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Abstract: In this paper, we present an adaptive-grid space-time solver based on a hyperbolic
Navier-Stokes formulation for two-dimensional unsteady viscous flows, where the two-dimensional
Navier-Stokes equations are discretized and solved as a steady system in a three-dimensional space-
time domain with the coordinates (x, y, t), where t denotes time, using adaptive tetrahedral grids.
The hyperbolic viscous formulation drastically simplifies the viscous discretization and greatly
improves the accuracy and quality of derivatives on adaptive grids with convergence acceleration.
These advantages are demonstrated for space-time computations for two-dimensional unsteady
viscous problems.
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1 Introduction

Laminar-flow control is a key technology for achieving economical access to space and efficient flights with
extended range by reducing aerodynamic drag and heating. In particular, physics-based boundary-layer
transition control (BLT) techniques have been widely studied as an effective means to perform laminar-
flow control, including hypersonic-flow applications. Yet, these techniques need to be integrated into a
practical unstructured-grid computational-fluid-dynamics solver, in order to perform high- and multi-fidelity
design optimizations for realistic geometries of interest. Towards the grand challenge of optimizations with
BLT control strategies, this work explores the development of an efficient unsteady Navier-Stokes solver for
adaptive unstructured grids based on a space-time method.

Space-time methods, where unsteady governing equations are solved in a larger space with the phys-
ical time treated as an additional coordinate, are promising approaches for exploiting an ever-increasing
parallelism. The methods are especially efficient when combined with anisotropic grid adaptation as we
demonstrated in our previous papers [1, 2]. However, solution derivatives obtained on adaptive grids are
often contaminated with numerical noise, which is a serious issue for viscous simulations, where target quan-
tities depend on solution derivatives (e.g., viscous stresses and heat fluxes). To address this issue, we develop
a new space-time solver based on a hyperbolic Navier-Stokes (HNS) formulation [3], which has been demon-
strated to achieve superior accuracy and quality in the solution derivatives on irregular tetrahedral grids
[4, 5, 6]. In particular, we consider the HNS formulation called HNS20G [3] in two dimensions:

∂u

∂t
+

∂fx
∂x

+
∂fy
∂y

= 0, (1)

where u is a vector of conservative variables and the gradients of the primitive variables (12 variables in
total), fx and fy are fluxes in the x- and y-directions. This system consists of hyperbolic systems (time,
inviscid, viscous), therefore can be discretized by an upwind method, and then solved as a steady system
in a three-dimensional space with the coordinates (x, y, z = t). Accurate derivatives are obtained directly
in the extra variables rather than computed from the numerical solution, for example, by a least-squares
method. Moreover, this approach has the advantage of not requiring any special fix to avoid zero division
at an edge aligned with the time axis as encountered in a conventional viscous discretization [2].
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In this paper, we focus on the simplest algorithm of the space-time HNS method and demonstrate its
potential for space-time computations. Further developments towards more robust, accurate, and efficient
space-time HNS solvers will be reported in the future. For example, a more accurate HNS solver can be
constructed by upgrading least-squares gradients with gradients of gradient variables incorporated as second
derivatives. Also, the method can be extended to achieve third-order accuracy in both inviscid and viscous
terms, and at the same time, third-order accuracy will be achieved in the gradients as well. The equal order
of accuracy in the solution variables and their gradients is another advantage of the HNS method. It is
demonstrated here for a second-order discretization method.

2 Unsteady Compressible Navier-Stokes Equations

Our target equations are the unsteady compressible NS equations:

∂tρ+ div(ρv) = 0, (2)

∂t(ρv) + div(ρv⊗v) = −grad p+ div τ , (3)

∂t(ρE) + div(ρvH) = div (τv)− divq, (4)

where t is the physical time,⊗denotes the dyadic product, ρ is the density, v is the velocity vector, p is the
pressure, E is the specific total energy, and H = E + p/ρ is the specific total enthalpy. The viscous stress
tensor τ and the heat flux q are given, under Stokes’ hypothesis, by

τ = −
2

3
µ(divv)I+ µ

(
gradv + (gradv)t

)
, q = −

µ

Pr(γ − 1)
gradT, (5)

where I is the identity matrix, T is the temperature, γ is the ratio of specific heats, Pr is the Prandtl number,
µ is the viscosity defined by Sutherland’s law, and the superscript t denotes the transpose. All the quantities
are assumed to have been nondimensionalized by their free-stream values except that the velocity and the
pressure are scaled by the free-stream speed of sound and the free-stream dynamic pressure, respectively
(see Ref.[7]). Thus, the viscosity is given by the following form of Sutherland’s law:

µ =
M∞

Re∞

1 + C/T̃∞

T + C/T̃∞

T
3

2 , (6)

where T̃∞ is the dimensional free stream temperature, and C = 110.5 [K] is the Sutherland constant. The
ratio of the free stream Mach number, M∞, to the free stream Reynolds number per grid unit, Re∞, arises
from the nondimensionalization. The system is closed by the nondimensionalized equation of state for ideal
gases:

γp = ρT. (7)

In the previous paper [2], we discretized the Navier-Stokes system directly and developed a space-time
viscous solver. In this work, we will first reformulate the viscous terms as a hyperbolic system and then
discretize it by an upwind discretization just like the inviscid terms.

3 Hyperbolic Navier-Stokes System: HNS20G

There exist four possible hyperbolic formulations for the viscous terms: HNS14 [4], HNS17 [5], HNS20 [5], and
HNS20G [3]. Here, we employ HNS20G, which was first introduced in Ref.[3] to simplify the development of
high-order reconstructed discontinuous Galerkin methods. In HNS20G, we extend the Navier-Stoke system
by adding extra variables r, g, h corresponding to the gradients of the primitive variables, which are called
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the gradient variables:

∂τρ+ ∂tρ+ div(ρv) = div (νrr) , (8)

∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −grad p+ div (µvτ̃ ) , (9)

∂τ (ρE) + ∂t(ρE) + div(ρvH) = div (µvτ̃v) + div

(
µh

γ(γ − 1)
h

)
, (10)

Tv ∂τg = gradv − g, (11)

Th ∂τh = gradT − h, , (12)

Tr ∂τr = grad ρ− r, (13)

where τ is a pseudotime variable, and τ̃ = − 1
2 tr(g)I+

3
4 (g + gt),

Tr =
L2
r

νr
, Tv =

L2
v

νv
, Th =

L2
h

νh
, νv =

4µ

3ρ
, νh =

γµ

ρPr
, νr = min(10−12, V

4/3
min)M∞, (14)

and the length scale may be taken as Lr = Lv = Lh = 1/(2π) or, as in Refs.[3, 8],

Lr = Ld =
1

2π
,

Lv =
Ld√
Rev∞Ld

, Rev∞Ld
=

U∞Ld

νv∞
,

Lh =
Ld√
Reh∞Ld

, Reh∞Ld
=

U∞Ld

νh∞
,

(15)

where U∞ is the free-stream flow speed and the subscript ∞ refers to the free-stream state. The latter is more
suitable for high-Reynolds-number flows. Note that Lr is different from that in Refs.[3, 8]. For a particular
discretization employed in this work (called Scheme-I [9, 6]), it has been observed that the order of accuracy
of the density gradient is reduced by one order if Lr is too small, and therefore we keep Lr = Ld = 1

2π .
Note that the HNS20G system is equivalent to the original Navier-Stokes system in a pseudo steady state

or as soon as the pseudotime derivatives are dropped. Then, the gradient variables h and g correspond to
the temperature and velocity gradients:

h = gradT, g = gradv. (16)

The viscous part of HNS20G is hyperbolic in the pseudotime, and therefore can be discretized by an upwind
method similarly to the inviscid part. Once the viscous part is discretized, we will drop the pseudotime
terms and arrive at a consistent discretization of the original Navier-Stokes system in a first-order form.

In two dimensions, we write the HNS20G system as

P−1 ∂u

∂τ
+M

∂u

∂t
+

∂fx
∂x

+
∂fy
∂y

= s, (17)

where

P−1 = diag(1, 1, 1, 1, Tr, Tr, Tv, Tv, Tv, Tv, Th, Th), (18)

M = diag(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), (19)
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u =




ρ

ρu

ρv

ρE

gux

guy

gvx

gvy

hx

hy

rx

ry




, fx = f invx + fvisx =




ρu

ρu2 + p

ρuv

ρuH

0

0

0

0

0

0

0

0




+




0

−µv τ̃xx

−µv τ̃xy

−µv τ̃xxu− µv τ̃xyv +
µh

γ(γ−1)hx

−u

0

−v

0

−T

0

−ρ

0




, (20)

fy = f invy + fvisy =




ρv

ρuv

ρv2 + p

ρvH

0

0

0

0

0

0

0

0




+




0

−µv τ̃yx

−µv τ̃yy

−µv τ̃yxu− µv τ̃yyv +
µh

γ(γ−1)hy

0

−u

0

−v

0

−T

0

−ρ




, s =




s1(x, y, t)

s2(x, y, t)

s3(x, y, t)

s4(x, y, t)

−gux

−guy

−gvx

−gvy

−hx

−hy

−rx

−ry




, (21)

where s1, s2, s3, s4 are forcing terms. As derived in Ref.[3], the dissipation vector of an upwind flux for the
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viscous part is given by

∣∣∣∣P
∂fvisn

∂u

∣∣∣∣∆u=




0

ρ[(anv − amv)∆unn+ amv∆v]

ρv · {(anv−amv)∆unn+ amv∆v}+
ρah∆T

γ(γ−1)
+

µ2
v

ρah
(Lτ ·∆τ̃ττn)

[(
anv −

4

3
amv

)
∆τ̃nnnx +

4

3
amv∆τ̃nx

]
n

[(
anv −

4

3
amv

)
∆τ̃nnny +

4

3
amv∆τ̃ny

]
n

ah [∆hn + (Lτ ·∆v)]n

0




, (22)

where fvisn = (fvisx , fvisy )·n, ∆ denotes a jump across two states, e.g., ∆v = vR−vL, v = (u, v)t, n = (nx, ny)
t

is a unit vector, and

un = v · n, hn = h · n, τ̃ττn = τ̃ττn, Lτ =
τ̃nnn

Prn + 1
+

τ̃ττn − τ̃nnn

Prm + 1
, (23)

τ̃nm = τ̃nxmx + τ̃nymy, τ̃nn = τ̃nxnx + τ̃nyny, (24)

τ̃nx = τ̃xxnx + τ̃xyny, τ̃ny = τ̃xynx + τ̃yyny, (25)

Prn =
anv
ah

, P rm =
amv

ah
, P rl =

alv
ah

=
amv

ah
= Prm, (26)

anv =

√
νv
Tv

, amv =

√
3νv
4Tv

, ah =

√
νh
Th

. (27)

All quantities in the dissipation matrix
∣∣∣P∂fvis

n

∂u

∣∣∣ are evaluated with arithmetic averages of the two states,

e.g., v = (vL + vR)/2.

4 Second-Order Edge-Based Discretization

We drop the pseudotime term and discretize the HNS20G system by the second-order edge-based method
over a tetrahedral grid. The residual at a node j is defined by

Resj ≡
∑

k∈{kj}

ΦjkAjk − sjVj , (28)

where Vj is the dual control volume, {kj} is a set of neighbor nodes of j, Ajk is the magnitude of the
directed area vector njk = (nx, ny, nt), which is a sum of the directed-areas corresponding to the dual-
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triangular faces associated with all tetrahedral elements sharing the edge [j, k] (see Figure 1), and Φjk is a
numerical flux. The numerical flux is computed with the left and right states in the primitive variables wL

and wR, respectively, where

w = (ρ, u, v, p, gux, guy, gvx, gvy, hx, hy, rx, ry)
t, (29)

by using the kappa reconstruction scheme [10, 11]:

wL = κ
wj +wk

2
+ (1− κ)

[
wj +

1

2
∇w

LSQ
j · (xk − xj)

]
, (30)

wR = κ
wj +wk

2
+ (1− κ)

[
wk −

1

2
∇w

LSQ
k · (xk − xj)

]
, (31)

where κ is a real-valued parameter. The corresponding conservative variables uL and uR are algebraically
computed from the primitive variables wL and wR. The nodal gradients ∇w

LSQ
j and ∇w

LSQ
k are computed

by an unweighted least-squares (LSQ) method with neighbor nodes. For the results shown in this paper, we
used κ = 1/2.

Note that the LSQ gradients of the gradient variables correspond to second derivatives of the primitive
variables. They can be incorporated in the LSQ method to upgrade the linear LSQ method to a quadratic
one. The resulting scheme is called Scheme-IQ [6], in contrast to the scheme used in this paper, which is
called Scheme-I [9, 6]. However, for the space-time solver, gradient variables corresponding to time derivatives
are missing, and therefore Scheme-IQ will not be complete. In the future, we will explore Scheme-IQ by
introducing additional equations for the time derivative variables and investigate the impact of not having
the time derivative variables.

As in our previous papers [1], we construct the numerical flux as a sum of the 2D spatial inviscid and
viscous fluxes and the temporal flux:

Φjk = Φinv
jk |(n̂x, n̂y)|+Φvis

jk |(n̂x, n̂y)|+Φtime
jk |n̂t|, (32)

where n̂jk = njk/|njk| = (n̂x, n̂y, n̂t)
t, Φinv

jk and Φvis
jk are the spatial inviscid and viscous fluxes respectively

and Φtime
jk is the temporal flux. For the spatial fluxes, we first set nxy = (n̂x, n̂y), and define the unit

directed-area vector n̂xy in space:

ˆ̂nxy =
n̂xy

|n̂xy|
=

(n̂x, n̂y)
t

|(n̂x, n̂y)|
=

(n̂x, n̂y)
t

√
n̂2
x + n̂2

y

. (33)

Then, the inviscid flux Φinv
jk is computed by the 2D Roe flux in the direction ˆ̂nxy. The time flux is computed

by the upwind flux with ˆ̂nt = n̂t/|n̂t|. See Ref.[2] for details. For the viscous flux Φvis
jk , since the viscous

terms are reformulated here as a hyperbolic system, we use the following upwind flux:

Φvis
jk =

1

2

[
fvisn (wL) + fvisn (wR)

]
−

1

2
P−1

{∣∣∣∣P
∂fvisn

∂u

∣∣∣∣ (uR − uL) + ∆ΦAHD

}
, (34)

where the dissipation term is given by Equation (22) with n = ˆ̂nxy, and the extra term ∆ΦAHD is the
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artificial hyperbolic dissipation vector:

∆ΦAHD =




0

anv∆(ρv)

0

anv∆
{
(gux, guy) · ˆ̂nxy

}
ˆ̂nxy

anv∆
{
(gvx, gvy) · ˆ̂nxy

}
ˆ̂nxy

0

0

0

0

0




, (35)

which is required to achieve the same order of accuracy in the velocity components and the corresponding
gradient variables [5]. Note that ∆ΦAHD takes the same form for both HNS20 and HNS20G.

The resulting global system of residual equations are solved by the implicit defect-correction solver as
described in the previous paper [2]. Pseudotime terms are included in the residual Jacobian, but not in
the gradient equations as described in Ref.[12]. At every nonlinear iteration, a specified number of linear
relaxations are performed, which is set to be 15 for all cases in this paper.

5 Results

We implemented the space-time HNS solver based on the node-centered edge-based method in NASA’s
FUN3D code. Below, we will compare it with the previously developed conventional space-time solver based
on the alpha-damping viscous scheme [2]. As in the previous work [2], grid adaptation was performed in a
similar manner as described in Ref.[13] with the refine package (https://github.com/nasa/refine) developed
by Mike Park at NASA Langley Research Center for all problems.

5.1 Accuracy Verification

We first perform an accuracy verification test in a cube domain using the method of manufactured solutions
(MMS) in order to verify the implementation. Using a series of consistently-refined irregular tetrahedral
grids with n3 nodes, where n=16, 32, 64, 128, (see Figure 2(a) for the coarsest grid with 163 nodes) in a
unit cube domain, we solved the system of residual equations and verified the order of discretization error
convergence. The exact solution is defined by a smooth exponential function as described in the previous
paper [2]. For the flow parameters, we set the freestream Mach number M∞ = 0.2, the freestream Reynolds
number Re∞ = 1, and the dimensional freestream temperature 460 Rankine, Pr = 0.72.

Error convergence results are shown in Figure 2(b) for the x-velocity u, gux, which is an extra variable
corresponding to its x-derivative (results are similar to other variables), and the derivative computed by
a least-squares (LSQ) method applied to u denoted by LSQ(ux). As can be seen, both u and gux are
asymptotically second-order accurate while LSQ(ux) is first-order accurate and has larger errors. Also as
can be shown in Figures 2(c) and 2(d), contours of gux is much smoother than those of the LSQ gradient,
LSQ(ux) (obtained on the third grid with 643 nodes). These results are encouraging and demonstrate the
potential of the HNS20G solver for accurate viscous space-time simulations with adaptive grids.

5.2 Manufactured Unsteady Boundary-Layer Solution

Next, we consider another case with a manufactured solution resembling an oscillating boundary layer in a
unit cube domain, using an adaptive tetrahedral grid as in Figure 7(a), taken from the previous paper [2].
As can be seen from the x-velocity contours in Figure 3(b), there is a boundary layer at the wall y = 0 with
its thickness varying in time. The grid is an anisotropically adapted grid with 69,076 nodes and 378,209
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tetrahedra, generated in the previous work [2] with the software refine. In this problem, our target quantity
is the wall-normal gradient uy, which is a major contribution to the viscous stress. Accurate prediction of
uy is critical to the success of anisotropic grid adaptation for viscous problems, but is generally considered
as a difficult task for fully irregular grids, especially where first-off-the-wall edges are irregularly oriented
rather than aligned with a wall-normal direction. See Figure 3(c). Many gradient methods are susceptible
to numerical noise on such a grid while the HNS methods are known to produce highly accurate and smooth
gradients [4, 5, 6, 12].

To demonstrate the advantages of the HNS solver, we compare the results with those obtained by the
conventional solver developed previously based on the alpha-damping viscous scheme [2], which is referred to
as Alpha in the results. In both solvers, we set M∞ = 0.2, Re∞ = 104, T∞ = 460 [R], CFL= 1015, κ = 1/2,
and perform 15 linear relaxations per iteration. The initial values are given by the free stream state, and
the solver is taken to be converged when the residual norm reaches 10−12 for all equations. Here, the focus
is on the quality of the gradient ∂u/∂y, corresponding to the skin friction and the iterative convergence.

Normalized energy equation residual histories are shown in Figure 4(a): the HNS solver converged in
73 iterations while the conventional solver converged in 1,165 iterations to reach the level of 10−12 for
all the equations. Note that these solvers stopped at different levels because of differences in the initial
residual norms used to normalize the data. Here, only the energy residual norm is shown for simplicity.
Faster convergence of HNS has been observed in previous studies and are considered as due to the reduced
condition number in the linearized system, O(1/h) rather than O(1/h2), where h denotes a typical mesh
spacing, and the first-order accurate Jacobian, not an inconsistent Jacobian as typical in conventional viscous
schemes. Figure 4(b) shows the residual convergence in terms of wall time. As can be seen, the HNS solver
converged faster than the conventional solver despite the larger cost per iteration. This type of superior
iterative convergence has been observed for HNS solvers in Ref.[5].

Figures 5(a), 5(b), and 5(c), and 5(d) show, respectively, the grid at y = 0, contours of the gradient ∂yu,
which is relevant to the viscous stress force at a boundary. As expected, the contours of the gradient variable
guy obtained with the HNS solver are significantly smoother than those of the LSQ gradient computed from
the numerical solution for the conventional solver. Compare Figures5(b) and 5(c). Furthermore, the gradient
variable guy is so accurate that the contours are very close to those of the exact solution shown in Figure
5(d). The superior gradient accuracy can be seen also in Figure 6, where the gradients are compared with
the exact gradient uy along the line x ∈ [0, 1] at (y, z) = (0, 0.619). The symbols are the data sampled at a
finite number of points along the line. Clearly, the gradient variable guy is smooth and much closer to the
exact gradient (solid curve) whereas the LSQ gradient is not as smooth and close to the exact gradient. It is
emphasized that the accurate gradient has been obtained faster in the wall time nearly by a factor of four.

Finally, Figure 7 shows the grid and contours of uy over a section taken at z = 0.619. As can be seen,
the gradient variable guy is significantly smoother and more accurate than the LSQ gradient and very close
to the exact gradient even away from the wall.

5.3 Viscous Flow over Circular Cylinder at Re∞ = 200

Next, we consider a viscous flow over a circular cylinder of unit diameter at the free stream Mach number
M∞ = 0.2 and the free stream Reynolds number per diameter Re∞ = 200. The circular cylinder is centered
at the origin, and the outer boundary is a square whose side is 100. This 2D domain is then extended from
z = 0 to z = 300. The grid with 15,720,940 nodes and 91,499,780 tetrahedra was generated after performing
13 grid adaptation cycles using numerical solutions produced by the HNS solver. See Figures 8(a) and 8(b).
To demonstrate advantages of the HNS solver, we obtained a result, on the same grid, with the conventional
solver developed previously based on the alpha-damping viscous scheme [2], which is referred to as AD in
the results. For both AD and HNS, we perform 10 linear relaxations per iteration using 400 processors and
begin the nonlinear solver iteration starting from freestream values with smoothing applied at z = 0 around
the cylinder to reduce the strength of an initial transient wave. The CFL number is ramped from 1 to 10,000
over some initial iterations. CFL is set to be 108 for the gradient equations as described in Ref.[12].

Residual convergence results are shown in Figures 13. In both cases, the residuals are reduced at least
by two orders of magnitude. It is well known that a stronger solver such as a Jacobian-Free Newton-Krylov
(JFNK) solver will help achieve deeper convergence on adaptive tetrahedral grids. The implementation of a
JFNK solver in the FUN3D space-time solver is left as important future work.
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Nevertheless, numerical solutions show expected flow features as shown in Figure 10. Mach contours
show vortex shedding for both AD and HNS solutions. It can be seen that Mach contours are very similar
for AD and HNS, and therefore the grid turns out to be well adapted for the conventional scheme as well.
In general, such is not guaranteed, and the vortex shedding could start at any other time and the solution
could be out of phase.

Figure 11 shows the comparison of vorticity contours and the velocity gradient ∂nu in the direction normal
to the surface, which is relevant to viscous force. As can be seen, HNS results (directly evaluated by the
gradient variables) are smoother than those obtained by an LSQ method from the AD solution. Moreover,
significantly smoother contours are observed for the density gradients as can be seen in Figure 12.

5.4 Viscous Flow over Circular Cylinder at Re∞ = 400

Finally, we consider again a viscous flow over a circular cylinder centered at the origin but at Re∞ = 400 and
in a slightly different domain: the outer boundary is defined by the semi circle of radius 10 centered at the
origin, straight farfield boundaries located at the distance 10 from the x-axis, and the outflow boundary at
x = 15; and the two-dimensional domain is extended in the z direction from z = 0 to z = 150 for computing
an unsteady viscous flow from time 0 to time 150. The grid is an adaptive tetrahedral grid with 304,370 nodes
and 1,703,679 tetrahedra generated by refine after two cycles of grid adaptation. The grid and a section at
y = 0 are shown in Figures 13(a) and 13(b), respectively. As can be seen, the grid is anisotropically adapted
to capture vorticies generated from the cylinder and convected towards the outflow boundary.

For this problem, we used a Jacobian-Free Newton-Krylov solver based on a variable-GCR-preconditioner
implemented in a serial code (not FUN3D) [5, 14]. The solver converged with CFL=1015 and the residuals
have been reduced by eight orders of magnitude for all equations. Figures 14 and 15 show grids and Mach
contours are shown for eight sections taken from z = 10 to z = 149. As can be seen, typical vortex shedding
is observed towards the final time z = 150, and the grid is adapted for each solution (which is a result of the
grid adaptation performed in the three-dimensional space). The adaptive grid was generated by using the
solutions obtained with the HNS solver, and then we obtained results with the conventional method with
the alpha-damping scheme, which is referred to as AD here, for comparison. As befoew, it can be seen that
Mach contours are very similar for AD and HNS, and therefore the grid turns out to be well adapted for the
conventional scheme as well.

Figures 16(a), 16(b), and 16(c) show a grid at z = 149 and vorticity contours computed by the LSQ
method from the numerical solution obtained with the alpha-damping scheme, and those obtained by the
gradient variables with the HNS scheme, respectively. Note that the vorticity in the HNS case is obtained
directly from the gradient variables: guy−gvx. As can be seen, the HNS vorticity contours are smoother than
the LSQ vorticity contours as expected. Improvements are more significant in regions of high anisotropy, for
example, near the surface, as can be observed in the zoomed-in plots as given by Figures 16(d), 16(e), and
16(f). In Figure 17, the vorticity contours are compared over the circular cylinder surface. It can be clearly
seen that the HNS vorticity contours are significantly smoother than the LSQ vorticity contours.

Figures 18(b) and 18(a) show the residual convergence versus iteration. The solver converged in 44
iterations for the alpha-damping scheme and 34 iterations for the HNS scheme, but there are significant
differences in the number of GCR projections and the total number of preconditioner linear relaxations per
iteration. As well known, a linearized equation for an HNS discretization has a reduced condition number
by a factor of O(h), where h denotes a representative mesh spacing, compared with a conventional viscous
discretization. This leads to a speed-up in linear relaxation schemes as we can see from Figures 18(b) and
18(a). Here, we performed each preconditioner relaxation until the linear residual is reduced by one order of
magnitude or it reaches the maximum of 50 relaxations for each GCR projection. Moreover, we can see that
the solver required more GCR projections with the alpha-damping scheme, often performing the maximum
of 25 GCR projections (GCR tolerance is set to be 0.5, requiring to reduce the GCR linear residual by
half) with 50 preconditioner relaxations per projection (total of 1,250 relaxations). As a result, the solver
converged faster in CPU time for HNS, nearly twice as fast, as can be seen in Figures 18(d) and 18(c).
Therefore, the HNS solver can produce significantly more accurate and smoother gradients on adaptive grids
faster than a conventional solver.
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6 Concluding Remarks

We have developed a space-time hyperbolic Navier-Stokes solver and demonstrated its capabilities with adap-
tive tetrahedral grids for viscous problems: accurate and smooth gradients on irregular adaptive tetrahedral
grids, and superior iterative convergence by an implicit defect-correction solver.

Future work includes the development of more accurate hyperbolic Navier-Stokes methods. For example,
we may add time derivatives as extra unknown variables and construct Scheme-IQ, which achieves third-
order accuracy in the inviscid terms without introducing quadratic LSQ methods. Also, we will consider
a third-order hyperbolic Navier-Stokes scheme with a quadratic implicit gradient method, in particular,
because implicit gradient methods are known to stabilize implicit solvers. Finally, for a practical reason,
we plan to develop a time-slab approach, where a space-time domain is split into smaller pieces in the time
direction, in order to be able to perform space-time computations more efficiently with limited computer
resources available.
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(a) Dual face contributions from a tetra-
hedron.
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k

(b) Total dual faces.

Figure 1: Dual face contributions at the edge [j, k]. A numerical flux is evaluated at the midpoint of the edge
[j, k]. In (a), the centroid of the tetrahedral element is denoted by c, and the centroids of the two adjacent
triangles are denoted by cL and cR.

(a) Coarsest grid. (b) Error convergence.

(c) gux(= ux) on a 323-node grid. (d) LSQ(ux) on a 323-node grid.

Figure 2: Accuracy verification results. Contours plots are sampled over the section at x = 0.5.
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(a) Grid. (b) X-velocity contours.

(c) Zoomed-in view around the corner (x, y, z) = (1, 0, 1)

Figure 3: Grid and solution for MMS boundary layer test case.
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(a) Residual versus iteration. (b) Residual versus wall time.

Figure 4: Residual convergence results for MMS boundary layer test case. Only the energy equation residual
norms are shown.
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(a) Grid. (b) Alpha: LSQ(uy) at y = 0.

(c) HNS: guy at y = 0. (d) Exact: uy at y = 0.

Figure 5: Wall normal gradient contours over the boundary at y = 0 for MMS boundary layer test case.
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Figure 6: Section plot at (y, z) = (0, 0.619) for MMS boundary layer test case.
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(a) Grid. (b) Alpha: LSQ(uy) at z = 0.619.

(c) HNS: guy at z = 0.619. (d) Exact: uy at z = 0.619.

Figure 7: Normal gradient contours at z = 0.619 for MMS boundary layer test case.

(a) Grid. (b) Top view (z = 300).

Figure 8: Grid for the cylinder test case.
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(a) Residual versus iteration (AD). (b) Residual versus iteration (HNS).

Figure 9: Residual convergence for the cylinder test case.
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(a) Grid at z = 200. (b) Mach contours at z = 200 (AD). (c) Mach contours at z = 200 (HNS).

(d) Grid at z = 220. (e) Mach contours at z = 220 (AD). (f) Mach contours at z = 220 (HNS).

(g) Grid at z = 240. (h) Mach contours at z = 240 (AD). (i) Mach contours at z = 240 (HNS).

Figure 10: Section plots for z = 200, 220, 240 in the cylinder test case.
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(a) Grid at z = 260. (b) Vorticity at z=200 (AD). (c) Vorticity at z=200 (HNS).

(d) ∂nu (AD). (e) ∂nu (HNS).

Figure 11: Vorticity contours at z = 200 and over the surface in the cylinder test case.
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(a) Density gradient at z=200 (AD). (b) Density gradient at z=200 (HNS).

(c) Density gradient at z=200 (AD). (d) Density gradient at z=200 (HNS).

Figure 12: Density gradient contours for z = 200 in the cylinder test case.
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(a) Grid. (b) Section at y = 0.

Figure 13: Grid for the second cylinder test case.
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(a) Grid at z = 10. (b) Mach contours at z = 10 (AD). (c) Mach contours at z = 10 (HNS).

(d) Grid at z = 30. (e) Mach contours at z = 30 (AD). (f) Mach contours at z = 30 (HNS).

(g) Grid at z = 50. (h) Mach contours at z = 50 (AD). (i) Mach contours at z = 50 (HNS).

(j) Grid at z = 70. (k) Mach contours at z = 70 (AD). (l) Mach contours at z = 70 (HNS).

(m) Grid at z = 90. (n) Mach contours at z = 90 (AD). (o) Mach contours at z = 90 (HNS).

Figure 14: Section plots for z = 10, 30, 50, 70, 90 in the second cylinder test case.
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(a) Grid at z = 110. (b) Mach contours at z = 110 (AD). (c) Mach contours at z = 110 (HNS).

(d) Grid at z = 130. (e) Mach contours at z = 130 (AD). (f) Mach contours at z = 130 (HNS).

(g) Grid at z = 149. (h) Mach contours at z = 149 (AD). (i) Mach contours at z = 149 (HNS).

Figure 15: Section plots for z = 90, 110, 130, 149 in the second cylinder test case.
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(a) Grid. (b) AD: LSQ(vx)− LSQ(uy). (c) HNS: gvx − guy.

(d) Grid. (e) AD: LSQ(vx)− LSQ(uy). (f) HNS: gvx − guy.

Figure 16: Grids and vorticity contours at z = 149 for the second cylinder test case.

(a) Grid. (b) AD: LSQ(vx)− LSQ(uy). (c) HNS: gvx − guy.

Figure 17: Grid and vorticity contours at the circular cylinder for the second cylinder test case.
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(a) Residual versus iteration (AD). (b) Residual versus iteration (HNS).

(c) Residual versus CPU time (AD). (d) Residual versus CPU time (HNS).

Figure 18: Residual convergence results for the second cylinder test case.
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