-limited profiles with the exact water levels is again satisfactory.
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Figure 9: Oscillating surface in a parabolic lake for the shallow water equations [48]. Approximations to the free surface elevation
at various times obtained with adaptive SSP2 RK time stepping and ν = 0.05 on a uniform mesh consisting of 128
elements.

We also tested whether we can employ other wetting and drying algorithms in this example. With the
fixes from [11] and [13] our simulations crash. The fix from [9] produces profiles similar to the ones in Fig. 9.
It is actually possible to employ a larger CFL parameter ν with this wetting and drying approach. This
observation motivates further tests and adjustments of our friction-based strategy. Specifically, nonlinear
friction models should be considered and the parameters δ and σ may need to be adjusted. Since these studies
should include multidimensional test cases, we have not yet conducted further research in this direction.

6 Conclusions
We presented an extension of the bound-preserving and entropy-stable monolithic convex limiting strategy to
the inhomogeneous system of shallow water equations. The proposed scheme is well-balanced w. r. t. lake at
rest equilibria and represents a generalization of the corresponding methods for the SWE without topography.
In addition, we presented two new approaches to handle wet-dry transition regions numerically. The results
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of 1D numerical experiments demonstrate the robustness, accuracy, and shock-capturing capabilities of
our scheme. An implementation of the proposed flux-correction schemes in the two-dimensional setting is
currently under way to provide additional verification of our new friction-based wetting and drying model.
We are also planning to incorporate additional source terms, such as bottom friction and Coriolis forces, into
the model. Further interesting open problems include achieving well-balancedness w. r. t. more complicated
steady states than the lake at rest, and using high-order baseline discretizations as target schemes. These
aspects require additional research and further generalizations of the proposed methodology.
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