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Abstract: The conventional method to predict the onset of laminar-turbulent transition in convec-
tively unstable boundary-layer flows is based on the logarithmic amplification ratio, the so-called
N-factor, of the linear instability waves. To calculate the N-factor, the flow variables are de-
composed into a laminar basic state solution and the linear disturbances, which are assumed to
be harmonic in time. The most commonly used linear stability analysis approaches include the
locally parallel linear stability theory (LST) and the nonlocal, weakly nonparallel parabolized sta-
bility equations (PSE). However, these methods do not account for strong streamwise gradients
that are encountered in several configurations of interest, such as those in the vicinity of rough-
ness elements, steps, gaps, or corners. To compute the linear evolution of disturbances along such
strongly nonparallel regions, the harmonic linearized Navier-Stokes equations (HLNSE) need to be
solved. The discretization of the HLNSE for spanwise/azimuthally inhomogeneous laminar basic
states yields a linear system of complex arithmetic with a leading dimension of the order of 107

to 108 even in relatively simple flows. A combined multithread and multiprocessor algorithm is
implemented for the direct solution of such linear systems. Results for a supersonic boundary layer
over a three-dimensional roughness patch show good agreement with experimental measurements
when the evolution of the instability waves over the roughness patch is included via the HLNSE.
Additionally, inflow-resolvent analysis based on the HLNSE for discrete-roughness-induced distur-
bances in the nose tip of a blunt cone at Mach 6 demonstrates the importance of including the
disturbance amplification along the near vicinity of the roughness element and separation region.
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1 Introduction
Laminar-turbulent transition of boundary-layer flows can have a strong impact on the performance of flight
vehicles because of its influence on the surface skin friction, as well as aerodynamic heating for high-speed
configurations. Therefore, the prediction and control of the transition onset are important to develop opti-
mized designs of flight vehicles across the speed regime. Obstacles to the accurate prediction and practical
deployment of laminar flow control include manufacturing defects (e.g., two-dimensional steps and gaps, sur-
face waviness, and three-dimensional excrescences), operational factors, or geometrical aspects, as deflected
control surfaces or ramps that can lead to flow separation. The physical mechanisms underlying the effects of
these factors on boundary-layer transition include destabilization of convective-type instability waves [1, 2],
increased boundary-layer receptivity to freestream unsteadiness [3], the presence of streak instabilities in
the wakes of three-dimensional nonuniformities [4], a possible emergence of an absolute or global instability
within the recirculation region near the nonuniformity [5, 6], or some combination of the above phenomena
such as simultaneous receptivity and stability modification [7].

Typically, the net effect of local surface nonuniformities, i.e., steps, gaps, or humps, has been accounted
for via the correlation of the jump in the N-factor envelope with the amplitude of the nonuniformity [8, 9].
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Recently, the nonparallel effects of two-dimensional surface deformations on the development of instability
waves have been accounted by using unsteady direct numerical simulations (DNS) [10]. However, the various
studies based on the HLNSE [7, 11, 12, 13, 14, 15, 16, 17, 18] have demonstrated the utility of the HLNSE
framework as an efficient and accurate alternative to DNS to predict the linear disturbance evolution in
strongly nonparallel flows. The solution of the linear system of equations arising from the high-order dis-
cretization of the HLNSE for two-dimensional flow problems has a leading dimension of the order of 10
thousand to 1 million and can be resolved with sparse direct solvers, e.g., MUMPS [19]. However, the solu-
tion of three-dimensional problems becomes prohibitively expensive for sparse direct solvers as the leading
dimension becomes of the order of 10 million to 100 million even for problems of moderate complexity. In
the present effort, the direct solution of the three-dimensional HLNSE is performed with a combined multi-
thread and multiprocessor algorithm that allows its robust solution for three-dimensional problems. A brief
overview of the numerical methodology is given below. Then, the method is applied to solve the evolution of
linear Mack’s first-mode disturbances in a flat plate with a sinusoidal roughness patch at the conditions of
the NASA Langley Research Center Supersonic Low Disturbance Tunnel (SLDT) Mach 3.5 quiet facility [20]
and to study the disturbances induced by discrete roughness elements on the nose tip of a blunt cone at zero
degrees angle of attack at the conditions of the experiment conducted in the Air Force Research Laboratory
Mach 6 High Reynolds Number facility [15].

2 Problem Statement
The linear stability analysis is based on the decomposition of the flow variables, q(x, y, z, t) = (ρ, u, v, w, T )T ,
into a laminar basic state, q̄(x, y, z) = (ρ̄, ū, v̄, w̄, T̄ )T , and the unsteady perturbations, q̃(x, y, z, t)T . Here,
(x, y, z) denote the streamwise direction, the wall-normal direction, and the spanwise direction, respectively,
while (u, v, w) represent the corresponding velocity components. The density and temperature are denoted
by ρ and T , respectively. The linear perturbations are assumed to be harmonic in time and are written as

q̃(x, y, z, t) = q̂(x, y, z) exp(−iωt) + c.c., (1)

where ω is the angular disturbance frequency, and c.c. refers to the complex conjugate. The disturbance
vector q̂(x, y, z) satisfies the three-dimensional HLNSE,

Lq̂(x, y, z) = f̂ , (2)

where the linear operator L depends on the basic state variables, flow parameters, and on the angular
frequency of the perturbation, and f̂ represents an inflow condition or forcing term.

The onset of laminar-turbulent transition is estimated via correlations involving the envelope of the
logarithmic amplification ratio, i.e., the so-called N-factor, relative to the lower branch neutral location xI
where the disturbance at any given frequency first becomes unstable,

N = ln [φ(x)/φ(xI)] , (3)

where φ denotes an amplitude norm of q̂, e.g., the maximum mass-flux disturbance at a given streamwise
station or the energy norm E derived in Ref. [21] and used in Refs. [22, 23] for linear stability theory,

E(x) =

∫
z

∫
y

q̂(x, y, z)HMq̂(x, y, z) dy dz, M = diag

[
T̄

γM2ρ̄
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)M2T̄

]
, (4)

where the superscript H denotes the conjugate transpose, and M is the energy weight matrix.
The structure of the matrix L resulting from the spatial discretization of the operator L of Eq. (2) depends

on the form of the discrete spatial derivative operators. In the present study, the streamwise coordinate is
discretized with a fourth-order centered finite-difference standard scheme, while the wall-normal and spanwise
directions are discretized with twelfth-order finite-difference schemes [24]. Because of the selected streamwise
discretization scheme, the operator L becomes a block pentadiagonal (BPD) matrix L and the linear system
of Eq. (2) becomes a BPD system of the following form
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C1 D1 E1 0 · · · 0
B2 C2 D2 E2 0 · · · 0
A3 B3 C3 D3 E3 0 · · · 0
...

. . .
...

0 · · · 0 Ai Bi Ci Di Ei 0 · · · 0
...

. . .
...

0 · · · 0 An−2 Bn−2 Cn−2 Dn−2 En−2
0 · · · 0 An−1 Bn−1 Cn−1 Dn−1
0 · · · 0 An Bn Cn





q1
q2
q3
...
qi
...

qn−2
qn−1
qn


=



f1
f2
f3
...
fi
...

fn−2
fn−1
fn


,

where n ≡ nx, q̂ = (qT1 , q
T
2 , · · · qTn )T , and f̂ = (fT1 , f

T
2 , · · · fTn )T . The vectors qi and fi and the blocks Ai, Bi,

Ci, Di, and Ei have a leading dimension of m = 5ny nz.
The direct solution of the block-pentadiagonal linear system of equations with complex arithmetic is

performed by using a combined multithread and multiprocessor algorithm based on the Thomas algorithm
and the dual Schur complement method. This algorithm reduces the scaling of the solution time and
memory requirements on the number of streamwise points from cubic to linear and from quadratic to linear,
respectively.

The Thomas algorithm [25] is a simplified form of Gaussian elimination without pivoting, as originally
applied to tridiagonal systems. An efficient implementation for BPD systems is presented in Ref. [26], where
BLAS and LAPACK routines are used. Here, the sparsity of the blocks Ai, Bi, Ci, Di, and Ei is also
exploited with sparse BLAS subroutines. We use the OpenMP multithread implementation of the BLAS,
sparse BLAS, and LAPACK modules available in the Intel MKL package. In the Thomas algorithm, the
factorization is based on the LU decomposition and is performed with the following matrix-matrix operations

Ki = Bi −AiYi−2,

Gi = Ci −KiYi−1 −AiZi−2,

Yi = (Gi)
−1(Di −KiZi−1),

Zi = (Gi)
−1Ei,

where i = 1 : 1 : n and Y−1 = Z−1 = Y0 = Z0 = 0. The blocks Ki, Gi, Yi, and Zi are dense due to the
matrix inversion operation. The solution is computed with matrix-vector operations by using the forward
substitution, i.e.,

ri = (Gi)
−1(fi −Kiri−1 −Airi−2),

where i = 1 : 1 : n and r−1 = r0 = 0, followed by the backward substitution, i.e.,

qi = ri − Yiqi+1 − Ziqi+2

where i = n : −1 : 1 and qn+1 = qn+2 = 0.
By storing the LU decomposition blocks, Ki, (Gi)

−1, Yi, and Zi, the forward and backward substitutions
can be applied to solve the linear system with different right-hand-side (RHS) vectors. The global stability
analysis and resolvent analysis methods require the solution of several linear systems of equations with
different RHS vectors. For the solution of the eigenvalue solution of the HLNSE operator in the global
stability analysis, the shift-and-invert Arnoldi method [27] is commonly used and requires as many linear
system solutions as the selected Krylov dimension. The resolvent analysis can be formulated as an iterative
algorithm to find the optimal forcing for maximum response gain [28, 29] by using the discrete adjoint that
is equivalent to the Hermitian HLNSE operator. However, the solution of the Hermitian system LH q̂† = f̂†

can also be obtained with the same LU decomposition blocks by the modified forward substitution,

r†i = f†i − Y
H
i r†i−1 − Z

H
i r
†
i−2,
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where i = 1 : 1 : n and r†−1 = r†0 = 0, followed by the modified backward substitution,

q†i = (GH
i )−1(r†i −K

H
i q
†
i−1 −A

H
i q
†
i−2).

The dual Schur complement [30] is a direct parallel method, based on the use of nonoverlapping sub-
domains with implicit treatment of the interface conditions. Each processor solves its subdomain plus an
interface problem to obtain the exact solution of the subdomain with only one global communication oper-
ation. The linear system Lq̂ = f̂ is reordered as follows

L1,1 0 0 L1,s

0
. . . 0

...
0 0 Lnp,np Lnp,s

Ls,p · · · Ls,p Ls,s




q1
...
qnp

qs

 =


f1
...
fnp

fs

 ,
where np is the number of partitions, and the solution is obtained with the following operations

qs = L̃−1s,s f̃s

{
L̃s,s = Ls,s −

∑np

p=1 Ls,pL
−1
p,pLp,s

f̃s = fs −
∑np

p=1 Ls,pL
−1
p,pfp

qp = L−1p,pfp − Lp,sqs;

where p = 1 : 1 : np. For example, a problem with nx = 12 and two partitions (np = 2) would be ordered as
follows 

C1 D1 E1 0 0 0 0 0 0 0 0 0
B2 C2 D2 E2 0 0 0 0 0 0 0 0
A3 B3 C3 D3 E3 0 0 0 0 0 0 0
0 A4 B4 C4 D4 0 0 0 0 0 E4 0
0 0 A5 B5 C5 0 0 0 0 0 D5 E5

0 0 0 0 0 C8 D8 E8 0 0 A8 B8

0 0 0 0 0 B9 C9 D9 E9 0 0 A9

0 0 0 0 0 A10 B10 C10 D10 E10 0 0
0 0 0 0 0 0 A11 B11 C11 E11 0 0
0 0 0 0 0 0 0 A12 B12 C12 0 0
0 0 0 A6 B6 E6 D6 0 0 0 C6 D6

0 0 0 A7 D7 E7 0 0 0 B7 C7





q1
q2
q3
q4
q5
q8
q9
q10
q11
q12
q6
q7



=



f1
f2
f3
f4
f5
f8
f9
f10
f11
f12
f6
f7



. (5)

The operations to form L̃s,s require the solution of the subdomain linear systems with a matrix RHS,
L−1p,pLp,s. As shown by the example from Eq. (5), the matrices Lp,s for the first and last partitions have
non-zero block entries in the last or first two rows, respectively. This property is exploited by computing the
UL decomposition of the last partition instead of the LU decomposition. By doing this, the computational
cost of decomposition of the first and last subdomains becomes equivalent to each other.

3 Results
The application of the three-dimensional HLNSE for the investigation of linear disturbance amplification is
presented for two high-speed boundary layer configurations. The first problem corresponds to the evolution
of Mack’s first-mode waves over a sinusoidal roughness patch on a flat plate at Mach 3.5 wind tunnel
conditions that was numerically and experimentally studied in Refs. [31, 20]. The HLNSE are used to
monitor the evolution of the incoming disturbances over the roughness patch as the strongly nonparallel
effects prevent an accurate solution via the PSE. In the second problem, the disturbances induced by an
array of prismatic roughness elements located on the nose tip of a blunt cone at 45◦ from the axis at Mach 6
wind tunnel flow conditions are studied with inflow-resolvent analysis based on the three-dimensional HLNSE
[32]. The HLNSE are able to account for the evolution of the disturbances over the roughness elements and
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the regions of flow separation in the vicinity of the elements.

3.1 Disturbance Evolution over a Sinusoidal Roughness Patch
A combination of the PSE and HLNSE methods was used in Ref. [20] to study the linear evolution of Mack’s
first-mode waves over a sinusoidal roughness patch in a flat plate at the conditions of the SLDTMach 3.5 quiet
tunnel. The conditions corresponded to a freestream Mach number of M∞ = 3.5, a freestream temperature
of T∞ = 92.52 K, and a stagnation pressure of p0 = 241.7 kPa, which yield a freestream Reynolds number of
Re∞ = 12.6 × 106 m-1 by using the Sutherland’s viscosity law for air [33]. The adiabatic wall temperature
condition was used. The roughness patch was defined by sinusoidal functions in streamwise and spanwise
directions with an equivalent wavelength of 6.25 mm for both directions. The edges were modified using a
Gaussian error function. The leading edge of the roughness patch is located at a distance of 28.8 mm from
the leading edge of the flat plate. The maximum roughness height is 272 µm. Additional geometrical details
are given in Ref. [20].

As described in Ref. [31], the two-dimensional solution over the flat plate was computed by using a
second-order accurate algorithm as implemented in the finite-volume compressible Navier-Stokes flow solver
VULCAN-CFD [34, 35]. The two-dimensional solution was imposed at the inflow and farfield boundary
located below the bow shock for the solution of the three-dimensional, spanwise-periodic, laminar boundary-
layer flow over the flat plate with the sinusoidal roughness patch computed with a high-order direct numerical
simulation (DNS) solver. A detailed description of the governing equations and their numerical solution is
given in Ref. [36]. The inviscid fluxes from the governing equations are computed using a seventh-order
weighted essentially nonoscillatory (WENO) finite-difference scheme introduced in Ref. [37]. The viscous
fluxes are discretized using a fourth-order central difference scheme and time-accurate integration is per-
formed using a third-order low-storage Runge-Kutta scheme [38]. Additional details about the computational
domain and grid are given in Ref. [20].

The stability analysis of the three-dimensional flow over the plate with the sinusoidal roughness patch was
performed with plane-marching PSE to study the roughness wake instabilities and by a combination of PSE
and HLNSE to study the evolution of Mack’s first-mode instabilities that begin to amplify upstream of the
roughness. Four families of disturbances, i.e., AA, SS, SA, and AS, were identified by their lateral boundary
conditions. A single roughness spanwise wavelength was discretized and symmetric (S) or antisymmetric
(A) boundary conditions were used. The evolution of the AA disturbance, i.e., antisymmetric boundary
conditions in both symmetry planes, with 80 kHz is shown in Fig. 1(a). The Mack’s first mode with
wavelength λz = 3.125 mm and frequency of f = 80 kHz becomes unstable upstream of the roughness patch,
and the PSE are used to calculate its evolution up to the roughness patch. The PSE solution is imposed
as the inflow condition for the HLNSE to calculate the evolution over the roughness patch with a grid of
nx = 701, ny = 61, and nz = 49 points, which yield a linear system of 10.5M DOF. Finally, the PSE are used
to calculate the evolution of the disturbance along the wake of the roughness, by using the HLNSE solution
as inflow condition for the PSE. Figure 1(b) shows an improved agreement of the predicted disturbance
amplification spectra with the measured power spectra at x = 153.8 mm when the combination of PSE and
HLNSE is used to calculate the evolution of disturbances over the entire plate, instead of the roughness wake
instability alone with PSE. This finding confirms the significance of disturbance growth both upstream of
and above the roughness patch and the effect on the growth of instabilities in the wake. The significance of
the roughness nearfield on the disturbance amplification was also highlighted in the previous DNS involving
roughness patches of different lenghts [31].

3.2 Distributed-Roughness-Induced Disturbances in a Blunt Cone Nose Tip
The PSE and HLNSE methods were used in Ref. [32] to study the disturbances induced by discrete roughness
elements located on the nose tip of a blunt, 7-degree half-angle cone with a nose radius of 15.24 mm at
freestream conditions selected to match those of the experiments presented in Ref. [15], i.e., M∞ = 5.9,
T∞ = 76.74 K, p0 = 1526.23 psi, which yield a Re∞ = 75.8 m-1 by using the Sutherland’s viscosity law.
An isothermal wall temperature condition was used with Tw = 300 K. The axisymmetric boundary-layer
flow is perturbed via an array of axially localized roughness elements centered at θ = 45◦ from the apex
of the spherical tip, which is near the sonic line. The azimuthal wavenumber of the roughness elements
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Figure 1: (a) Comparison of power spectra to most-amplified disturbances at x = 153.8 mm distance from
the leading edge. The HLNSE results refer to the disturbance evolution calculated with a combination of
plane-marching PSE and HLNSE, while the PSE results refer to the plane-marching PSE analysis of the
roughness wake disturbances. (b) Disturbance streamwise mass flux contours and basic state isolines of AA
disturbance with 80 kHz over the flat plate with a roughness patch. Adapted from Ref. [20].

equal to m = 420 was selected to match the optimal disturbance azimuthal wavenumber that leads to
maximum transient growth [15]. The present results correspond to prismatic roughness elements with 20
µm height and width and length equal to 50% of the corresponding azimuthal wavelength. Similar to the
previously discussed case of a flat plate with a roughness patch, the axisymmetric boundary-layer flow over
a smooth cone was computed by using the second-order finite-volume Navier-Stokes solver implementation
in VULCAN-CFD, and the three-dimensional, azimuthally-periodic, laminar boundary-layer flow with the
roughness elements was computed with a seventh-order WENO-based DNS solver. Additional computational
details are given in Ref. [32].

The instability characteristics of the perturbed, boundary-layer flow were examined by inflow-resolvent
based on the HLNSE to capture the emergence and development of the disturbances in the immediate vicinity
of the element and with plane-marching PSE to monitor the evolution of the streak instabilities that become
amplified along the wake of the roughness elements [32]. Again, the disturbances are identified by their
lateral boundary conditions, either symmetric (S) or antisymmetric (A), yielding four families of modes,
AA, SS, SA, and AA. For the present strongly favorable-pressure-gradient boundary-layer flow over the nose
tip of the blunt cone, and similar to previous studies with reentry capsules [39], the wake instabilities were
found to reach their peak amplification within a few degrees downstream of the roughness element. For
this particular case, the plane-marching PSE predicted the symmetric disturbances (SS and AS) to reach
very similar maximum N-factor values of N = 5.7 at θ = 47.7◦, while the antisymmetric modes reached
lower maximum amplification ratio of N = 4.3 at 49.4◦. However, the maximum growth rate for the most
amplified disturbances were found at the initial location for the PSE integration that coincided with the
reattachment location behind the roughness element. To capture the evolution of the linear disturbances
over the entire flow field, the inflow-resolvent analysis based on the three-dimensional HLNSE was used with
a grid of nx = 701, ny = 61, and nz = 41 points, which yield a linear system of 8.8M DOF. Due to the
absence of unstable disturbances upstream of the roughness element, the optimal inflow disturbance was
selected just upstream of the roughness elements at θ0 = 44.36◦. Based on the PSE results, the downstream
boundary of the optimization interval was selected at θ1 = 47.4◦ to allow for the development of the streak
instability modes. The N-factor spectra at θ = 48◦ calculated with the inflow-resolvent HLNSE and PSE
methods are compared in Fig. 2(a). The shifts in N-factor values and the frequency bands for the symmetric
and antisymmetric modes between the PSE and HLNSE predictions are rather significant and underscore
the importance of accounting for the disturbance amplification within the region of separated flow for the
present favorable-pressure-gradient configuration.
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Figure 2: (a) Comparison of N-factor spectra of fundamental and subharmonic, symmetric and antisymmetric
disturbances at θ = 48◦ from the axis. The HLNSE label refers to inflow-resolvent HLNSE results and the
PSE label refers to the plane-marching PSE analysis of the roughness wake disturbances. Adapted from
Ref. [32].

4 Conclusion and Future Work
The direct solution of the three-dimensional harmonic linearized Navier-Stokes equations (HLNSE) for tran-
sition prediction in flows with strongly nonparallel regions is performed. By using a fourth-order centered
finite-difference standard scheme, the linear operator can be ordered as a block pentadiagonal (BPD) system
of equations with complex arithmetic. The dual Schur complement method is used to split the problem
into subdomains that are assigned to different MPI processors. Additionally, the Thomas algorithm is used
to perform the factorization of the subdomains and exploit the OpenMP multithreaded sparse and dense
matrix-vector and matrix-matrix operations with the crossplane blocks as implemented in algebra packages.
Furthermore, the algorithm is explained for the multiple solutions of the direct and adjoint systems with a
single factorization of the HLNSE operator for the solution of the global eigenvalue problem based on the
Arnoldi method, or the resolvent analysis based on the iterative direct and adjoint solutions.

Two applications of the 3D HLNSE were shown for high-speed boundary layer configurations with rough
surfaces. First, we presented a summary of the results shown in Ref. [20] on the evolution of Mack’s first
mode disturbances over a flat plate with a sinusoidal roughness patch at Mach 3.5 wind tunnel conditions.
A remarkable agreement with the experimental measurements was found when the disturbance amplification
upstream of, above, and downstream of the roughness patch was calculated with a combination of the
parabolized stability equations (PSE) and the HLNSE methods. Second, the differences in disturbance
amplification characteristics from PSE and inflow-resolvent HLNSE results are presented for a distributed
roughness array located at the nose tip of a blunt cone at Mach 6 wind tunnel conditions from Ref. [32].
The PSE were used to calculate the linear amplification of roughness wake instabilities downstream of the
reattachment location, but the inclusion of the near roughness vicinity and separation regions in the inflow-
resolvent analysis based on the HLNSE led to a significantly higher amplification and a shift in the frequency
bands.

Iterative linear solver methods will be evaluated in the future to overcome the restrictions of dense algebra
required in the current implementation based on a direct solution.
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