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Abstract: Boundary layer disturbances in the Boundary Layer Turbulence
(BoLT-2) flowfield are investigated using a low-dissipation numerical method
at flight conditions. Unsteady simulations using US3D are performed with a
freestream forcing function so that disturbances are passed through the bow
shock and are meant to represent the effects of freestream turbulence. Modal
decomposition analysis is applied to datasets obtained from high-fidelity com-
putations in order to understand the relevant transition mechanisms poten-
tially present in flight. This is motivated by the fact that the disturbance
environment of quiet wind tunnels remains reasonably low up to a particular
range of Reynolds number conditions before wind tunnel noise can significantly
contribute to early transition. Therefore, this work reveals the dominant tran-
sition mechanisms contributing to the transition process on BoLT-2 when in-
troducing freestream disturbances. Modal analysis is performed with Spectral
Proper Orthogonal Decomposition (SPOD) to identify modes associated with
significant disturbance amplification in regions of physical instability.

Keywords: Hypersonic Flow, Boundary Layer Transition, Computational
Fluid Dynamics, BOLT-II.

1 Introduction

Understanding transition mechanisms in hypersonic boundary layers is important for predictive
design and control of aerospace vehicles. This is due to the fact that laminar-turbulent tran-
sition of boundary layer flows have a direct impact on surface skin friction and aerodynamic
heating affecting hypersonic vehicle performance. Transition studies for canonical flow prob-
lems (e.g. cones, flat plates, or wedges) have provided fundamental understanding, but at the
expense of using analysis tools that are not guaranteed to scale well when applied to realistic
flight geometries or flow conditions. To address some of the unsolved problems, the BoLT-2
hypersonic flight experiment is meant to collect flight data to help verify and develop the tools
for boundary layer transition and turbulence studies to improve predictive capabilities. Recent
simulations and analysis of the 25% subscale BoLT-2 geometry [1] have revealed breakdown
to occur near crossflow vortices between the centerline and swept leading edge. Leading DMD
mode shapes obtained from Streaming Total Dynamic Mode Decomposition (STDMD) showed
that the strongest perturbations are present in the strong shear regions of stationary crossflow.
Therefore, this suggests that breakdown within the subscale BoLT-2 configuration is initiated
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by the secondary instability of stationary crossflow vortices in the region showing evidence of
Mack’s second mode growth. It is still unclear how the developing rollup in the boundary layer
is altered with respect to flight Reynolds numbers, Mach numbers, wall boundary conditions,
and roughness [2, 3]. Additionally, the effect of the nosetip on the transition process on BoLT-2
has not been extensively studied.

Non-modal growth mechanisms along the centerline may contribute to early transition, and
the high curvature of the bow shock could act as a source of vorticity that has an influence
on instabilities downstream. These mechanisms may be dominant at high Reynolds numbers
and total enthalpy conditions experienced in flight, but not at the conditions used in subscale
wind tunnel tests. This is important since ground test campaigns are heavily used to dictate
vehicle design but are restricted to flow regimes where the flow is expected to remain laminar
or at most transitional. Higher Reynolds number conditions can be achieved in wind tunnels to
observe turbulent heating but at the cost of unrealistic acoustic noise levels that are not repre-
sentative of flight. Therefore, in this work, we seek to investigate the receptivity of the BoLT-2
boundary layer by performing forced DNS at a flight condition of the nominal trajectory that
is at the same unit Reynolds number as a wind tunnel condition from the Mach 6 Quiet Wind
Tunnel (M6QT) at Texas A&M University. To reduce computational expense and focus the
investigation on receptivity effects, the majority of the simulations and analysis are conducted
for the nosetip. Recent work has shown that a dominant flow response for blunted nosetips of
straight cone configurations appears in the form of low-frequency steady streamwise structures,
set off by freestream noise and surface roughness [4]. The amplification of this response scales
with Reynolds number and nosetip bluntness. The non-modal growth mechanism likely exists
near the leading edge of the BoLT-2 geometry, and could be a dominant response at the higher
Reynolds numbers expected in flight. Therefore, both the flight and subscale configurations are
simulated to investigate this mechanism and quantify the disturbance amplification spatially
and temporally.

The scope of this paper is to identify relevant boundary layer modes corresponding to dis-
turbance amplification of local flow quantities resulting from the receptivity of the BoLT-2
boundary layer to stochastic freestream forcing. The modes are associated with transition
mechanisms that may contribute to early transition at high flight Reynolds numbers. High
fidelity simulations of the Navier-Stokes equations are computed for the flight and subscale
configurations. Stochastic freestream forcing is applied to five flow quantities such that the
local disturbance energy for a given inflow cell remains low and disturbance fluctuations remain
small relative to the freestream values. Lastly, the boundary layer flow state at an actual flight
condition is performed to investigate the growth of disturbances leading to transition and to
identify the boundary layer instabilities that are present. Since broadband forcing is applied to
the flowfield, spectral proper orthogonal decomposition (SPOD) is chosen as the analysis tool
to extract modes based on the covariance of the local disturbance fluctuations relative to the
mean flow state. This allows us to identify statistically optimized oscillating modes associated
with boundary layer instabilities.

The remainder of the paper is organized as follows: the flight geometry and flow conditions
are introduced, next the computational methodology, followed by baseflow flow state compari-
son, then the modal analysis results are discussed, and finally conclusions and future work are
summarized.



2 Geometry and Flow Conditions

The BoLT-2 geometry has been introduced in previous papers and is derived from the original
BoLT geometry designed by the University of Minnesota in collaboration with AFRL [5]. The
BoLT and BoLT-2 geometries are identical up to 0.866 m, at which the BoLT-2 team extended
the geometry with a continuation of surface continuity up to 1.0 m for the flight geometry. The
geometry is shown in Fig. 1 and contains a cylindrical leading edge that revolves to four swept
leading edges and joined by concave surfaces in the azimuthal direction.

Figure 1: BoLT-2 flight geometry.

Definition Value

Nose radius, rf 5 mm
Characteristic length, Lf 1.0 m
Truncated length, Lf,t 0.1 m

Table 1: Flight Configuration

Definition Value

Nose radius, rs 1.25 mm
Characteristic length, Ls 0.25 m
Truncated length, Ls,t 0.025 m

Table 2: 25% Subscale Configuration

The unit Reynolds number condition was chosen since it is close to the maximum Reynolds
number condition under quiet flow conditions in the Mach 6 Quiet Tunnel (M6QT) at Texas
A&M University. The flight condition relative to the nominal BoLT-2 trajectory is shown in
Fig. 2 along with the descent window where transition is expected to occur. To be clear, the
flight conditions of Table 2 correspond to the projected nominal flight trajectory before the
flight test was conducted and not from the actual flight trajectory. In the actual flight, the
vehicle experienced Mach Numbers just over 6. Nonetheless, the flight condition was chosen to
have the same unit Reynolds number to show the effects of scaling.

Condition M∞ U∞ (m/s) ρ∞ (kg/m3) T∞ (K) Twall (K) Re/m (m−1)

Subscale (1) 5.9 870.3 0.0418 52.15 300 10.3×106

Flight (2) 5.6 1645.3 0.0895 216.96 300 10.3×106

Flight (3) 5.5 1658.4 0.0231 230.85 300 2.57×106

Table 3: Freestream Conditions



Figure 2: Nominal BoLT-2 flight trajectory.

3 Computational Methodology

To study the receptivity response, we perform simulations on the nosetip portion such that
modal growth remains low. NPSE analysis [6] of a flow state at a similar nominal flight condition
shows that disturbance amplification is low up to 30% of the geometry length. Therefore, the
end of the computational domain was chosen to be at x/L = 10% of the research geometry length
in the x-direction in order to study nosetip receptivity and save computational resources. The
top half of the geometry is included in the region of interest to account for three-dimensional
flow effects.

The boundary conditions are shown in Fig. 3 and include a freestream uniform supersonic
inflow (hidden), isothermal wall with no-slip (grey), outflow (red), and a symmetry plane (blue)
in the xz-plane. The isothermal wall is imposed in order to be consistent with the subscale
configuration. The isothermal wall was chosen to reduce the parameter space since we are
interested in isolating the effects of Reynolds number on the local boundary layer state. For the
same reason, the flow is assumed to be at zero degrees angle of attack and slideslip. A quarter
of the full domain is simulated later on to investigate the transition process downstream.

Figure 3: Truncated domain for high resolution nosetip simulations.



3.1 Governing Equations

The three-dimensional compressible Navier-Stokes equations are solved using the unstructured
finite volume code, US3D, developed at the University of Minnesota [7]. The code and numerical
method have been extensively tested and validated for a variety of unsteady compressible flow
problems in the past. The simulations performed in this paper solve the compressible Navier-
Stokes equations for a perfect gas in conservation form,

∂U

∂t
+

∂

∂xi

(
Fc
j − Fv

j

)
= 0 (1)

The state vector is represented by U = [ρ, ρui, E]T and the components of the flux vector, F,
are represented by the convective flux, Fc

j = [ρuj , ρuiuj+δijp, (E+p)uj ]
T , and the diffusive flux,

Fv
j = [0, σij , uiσij − qj ]

T . Sutherlands Law is used to account for the effect of temperature on

viscosity using µo = 1.458×10−6 kg/m·s and To = 110.3K. The heat flux is derived from Fourier’s
Law of heat conduction and related by the thermal gradient. The thermal conductivities for the
translational and rotational energy modes are from an Eucken relation with a ratio of specific
heat as γ = 1.4.

3.2 Numerical Method

The governing equations were solved in conservative form with a finite volume formulation
and using a gradient scheme for the spatial discretization of the convective flux evaluation.
All simulations evaluate the convective flux by reconstructing variables at each face for the
symmetric flux using a sixth-order gradient based interpolation [8],

ϕi+1/2 =
(ϕi + ϕi+1)

2
+

8(δϕi + δϕi+1)

15
− (δϕi−1 + δϕi+2)

45
, (2)

where δϕi corresponds to the dot product of the gradient of ϕ in cell i and the vector from the
cell center of i to the face center of i + 1/2. The viscous fluxes are computed using a second
order central scheme. The low dissipation convective fluxes are split into a non-dissipative
central component [9] and a dissipative component taking the following form,

Fc
j = Fcentral + αFdiss. (3)

The dissipative flux, F diss, uses the dissipative portion of an upwind-biased TVD scheme
based on flux vector splitting [10] with a MUSCL reconstruction for second-order accuracy [11].
The dissipative component of this scheme is made up of the dissipative flux based on a scalar
dissipation factor, α ϵ [0, 1], to minimize the percentage of the dissipative flux added. For
the nosetip simulations, a lower bound of α = 0.01 is set for numerical stability. Numerical
dissipation is added by computing and storing the dilatation field from a second-order upwind
solution and adding dissipation in regions of high compression with a user specified dilatation
cutoff value which is then smoothed in space. This makes it so that the shock sensor is time
independent following Knutson et al. [12].

In the case where the flow may experience breakdown, a custom shock sensor is used for
simulations which extend the full length of the BoLT-2 geometry. This is because the flow
state may evolve and should not be assumed to remain stable. In the case of significant distur-
bance amplification, a poor choice of shock sensor may activate a higher portion of numerical
dissipation resulting in damped disturbance amplitudes. Therefore, the dissipation is tuned to
the dilatation field using a compression based shock sensor. Where ϵ is a tuning parameter of
0.15, U∞ is the freestream velocity, and δ is the maximum boundary layer thickness. A value



for ϵ between 0.05 and 0.5 is typically sufficient for simulating most boundary layer stability
problems. Additionally, a lower bound of α = 0.1 was set for numerical stability. A higher grid
resolution is required near the centerline roll-up if a lower dissipation scheme is used. The base
shock sensor takes the following form:

α =
− (∇ · u)[

|∇ × u|+ ϵ · U∞
δ

] (4)

Implicit time integration is used in this work to obtain converged solutions within a rea-
sonable amount of time. Implicit time integration is achieved by linearizing the fluxes in time
and approximately solving the resulting linear system of equations using Data-Parallel Line
Relaxation (DPLR) [13]. The steady-state solutions are obtained using first-order implicit time
integration. For the unsteady simulations, a time accurate implicit method is necessary since
amplification of boundary layer instabilities can be severely attenuated. In the present work, we
use the second-order backward differentiation formula (BDF2) with Newton’s method to solve
the nonlinear equations [14]. The linear system is solved using line relaxation at each Newton
subiteration where three subiterations are applied in this work.

4 Baseflow States

4.1 Nosetip Baseflow States

To first demonstrate the effects of higher Reynolds numbers relative to lower Reynolds numbers
observed in previous work [15, 16], the baseflow state is computed using the conditions from
Table 2. The hypersonic flow around the geometry produces a bow shock with varying three-
dimensional curvature and the regions of sharpest bow shock curvature contain a significant
presence of post-shock vorticity. The inviscid flow state described by Thome et al. [16] showed
that the distribution of vorticity on the top surface contains two distinct regions with highly lo-
calized vorticity magnitude near the centerline and close to the swept leading edge. Fig. 4 shows
how the vorticity magnitude is distributed post-shock where the streamwise vorticity component
(not shown) is largest closer to the centerline and partially contributes to the centerline roll-up
downstream. Another vorticity contribution to the centerline roll-up originates where the two-
dimensional cylindrical nosetip revolves to a swept leading edge. Furthermore, the left plot of
Fig. 4 shows streamlines near the wall, originating from the post-shock region with the highest
shock curvature. The local pressure gradients alter the path and the streamwise vorticity is
negative downstream as denoted in the plot on the bottom, right. Local boundary layer edge
streamlines have positive streamwise vorticity near the swept leading edge but are not shown.
The plots on the right of Fig. 4 illustrate this and reveal an inflection point, characteristic of
crossflow, at the positive and negative interface of the streamwise vorticity distributions. The
streamwise vorticity distribution for the flight configuration is more compressed near the wall
due to the thinner boundary layer relative to the subscale configuration. This is important to
keep in mind since the vorticity distribution has a significant influence on the boundary layer
state.



Figure 4: Left shows streamlines originating from regions with high vorticity magnitude for the
flight configuration. Normalized streamwise vorticity is show on the right for a) the subscale
configuration at condition 1 and b) flight configuration at condition 2.

Figure 5: Normalized skin friction coefficients: a) subscale configuration at condition 1, b) flight
configuration at condition 2, c) flight configuration at condition 1, and d) flight configuration
at condition 3.

In order to quantify viscous effects, a normalized skin friction coefficient is calculated for
comparison since we are comparing scaled geometries and flow conditions. The purpose of this
is to elucidate the difference in viscous effects of the subscale configuration at wind tunnel con-
ditions and the full scale configuration at flight conditions. The combination of flow conditions
and geometry scaling have a significant influence on crossflow and this directly affects the skin
friction. Therefore, the magnitude of the wall shear stress is calculated and non-dimensionalized
by the corresponding freestream values. Next, the skin friction coefficient is normalized by the
maximum skin friction coefficient on the wall and is located where the two-dimensional cylin-
drical nosetip revolves to a swept leading edge for all cases. Using a normalized skin friction
coefficient allows us to make a direct comparison of the surface profiles. Fig. 5 shows the nor-



malized skin friction coefficients where 5a) and 5c) are the same flow condition for the 25%
subscale geometry and full-scale geometry, respectively. By scaling down the geometry, the
trends of the normalized skin friction profiles of 5a) demonstrates that the flow state is rep-
resentative of a slightly lower Reynolds number compared to 5c) which has a different nosetip
Reynolds numbers.

Plots 5b), 5c), and 5d) are the full-scale geometry but at different freestream conditions.
Making a comparison of the normalized skin friction profiles of 5c) and 5d) shows agreement
and suggests that the boundary layer state using a wind tunnel condition (condition 1) scales
approximately with the Reynolds number of a flight condition (condition 3) by a factor of 4. This
is for the same geometry and isothermal wall temperature, despite having different freestream
unit Reynolds numbers and total enthalpies. A comparison of 5b) and 5c) exemplifies that the
trends of the surface profiles are independent of nosetip Reynolds number. The same trends in
the normalized skin friction are also observed in the normalized heat transfer coefficient. Fig. 6
reveals how the heat transfer coefficient on the surface compares between the targeted cases,
6a) and 6b). Therefore, the normalized skin friction and heat transfer coefficient profiles reveal
how wall quantities change with respect to viscous effects induced by the near wall crossflow
inflection point. Note that the nosetip solution in 5a) and 6a) is representative of the wind
tunnel condition used in past work [1].

Figure 6: Steady-state flowfields of a) subscale configuration at condition 1 and b) flight con-
figuration at condition 2. Streamwise velocity is normalized by the freestream value and the
wall contours are the local heat flux normalized by the corresponding freestream conditions.
Spanwise slices of the normalized heat transfer coefficients are below.

4.2 Flight Configuration Baseflow State

The viscous effects from the last section are governed by varying pressure gradients and con-
tribute to the developing vortex structures downstream which are able to support various types
of instabilities [17]. At subscale wind tunnel conditions, the boundary layer rolls-up between
the centerline and swept leading edge and for a longer geometry stationary crossflow vortices
develop - not to be confused with stationary crossflow instabilities. For the full scale geometry
at a flight condition, Fig. 7 illustrates how the developing roll-up between the centerline and
swept leading edge is different from a subscale setup with close to the same Mach number and
unit Reynolds number from [15]. The most apparent difference is observed near the large-scale



counter rotating vortex structures close to the centerline where secondary roll-up produces a
vary thin boundary thickness. In the present literature, it is unclear how the secondary roll-up
near the centerline drives transition and analysis later investigates this.

M∞ U∞ (m/s) ρ∞ (kg/m3) T∞ (K) Twall (K) Re/m (m−1)

6.09 1773.22 0.067 211.0 330 8.6×106

Table 4: BoLT-2 flight condition from actual flight trajectory. The isothermal wall temperature
of this table is approximately the average temperature across thermocouple measurements at
the end of the geometry. (Private Communication: Dr. Rodney Bowersox, TAMU)

Figure 7: Streamwise velocity (left) and heat flux coefficient (right) of the flight configuration
for an actual flight condition where the boundary layer is in a transitional state. The steady-
state solution shown was obtained with first-order DPLR time integration [13].

5 Three-dimensional Perturbation Growth and Analysis

5.1 Unsteady Forcing: Freestream Disturbances

Before introducing disturbances, a steady-steady solution is converged and is defined as the
baseflow state in this work. After the baseflow state is obtained, small amplitude disturbances in
the primitive variables are introduced using a sustained, broadband stochastic forcing approach.
The purpose of this is to force with white-noise so that the distinct shock structures filters the
noise taking the form of three-dimensional post-shock waves. This is visualized in Fig. 8 showing
temperature mode shapes in the entropy layer which contain very small amplitudes relative to
perturbations in the boundary layer. The figure shows an example of how temperature is affected
by three-dimensional waves produced by propagating the disturbances through the shock. This
can be thought of as the superposition of acoustic, vortical, and entropic modes on temperature
at discrete frequencies. The majority of the disturbance energy is contained in the low-frequency
range from 5 kHz to 60 kHz, even though high-frequency modes of relatively small amplitude
are present as well. Similar global modes have been studied using Input-Output (IO) analysis
on cone geometries which take the form of low- and high- frequency mechanisms [18].



The fluctuations in the primitive variables are a function of a non-dimensional random
number, riϵ(−1, 1), obtained with a pseudo-random number generator that is computed at each
time step. The amplitude, A, is non-dimensionalized and scaled using the Chu [19] energy
norm so that the disturbance energy is very low relative to the total freestream energy. Ed is
the non-dimensionalized disturbance energy, and is set such that the local disturbance energy
cannot exceed 0.15% of the total freestream energy. The fluctuations in the five perturbations
variables are set such that each value does not exceed 0.3% of the corresponding freestream
value. This results in an amplitude, A, of 0.5 being specified. The disturbance forcing approach
follows Melander et al. [4] and is shown below,

(ur, vr, wr, Tr, ρr) = riϵ(−1, 1)

Ed =

[
ur

2 + vr
2 + wr

2 + Tr
2 1

γ(γ − 1)M∞
2 + ρr

2 1

γM∞
2

]1/2
(5)

(u′, v′, w′, T ′, ρ′) = A(ur, vr, wr, tr, ρr)
1

Ed
diag(|Ũ|, |Ũ|, |Ũ|, T̄, ρ̄) (6)

Figure 8: Temperature SPOD mode shapes of low-frequency modes in the entropy layer.

5.2 Spectral Proper Orthogonal Decomposition Analysis

In the current work we will utilize the spectral proper orthogonal decomposition (SPOD). This
approach approximates the two-point space-time correlation (covariance) tensor associated with
the flow response [20],

C(x, x′, t,′ t) = E
(
q(x, t)q(x′, t)

)
(7)

q(x, t) is the state of interest and E is the expectation operator and can be thought of
as an ensemble average of flow realizations or snapshots. For stationary states, an efficient
implementation can be derived in the frequency domain by expanding the Fourier modes [21, 22],

q̂(x, f) =

∞∑
j=1

aj(f)ψj(x, f) (8)



where f is the temporal frequency and expansion coefficients are aj(f) = ⟨q̂(x, f), ψj(x, f)⟩
with an appropriate definition of the inner product ⟨·, ·⟩ in the spatial domain. The SPOD
algorithm used in this work is introduced in Towne et al. [21]. The choice of inner product
defined by the weight matrix, W , is the compressible energy norm following the original deriva-
tion [19, 22]. The local cell volume is used to account for the spatially discretized integration
while the perturbations quantities are the flow quantities with respect to the time-averaged
value. Typically, the baseflow value is commonly used for boundary layer stability analysis and
quantifying disturbance amplification. However, the time-averaged value was chosen to be the
mean flow value in this work since modal analysis is performed on forced DNS datasets.

q =


u′

v′

w′

ρ′

T ′

 , W =

∫
V


ρ

ρ
ρ

T

γρM
2

ρ

γ(γ−1)TM
2

 dV (9)

Stationary snapshots are taken of the unsteady simulations with the perturbations values
obtained by subtracting off the time-averaged value. Since the flow is forced stochastically and
is at a statistical steady-state, each snapshot is considered a separate run, and the resulting
SPOD modes are the resolvent modes. Mode shapes and the energy gain associated of the
corresponding mode are used to order each mode based on the contribution to the modal
energy relative to the total modal energy. Since we are performing SPOD on five flow variables
consistent with the compressible energy norm weighting, the modal energy is associated with
the spatio-temporal disturbance energy contribution. Because the datasets are non-periodic
in nature, a Hamming window using a specified window length with 50% overlap was used.
The open-source, freely available software implementation of the SPOD algorithm was used
for all results in this work (https://www.mathworks.com/matlabcentral/fileexchange/65683-
spectralproper-orthogonal-decomposition-spod).

5.3 Data Collection and Sampling

Because of the size of the grids, the required data storage is prohibitively expensive if the entire
solution were stored as a single snapshot for time-series data. Therefore, data was collected
by storing cell centered data from cells that intersect specified x- and z-locations and are
equally spaced in time. For visualization, the cell centered values were interpolated onto two-
dimensional planes in space. The introduced modal analysis approach can be used to extract
three-dimensional modes shapes. However, data storage is computationally expensive due to
the size of the grids and required sampling.

Definition

Simulation time step 10 ns
Number of Snapshots 2000
Snapshot Spacing 0.2 µs

Sampling Frequency 5.0 MHz
Snapshot Sequence 400 µs
Single Period Wave 2.5 kHz

Table 5: High-frequency Sampling

Definition

Simulation time step 50 ns
Number of Snapshots 1000
Snapshot Spacing 2.0 µs

Sampling Frequency 500 kHz
Snapshot Sequence 2000 µs
Single Period Wave 0.5 kHz

Table 6: Low-frequency Sampling

In order to extract pertinent modal information using SPOD, the sampling has to be suf-



ficiently high frequency and long duration to resolve and capture spatio-temporal information.
The sampling parameters for low and high sampling rates are summarized in Tables 5 and 6,
respectively. Note that the sampling parameters are slightly different since different simulation
time steps were used and computational resources had to be accounted for. To post-process
the solutions and save time series data for the entire domain, the storage space and poten-
tially the analysis approach would have to change considerably if analysis were performed on
the entire domain at once. This undertaking is outside the scope of this work, and therefore
data collection and analysis is only conducted on individual slice datasets treated independently
for the nosetip simulations. For the downstream SPOD analysis, multiple slice datasets were
considered to show how the modes are correlated in space and time.

5.4 Grid Resolution Estimate and Sampling Convergence

All meshes in this work have grid alignment with the bow shock curvature. This is very impor-
tant when passing disturbances through shocks since large variations in grid spacing and poor
shock alignment can produce a significant amount of dispersive error. Therefore, we apply grid
tailoring to ensure the grid is approximately orthogonal at the bow shock. We first compute
the maximum of the pressure gradient in the wall-normal direction to locate the bow shock on
an initial mesh, redistribute the grid points extending from the wall to the inflow, smooth along
grid connected lines, and converge the solution on the tailored grid. If this is not accounted for,
the numerical error in some cases can initiate transition aphysically when using high order, low
dissipation numerical schemes. Furthermore, it is important that the grid has sufficient resolu-
tion to resolve relevant frequency content and to respect the wave damping characteristics of the
numerical method used in the external forcing simulations. The grids in this work were create
to resolve expected frequencies that correspond to boundary layer instabilities with the highest
amplification from NPSE at close to the same condition [6]. The necessary grid resolution to
properly capture turbulent length scales is estimated to be an order of magnitude greater.

The current grid that encompasses a quarter domain of the full geometry extent contains
600 million elements. The target grid spacing located at x/L = 1.0 near the centerline is slightly
under-resolved, where the spanwise grid spacing is approximately one-third of the streamwise
grid spacing at the end of the domain. This total grid size restriction is limited by the current
data structure capabilities. The nosetip grids for both the 25% subscale and flight configurations
have the same cell spacing distributions in every direction except the wall normal direction. To
be clear, the same topology is used for the subscale configuration but the domain is scaled
down to 25% of the full-scale size. The spacing of the first cell off the wall is adjusted for
each configuration such that the y+ remains below 0.1 in the regions of interest. Recent grid
estimates show that a y+ < 0.1 is sufficient to resolve the viscous stresses near the wall for most
DNS calculations [23]. To demonstrate that the grids and sampling are converged for unsteady
forcing simulations and spectral analysis, the full length grid is truncated to 28% of the domain
length. This is chosen since the baseline grid has half the number of points distributed at
the leading edge, half the spanwise grid resolution, and assumes a symmetry plane along the
centerline.

Freestream forcing is applied to the truncated domain and the grid dimensions for the flight
configuration are in Table 7. Time-series data is then collected at z/Lf = 0.0755 using the
simulations and sampling parameters from Table 5 to capture a broader range of frequencies.
This is due to the fact that past stability analysis for this geometry estimates modal growth
for second-mode frequencies just over 800 kHz along the streamwise location selected. By
performing SPOD on the collected time-series, a significant peak in the modal energies at
a frequency of 820 kHz is present. The density perturbation mode shape shown in Figure 9



Baseline (Quarter Domain) Fine (Half Domain)

Streamwise Extent (L) 0.28 m 0.1 m
Total cell count 141x106 139x106

Leading edge points 40 110
Streamwise (ξ) points 1440 620

∆ξ(x/L = 0.1) 0.19 mm 0.19 mm

Spanwise (ζ) points 410 1030
∆ζ(x/L = 0.1) 0.28 mm 0.18 mm

Wall-normal (η) points 250 250
y+max 0.4 0.4

y+(x/L = 0.1) 0.05 0.05

Table 7: Grid Metrics: Nosetip configurations

corresponds to a second-mode disturbance where the leading SPOD mode contributes to 90% of
the local disturbance energy at the discrete frequency and spatial location. Additionally, SPOD
modes shown in later sections are consistent with the modes extracted in the spanwise direction
for both grids. This suggests that the baseline grid is sufficient for capturing desired spectral
content. To ensure grid convergence, the fine grids were used for modal analysis at the leading
edge nosetip. The sampling duration for the nosetip datasets was checked for convergence by
sampling for longer duration. It was determined that the same modal energy peaks remained
the same, and the values were relatively much higher than the peak of the sampling duration
cutoff frequency.

Figure 9: Leading SPOD mode shape for data collected at z/Lf = 0.0755 of the baseline mesh
corresponds to second-mode disturbance and is consistent with NPSE estimates in terms of
frequency, wavelength, and relative disturbance amplification.



6 Modal Analysis Results

6.1 Non-modal Growth Mechanisms

By forcing the flow-state using the numerical approach, streamwise structures develop near the
nosetip of the geometry along with excitation of boundary layer instabilities later downstream.
As mentioned by Bitter [24], it is common for non-modal growth to exhibit the ”lift-up” ef-
fect [25] and takes the form of streamwise vortices and is similar to the structures near the leading
edge. The source that is most likely to excite transient growth mechanisms has been thought
to be roughness since surface roughness acts as a steady forcing source. This is due to the fact
that the optimal growth for reattachment streaks within a hypersonic boundary layer occurs for
zero frequency temporal wavenumbers with a spanwise wavenumber [26]. Vortical structures
within a hypersonic boundary layer of a compression ramp extracted with Input-Output take
the form of streamwise streaks and the streamwise velocity perturbations are associated with
large, localized peaks in surface heating. A similar response was found for the nosetip of a cone
configuration by Melander et al. [4]. This is a possible explanation for the developing stream-
wise structures contained within the centerline roll-up on the BoLT-2 geometry when utilizing
a sustained, stochastic freestream forcing function as an input to the DNS.

Using the methodology introduced, snapshots were taken at the same non-dimensional lo-
cations of the 25% scaled configuration as the full scale configuration. SPOD modes shapes of
streamwise velocity perturbations are plotted in Fig. 10 taken at x/Ls = 0.025 and 0.050. The
spectrum containing the majority of the disturbance energy gain is around 5 kHz. Therefore,
at both streamwise locations, Fig. 10 shows a strong signature in the power spectral density
(blue-line) and modal energy spectrum of each SPOD mode (black) at 5 kHz where the SPOD
mode shapes are also plotted. With SPOD, the data matrix is split into blocks and the win-
dowed Fourier Transform is calculated and stored. This means there are a set of resolvent
modes containing a portion of the modal energy at each discrete frequency depending on the
window-length and sampling parameters. At x/Ls = 0.050, the leading SPOD mode with a fre-
quency of 5 kHz contributes to 52% of the modal energy with a mean spanwise wavelength, λζ ,
of 0.84 mm. The same modal contribution is contained in the streamwise direction at z/Ls =
0.020 with a mean streamwise wavelength, λξ, of 5.3 mm. This is shown in Fig. 11 along with
high frequency modes having frequencies of 65 kHz and 150 kHz. The 150 kHz mode has a
relatively high PSD signature with the first SPOD mode having a 53% modal energy contribu-
tion. The low frequency mechanisms are slowly varying in space and time and are similar in
shape to stationary crossflow structures induced by roughness [3]. Whereas the high frequency
mode identified in the streamwise direction are consistent with expected wavelengths for high
frequency travelling crossflow instability obtained with NPSE [6] near the swept leading edge.



Figure 10: Leading SPOD Modes for dominant frequency of the subscale configuration at
x/Ls = 0.025 and x/Ls = 0.050 and the spanwise wavelength defined as λζ .

Figure 11: Leading SPOD Modes of the subscale configuration at z/Ls = 0.02 and the stream-
wise wavelength defined as λξ.



Figure 12: Leading SPOD Modes of the flight configuration at x/Lf = 0.025 and x/Lf = 0.050

The flight configuration has a similar modal energy spectrum as the subscale configuration
since the majority of the modal energy is contained within the 4 kHz to 6 kHz frequency range.
However, due to the thin boundary layer state the structures are contained within a shorter
distance off the wall. The mean spanwise wavelength of the low-frequency structures range from
2.0 mm to 3.1 mm from x/Lf = 0.025 and 0.050, respectively. Whereas, the local spanwise
wavelength scales with the local boundary layer thickness near the centerline by λζ/δ ∼ 4 for
the flight configuration compared to λζ/δ ∼ 2 for the subscale configuration.

The amplification of disturbances by the low-frequency structures of the flight configuration
is much greater than that of the subscale configuration. This suggests that the streamwise
structures could potentially contribute to early transition at higher Reynolds numbers and
can be influenced by the freestream environment or other external perturbation sources (i.e.
roughness). In order to generate surface roughness, we utilize a probability density function
to investigate the effects of roughness. Each wall node is perturbed using a random number,
between (-1,1), and multiplied by a maximum amplitude. The displacement is smoothed along
grid connected lines, similar to the approach used by Dinzl & Candler [27]. Previous work by
Thome et al. [2] showed that different heating patterns are observed on the BoLT configura-
tion using different roughness wavenumber distributions. However, a non-biased wavenumber
distribution allows for an exploratory look at the flowfield response without filtering out po-
tentially relevant disturbances. In this work, it was found that similar structures containing
zero frequency temporal wavenumbers were excited using a maximum node displacement of 2
µm with a Gaussian distribution probability density function. This suggests steady forcing of
the flow state seeds non-modal growth instabilities near the nosetip. At the current condition,
the perturbation values are small suggesting it is unlikely to trip early transition at the flow
conditions used in this paper.



6.2 Modal Growth Mechanisms

Due to the receptivity process, modal growth of instabilities becomes present further down-
stream. When considering the subscale configuration, the local disturbance amplitudes induced
by the low-frequency structures start to decay near the centerline when travelling downstream.
While crossflow instabilities begin to show strong signatures in the frequency spectrum ranging
from 20 kHz to 40 kHz. Additionally, there is a presence of signatures lower than 20 kHz within
the centerline roll-up (x/Ls ϵ [0, 0.04]). However, the local disturbance energy is much higher
closer to the swept leading edge between x/Ls ϵ [0.04, 0.1]. It is in this region where SPOD
mode shapes representative of travelling crossflow instabilities are prominent for the subscale
configuration.

Contrary to the subscale configuration, the flight configuration shows strong signatures in
the modal energy spectrum of the low-frequency modes and are contained within the centerline
roll-up at approximately 20 kHz. Also, the spectrum shows strong signatures at 820 kHz, 1000
kHz, and 1660 kHz, and the resolvent modes of the respective frequencies are primarily located
closer the the swept leading edge. The streamwise SPOD mode shape for the 820 kHz mode was
shown previously in Section 5.4 and represents a Mack’s second mode disturbance. The modal
energy contribution is 99.8% for the first SPOD mode based on the spanwise collected dataset.
Furthermore, the PSD peak is the highest at 820 kHz suggesting second-mode amplification is
more profound for the flight configuration. The SPOD mode at 1000 kHz appears to represent
second-mode disturbance amplification with a spanwise wavelength. Whereas, the 1660 kHz
mode appears to be a secondary harmonic of the primary 820 kHz disturbance. At x/Lf =
0.25,z/Lf = 0.0755, the 820 kHz second-mode disturbance has a wavelength of λξ = 1.56
mm which is approximately twice the boundary layer thickness resulting in a phase speed of
cph = 1275 m/s. The frequency scales with the local boundary layer properties as f ∼ 0.4ue

δ for
the flight configuration.

The local scaling for second-mode frequencies based on Stetson [28] predicts that second-
mode frequencies scale with the boundary layer edge velocity and the local boundary layer
thickness as f ≈ 0.4ue

δ . Using the local edge velocity, 1502.8 m/s, and boundary layer thick-
ness, 0.739 mm, estimates that the local frequency for second-mode would be approximately
814 kHz. This suggests that second-mode disturbance frequencies scale with the local flow prop-
erties on BoLT similar to the second-mode frequency estimate for hypersonic boundary layers
introduced by Stetson. Additionally, this is consistent with the scaling of second-mode distur-
bance frequencies of the subscale BoLT configuration slightly further downstream as introduced
by Knutson et al. [17].



Figure 13: Leading SPOD Modes of the subscale configuration at x/Ls = 0.25

Figure 14: Leading SPOD Modes of the flight configuration at x/Lf = 0.25



6.3 Transition at Flight Condition

As mentioned previously, the grid spacing near the end of the domain is larger than what is
required to properly resolve the turbulent length scales. However, we are still able to resolve
relevant instabilities within the boundary layer with the current resolution. Most noticeable are
instabilities found within the strong shears layers of the vortical structures near the centerline,
and distinct structures associated with multiple types of instabilities between the centerline and
swept leading edge. This is visualized in Fig. 15 with a single isosurface plotted of Q-criterion
(Q = 10, 000) and colored by normalized streamwise velocity on the left. While an instantaneous
surface pressure perturbation distribution relative to the time-averaged wall value is plotted
with a grey scale on the right. The largest magnitude in pressure perturbations is located near
the centerline at which downstream of x/Lf ≈ 0.75 the centerline vortical structures become
unsteady. The sampling duration is Tfuτ/δi > 18 and sampling frequency is Tsuτ/δi < 0.025;
where Tf is the time accumulated to collect statistics, Ts is the time between snapshots, δi is
the maximum boundary layer thickness, and uτ is the local friction velocity at δi. A higher
sampling frequency would be required to properly collect turbulent flow statistics. In this work,
the sampling is adequate for extracting meaningful SPOD modes and datasets already require
large amounts of storage and resources to post-process.

In the following sections, we extract SPOD modes from flow state perturbations relative to
the time-averaged values allowing us to identify the relevant modes contributing to transition.
Therefore, current downstream analysis is meant to act as a starting point to shed light on
the types of instabilities contributing to transition at a flight condition near regions of highest
disturbance amplification using the introduced numerical methodology.

Figure 15: Q-criterion isosurface colored by normalized streamwise velocity (left). Instantaneous
wall pressure fluctuations are normalized by the maximum pressure fluctuation on the wall
(right).

6.3.1 Mixed Mode Region

The so called ”mixed-mode” region in this work refers to the region away from the large-scale
vortical structures and swept leading edge. The region contains distinct structures correspond-
ing to both highly amplified acoustic waves and crossflow instabilities. Five separate slice



datasets were collected at x/Lf=0.77, 0.88, 0.93 and z/Lf=0.089, 0.135 were then truncated
within x/Lf ϵ [0.77, 0.93] and z/Lf ϵ [0.08, 0.16] to isolate the region. If the centerline region is
included for the analysis, peaks in the modal energy spectrum are significantly attenuated since
breakdown occurs near the centerline downstream as will be shown in the following section.
SPOD is then performed on all slices to capture how the dominant modes are correlated in
space and time. Fig. 16 shows peaks in the modal energy spectrum in the low frequency range
between 11 kHz to 46 kHz and high frequency range between 295 kHz to 310 kHz.

Figure 16: Dominant SPOD modes of the flight configuration between x/Lf ϵ [0.77, 0.93] and
z/Lf ϵ [0.08, 0.16]. Contour lines correspond to the time-averaged streamwise velocity of the
dataset.

The value of 11 kHz in the modal energy spectrum is a peak at the sampling duration cutoff.
It is likely a numerical artifact since the mode shapes contain insignificant signatures where
transition occurs. It is possible that this could be due to sampling or from utilizing a sustained,
stochastic forcing function since this behavior is primarily observed for SPOD results which
include regions where slowly varying flow structures are present. This was checked previously
by sampling for longer duration to ensure the low frequency modes converged to the same modal
energy peaks. For this section, the lower frequency peak value ranges primarily between 23 kHz
and 46 kHz which is a typical range for travelling crossflow frequencies on this geometry. This
is because travelling crossflow has a strong presence across the entire vehicle surface and so
appears to have a larger modal energy peak. Fig. 16 shows a travelling crossflow SPOD mode
of 34 kHz on the left and is similar to DMD mode shapes of travelling crossflow [17, 1]. This
mode is primarily located in the region of highest local disturbance energy of the mixed-mode
region even though the surface pressure perturbations have lower perturbations relative to a
highly localized region at z/Lf = 0.089. The highly localized exponential growth in surface
pressure perturbations corresponds to the high frequency SPOD mode of 309 kHz. This mode
has similar features of second-mode and scales as f δ

ue
≈ 0.35 (at x/Lf = 0.93 and z/Lf =



0.089) using the streamwise wavelength of λζ = 4.38 mm. Using the mode shapes to calculate
the spanwise wavelength gives λξ = 6.72 mm where the wave angle is 32.7°. The mode shapes
suggests there is a modal interaction since the second-mode disturbances in the region are
oblique and coexist with a crossflow presence. This suggests second-mode disturbances have
significant amplification for BoLT-2 at higher Reynolds numbers. When at lower Reynolds
number conditions, the flow state tends to favor the amplification of crossflow instabilities but
requires a large initial disturbance amplitude to initiate breakdown [1].

6.3.2 Vortical Mode Region

Figure 17: Dominant SPOD modes of the flight configuration between x/Lf ϵ [0.55, 0.77] and
z/Lf ϵ [0, 0.06]. Contour lines correspond to the time-averaged streamwise velocity of the
dataset.

The vortical mode region in this work is referred to as the region containing the centerline roll-up
illustrated by the bottom, left plot of Fig.7. The vortical structures have been shown to support
vortical instabilities in the past for the subscale BoLT geometry [17] and is therefore named
for consistency. Similar to the previous section, five separate slice datasets were collected but
now at x/Lf=0.55, 0.66, 0.77 and z/Lf=0.012, 0.0235 then truncated within x/Lf ϵ [0.55, 0.77]
and z/Lf ϵ [0, 0.06]. For brevity we are only plotting modes which contain the highest energy
gain and are located in the region where the largest flow perturbations are present. This is
the most unstable region within the boundary layer where breakdown is initiated with the
current numerical forcing approach. The centerline region is primarily dominated by high



frequency vortical modes between 170 kHz and 200 kHz originating on the top portion of the
primary vortex structure closest to the centerline. Significant exponential disturbance growth
is observed at which the vortical structures become unsteady and eventually breakdown further
downstream. Upstream of breakdown, a 171 kHz mode is located on the right side portion of
the vortical structure closest to the centerline. Whereas, a 194 kHz is on the top portion of
the same vortical structure. The SPOD mode shapes are similar to the DMD mode shapes of
a crossflow vortex structure for the subscale BoLT-2 geometry [1]. Both of which are similar to
the excitation of secondary instability mechanisms of stationary crossflow vortices of a swept
wing [29].

7 Conclusion

Boundary layer instabilities associated with distinct transition mechanisms of the BoLT-2 flow-
field were identified using SPOD and ranked by their modal energy gain. This was intended to
quantify how the disturbances of the receptivity process may contribute to the later stages of
the transition process at flight conditions where the boundary layer is likely to be in a transi-
tional state. This was achieved by performing high-fidelity computations of the Navier-Stokes
equations using a low-dissipation numerical method within US3D. Furthermore, we introduced
disturbances using a stochastic forcing function at the freestream to allow for a boundary layer
response revealing modal and non-modal growth mechanisms that exist within the BoLT-2
flowfield. The most notable SPOD modes near the nosetip are associated with low frequency,
non-modal growth mechanisms contained within the centerline rollup of the boundary layer for
both the subscale and flight configurations. The perturbations were found to be much larger for
the full-scale configuration at flight conditions, suggesting the non-modal growth mechanisms
could potentially contribute to early transition at high Reynolds numbers.

Modal growth mechanisms were identified slightly further downstream of the nosetip. The
subscale configuration contained leading SPODmodes associated with travelling crossflow, while
the flight configuration had dominant SPOD modes corresponding to Mack’s second mode dis-
turbances. This suggests second-mode disturbances are increasingly susceptible to amplification
on the BoLT-2 geometry with higher Reynolds numbers at hypersonic conditions. Addition-
ally, we were able to identify leading modes contributing to transition downstream within the
centerline vortical structures and mixed-mode region. It was found that high-frequency distur-
bances in the range between 170 kHz and 200 kHz initiate breakdown near the centerline and
are primarily localized near shear layers of streamwise vortex stuctures. While breakdown was
not observed in the mixed-mode region using the current methodology, we were still able to
identify crossflow and second-mode structures.

The current work provides insight for instabilities that may be present in flight. However,
future work regarding disturbances sources should be investigated for improved prediction of
transition in flight. Freestream turbulence and particulate induced transition have both been
shown to be potential sources of transition in flight and would represent a more realistic dis-
turbance environment. Although, in order to properly model passing disturbances through the
shock the orthogonality at the shock should also be addressed. The wall-normal grid connected
cell alignment at the shock location would require a three-dimensional shock-fitting approach
or a shock-kinematic boundary condition approach to ensure complete orthogonality. Shock
fitting is an active area of code development and the extension to the unstructured, three di-
mensional numerical solver has not progressed to the application to the current work of this
paper. Future work related to passing disturbances through three-dimensional shocks should
account for this and the contribution of the error to the solution quantified. Furthermore, we are
assuming a smooth and isothermal wall boundary condition. Both roughness [2] and variable



wall temperature [30] can have a significant impact on the boundary layer state and future work
could extend the parameter space for improved transition prediction. Nevertheless, the current
approach is able to investigate the stability of unsteady, three-dimensional flow structures and
identify potentially relevant instability mechanisms contributing to transition in flight.
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