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Abstract: A moving discontinuous Galerkin finite element method with interface 
condition enforcement (MDG-ICE) is developed for solving compressible multi-
material flow problems using a mixing model, where both flow field and grid 
geometry are considered as independent variables and solved simultaneously. A 
space-time DG formulation is used to solve the conservation laws in the standard 
discontinuous solution space and the discrete grid geometry is solved using a 
variational formulation in a continuous space. The resulting over-determined 
system of nonlinear equations arising from the MDG-ICE formulation is solved 
using a self-adaptive Levenberg-Marquardt method. A number of numerical 
experiments for compressible material flows are conducted to assess accuracy and 
performance of the developed MDG-ICE method. Numerical results obtained 
indicate that the MDG-ICE method is able to deliver the designed order of p-
convergence even for discontinuous solutions, and detect and fit all types of 
discontinuities and interactions of different discontinuities due to the interface 
condition enforcement and grid movement.  
Keywords:    Discontinuous Galerkin methods, Interface Conservation, Moving Grids, 
Compressible Multi-material Flows. 

 
1     Introduction 
 
The discontinuous Galerkin (DG) finite element methods [1-30] have become a popular choice to 
solve conservation laws with arbitrary order of accuracy. They are widely used in different 
computation areas including computational fluid dynamics, computational acoustics and 
computational magnetohydrodynamics. The discontinuous Galerkin methods have many attractive 
advantages like 1) its ability to achieve high-order (>2nd) accuracy on fully unstructured grids; 2) 
useful mathematical properties with respect to conservation, stability and convergence; 3) its adjoint 
consistency to be powerful for adjoint-based optimization. In addition, the methods can also handle 
non-conforming elements, where the grids are allowed to have hanging nodes. Furthermore, 
spacetime discontinuous Galerkin methods [31-33] provide discretization of systems of conservation 
laws by simultaneously discretizing space and time. Like other DG methods, the spacetime DG 
method also offers the prospect of both arbitrary-order accuracy in space and time and adjoint 
consistency. However, the DG methods have a number of weaknesses that have not yet be addressed. 
Besides of computational cost and storage requirement, one aspect is how the properties behave in 
flows that are not smooth and contain discontinuous interfaces, such as material interface and shocks. 
Even though DG explores a set of discrete function space with discontinuous, piecewise polynomials 
and it can represent the discontinuous interfaces in principal, this requires that the interfaces are 
aligned with the grids. The stability of the DG approach may fail when misaligned grid is used. 
Indeed, how to control spurious oscillations in the presence of strong discontinuities has been an 
outstanding issue, whose mathematically sound and numerically effective solution has been an active 
research subject for many decades. 
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Moving grid methods [34-37] are a widely used approach for solving a variety of flow problems in 
computational fluid dynamics. In Lagrangian hydrodynamics, grids are moved to tracking contact 
discontinuities and material interfaces. Arbitrary Lagrangian-Eulerian (ALE) methods are widely used 
for moving and deforming boundary problems. In R-adaptation methods, mesh points are moved into 
regions of needed high resolution, which can significantly increase solution accuracy. In shock-fitting 
schemes, grids are moved to track shock waves.  
 
Recently, a moving discontinuous Galerkin finite element method with interface condition 
enforcement, termed MDG-ICE, was formulated for compressible flows with discontinuous interfaces 
by Corrigan et al. [38-41], where both conservative quantities and discrete grid geometry are treated 
as independent variables and both conservation laws and interface conservation (IC) are solved 
simultaneously in the space-time domain. In the MDG-ICE formulation, a space-time DG formulation 
is used to solve the governing equations in the standard discontinuous solution space, and the 
geometry variables are determined by enforcing the interface condition in its discontinuous solution 
trace space. A variant of MDG-ICE [42,43] was introduced by Luo et al., where a different variational 
formulation is used to enforce the interface conservation. Two attractive features of the MDG-ICE 
method, among others, are 1) no strategies in the form of a limiter or an artificial viscosity are 
required to eliminate spurious oscillations in the vicinity of discontinuities and thus maintain the 
nonlinear stability of the DG methods, as interfaces are detected by the interface condition 
enforcement, and tracked by the grid movement and the interface condition; and 2) no numerical 
fluxes in the form of a Riemann solver have to be needed to maintain linear stability of the DG 
methods. Numerical results obtained indicate that the MDG-ICE methods are able to deliver the 
designed order of p-convergence even for discontinuous solutions, and detect and fit all types of 
discontinuities and interactions of different discontinuities due to the interface condition enforcement 
and grid movement. 
 
The objective of the efforts presented in this work is to extend the MDG-ICE method [43] for solving 
compressible multi-material flow problems using a mixing model. In this MDG-ICE formulation, the 
compressible Euler equations along with the mass fraction equations are solved using a standard 
space-time DG formulation, while the geometric variables are determined by enforcing the interface 
conservation using a continuous variational formulation. The resulting over-determined system of 
nonlinear equations arising from the MDG-ICE formulation is then solved in a least-squares sense, 
leading to an unconstrained nonlinear least-squares problem, which is solved by a self-adaptive 
Levenberg-Marquardt method [44]. A number of numerical experiments for both 1D unsteady and 2D 
steady compressible multi-material flow problems are conducted to assess accuracy and robustness of 
the developed MDG-ICE method. Numerical results obtained indicate that the MDG-ICE method is 
able to deliver the designed optimal order of convergence even for discontinuous solutions and 
solutions with singularities, detect all types of discontinuities via interface conservation enforcement, 
and satisfy the compressible multi-material Euler equations and the interface conservation via grid 
movement and management. The superior accuracy of the MDG-ICE method is attributed to the 
enforcement of the interface conservation, while the robustness of the MDG-ICE method is attributed 
to the renunciation of using an upwind flux function to achieve the linear stability and 
limiters/ENO/WENO/Artificial viscosity strategies to achieve the nonlinear stability. The remainder 
of this paper is organized as follows. The governing equations are described in Section 2. The 
developed MDG-ICE method is presented in Section 3. Numerical experiments are reported in 
Section 4. Concluding remarks and future work are given in Section 5. 
 
2     Governing Equations 
 
The compressible Euler equations governing unsteady inviscid compressible multi-material flows 
using a mixing model can be expressed in conservative form as  
 

𝜕𝐔
𝜕𝑡

+
𝜕𝐟𝒊(𝐔)
𝜕𝑥!

= 0,                                                                           (2.1)  

 
where the summation convention is used. The conservative variable vector U, and inviscid flux vector 
𝐟!   are defined by  
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𝐔 =

𝜌
𝜌𝑢!
𝜌𝑒
𝜌𝑌!!!

           𝐟! =

𝜌𝑢!
𝜌𝑢!𝑢! + 𝑝𝛿!"
𝑢!(𝜌𝑒 + 𝑝)
𝜌𝑢!𝑌!!!

                                      (2.2) 

 
 
Here 𝜌 , p, and e denote the density, pressure, and specific total energy of the mixing fluid, 
respectively, s is the number of materials, 𝑌! is the mass fraction for the material s, and 𝑢! is the 
velocity of the flow in the coordinate direction 𝑥!. The pressure is determined by the equation of state  
 

𝑝 = 𝛾 − 1 𝜌 𝑒 − !
!
𝑢!𝑢!                                               (2.3) 

 
which is valid for calorically perfect gases. The ratio of specific heats for the mixture γ in Eq. (2.3) is 
determined by  

𝛾 =  𝑌!𝛾!!
!!!  ,                                                        (2.4) 

 
where 𝛾! is the ratio of the specific heats for the material i. Note that only s-1 mass fraction equations 
are solved and the mass fraction for the s material is obtained by the compatibility condition, 
 

𝑌!!
!!!  = 1                                                          (2.5) 

 
We are mainly interested in solving the 1D unsteady and 2D steady compressible multi-material Euler 
equations. For the 1D unsteady compressible multi-material Euler equations, Eq. (2.1) can be written 
as a 2D problem in the x-t domain, Ω(x,t)  
 

𝜕𝐅!
𝜕𝑥

+
𝜕𝐅!
𝜕𝑡

= 0,                                                                           (2.6) 

 
where the two independent variables are time t and x-coordinate x, and the x- and t-components of the 
flux vector F are 

𝐅! = 𝐟 =

𝜌𝑢
𝜌𝑢! + 𝑝
𝑢(𝜌𝑒 + 𝑝)
𝜌𝑢𝑌!!!

, and 𝐅! = 𝐔 =

𝜌
𝜌𝑢
𝜌𝑒

𝜌𝑢𝑌!!!

,                                                       (2.7) 

 
with u as the velocity in the x-direction. For the 2D steady-state compressible Euler equations, Eq. 
(2.1) can be expressed as a 2D problem in the x-y domain, Ω(x,y) 
 

𝜕𝐅!
𝜕𝑥

+
𝜕𝐅!
𝜕𝑦

= 0,                                                                            (2.8) 

where the two independent variables are x- and y-coordinates (x,y), and the x- and y-components of 
the flux vector F are 
 

𝐅! = 𝐟𝒙 =

𝜌𝑢
𝜌𝑢! + 𝑝
𝜌𝑢𝑣

𝑢 𝜌𝑒 + 𝑝
𝑢𝜌𝑌!!! 

, and 𝐅! = 𝐟𝒚 =

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣! + 𝑝
𝑣 𝜌𝑒 + 𝑝
𝑣𝜌𝑌!!! 

,                                                       (2.9) 

 
with u and v are the velocity components of the flow in the x-, and y-direction, respectively. 

                   (2.9) 
3     Moving Discontinuous Galerkin Method with Interface 
Conservation Enhancement  
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3.1     Space-time discontinuous Galerkin formulation 
 
In the space-time discontinuous Galerkin formulation [31-33], the space and time are treated 
indistinguishably. A time-dependent problem can simply be regarded as a steady problem on a d+1-
dimensional space-time mesh in a finite time interval [0,T], where d = 1, 2, 3 is the spatial dimension 
and +1 is the time dimension. Without loss of generality and for the sake of clarity, we present the 
space-time DG formulation for 1D unsteady multi-material Euler equations (2.7). We first introduce 
some notations. We assume that the space-time domain Ω(x,t) is subdivided into a collection of non-
overlapping elements Ω!(x,t). We use Γ!(x,t) to denote the boundary of  Ω!  and n the unit outward 
normal vector to Γ!. We introduce the following broken Sobolev space 𝐕!

!  
 

𝐕!
! = {𝑣! ∈  𝐿! Ω ! ∶  𝑣!|!! ∈ 𝐕!

!
 ∀Ω! ∈ Ω },                                                     (3.1) 

 
which consists of discontinuous vector-valued polynomial functions of degree p, and where m is the 
dimension of the unknown vector U and Vp is the space of all polynomials of degree ≤p. To 
formulate the discontinuous Galerkin method, we introduce the following weak formulation, which is 
obtained by multiplying the above conservation laws (2.6) by a test function 𝑤!, integrating over an 
element Ω!, and then performing an integration by parts, 
 

 Find  𝐔! ∈ 𝐕𝒉
𝐩   such that

− 𝐅 𝐔! ∙ 𝛁𝑤!
!!

 𝑑Ω + 𝐅(𝐔!) ∙ 𝐧 𝑤!
!!

𝑑Γ = 0, ∀ 𝑤! ∈ 𝐕𝒉
𝐩 

                                     3.2    

 
where 𝐔!  and 𝑤!  are represented by piecewise-polynomial functions of degree p, which are 
discontinuous between cell interfaces. Assume that 𝐵! is the basis of polynomial functions of degree 
p, Eq. (3.2) is then equivalent to the following system of N nonlinear equations, 
 

Find 𝐔! ∈  𝐕!
!such that

− 𝐅 𝐔! ∙ 𝛁𝐵!
!!

 𝑑Ω + 𝐅(𝐔!) ∙ 𝐧 𝐵!
!!

𝑑Γ = 0, 1 ≤ 𝑖 ≤ N
                                             3.3    

 
where N is the dimension of the polynomial function space. Since the numerical solution 𝐔! is 
discontinuous between element interfaces, the interface space-time fluxes are not uniquely defined, 
and need to be computed carefully from the consideration of stability. This scheme is called the 
discontinuous Galerkin method of degree p, or in short notation DG(P) method. By simply increasing 
the degree p of the polynomials, the DG methods of corresponding higher order are obtained. The 
domain and boundary integrals in Eq. (3.3) are calculated using Gauss quadrature formulas. The 
number of quadrature points used is chosen to integrate exactly polynomials of order of 2p and 2p+1 
for the volume and surface inner products in the reference element. A numerical polynomial solution 
𝐔! in each element is expressed using a standard finite element basis as following 
 

𝐔! = 𝐔!

!

!!!

𝐵! 𝑥, 𝑡                                                                                    (3.4) 

 
where 𝐵!  are a set of polynomial basis functions and 𝐔!  are the unknown coefficients to be 
determined. Our implementation of the DG method is designed to be rather general to allow any types 
of the basis functions. For all the examples presented in this manuscript, Legendre and Lagrange 
polynomial basis functions are used to represent a DG solution for quadrilateral and triangular 
elements, respectively. The space-time DG formulation inherits all features of the standard DG 
formulation, and in addition allows uniform or different order of accuracy in space and time, as the 
time and space are treated in the same way. The space-time DG formulation is especially attractive for 
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the moving/deforming boundary problems, as the geometric conservation law is naturally satisfied. 
Furthermore, the issue of conservative interpolation does not exist when a remeshing occurs or the 
topology of a mesh is changed.   
 
3.2     Moving discontinuous Galerkin-Interface Conservation Enhancement 
Formulation   
 
Traditionally, the governing equations for the conservation laws are only solved on elements Ω! 
(computational cells) as described in the previous sub-section. Similarly, the conservation laws should 
be enforced on element interfaces Γ! as required by the physics. 
  

                                                                           
Figure 1. Illustration of a zero-thickness control volume on an interface 
 
Applying the conservation laws on a zero-thickness control volume along an interface Γ!  as shown in red in 
Figure 1 leads to the following interface condition or jump condition for the flux function across the interface   
 

𝐅 𝐔!! ∙ 𝐧 − 𝐅 𝐔!! ∙ 𝐧 = 𝟎  =>     [𝐅(𝐔!) ∙ 𝐧] = 0,                                                                    (3.5) 
 
where 𝐔!!  and 𝐔!!  are the conservative variable vector on the interface from the left and right 
elements respectively and the bracket is the so-called the jump operator. This is the so-called interface 
condition, which is also termed the transmission condition in the hybridized DG [45] or embedded 
DG [46] formulation. The interface conservation is never considered in all shock-capturing based 
schemes, because 1) it is automatically satisfied for smooth flows, as long as the flows are fully 
resolved, which can always be achieved by using high mesh resolution; 2) it can never be satisfied for 
flows with discontinuities by simply increasingly refined meshes, unless the discontinuities are 
aligned with mesh interfaces. In other words, the interface conservation can only be achieved, if and 
only if the mesh interfaces are aligned with discontinuities. Recognizing the importance of the 
interface conservation enforcement and the necessity of a mesh movement to enforce the interface 
conservation, the main idea behind the MDG-ICE method is to treat the discrete geometry as an 
independent variable, which is determined by solving and enforcing the interface conservation 
explicitly. Therefore, the MDG-ICE formulation is characterized by treating both flow field and 
discrete geometry as independent variables, and by solving the conservation laws on both elements 
and element interfaces simultaneously in the space-time domain. In the MDG-ICE method, 
discontinuous interfaces are not explicitly tracked, but rather solved and obtained implicitly as a result 
of the interface conservation enforcement. Furthermore, what the MDG-ICE method offers is more 
than detecting and fitting discontinuities, which can also be achieved by other discontinuity fitting 
methods. By solving the conservation laws on interfaces, a continuous solution with a discontinuous 
derivative, such as the head and tail of a rarefaction wave, can be exactly resolved by the MDG 
method as demonstrated in next section, which cannot be obtained by any other discontinuity tracking 
methods.   
 
In this work, meshes are set uniform in time, i.e., cannot move in the t-direction. Furthermore, the 
geometric variables are determined by enforcing the interface conservation using a continuous 
variational formulation as follows, 

  [𝐅(𝑢!) ∙ 𝐧]!!
 𝑤! = 0,                                                                                 (3.6) 

where 𝑤! is a test function in the continuous solution trace space. In our implementation, Lagrange 
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basis functions are used to represent the test function space. The derivation of discrete equations for 
the interface condition is similar to the approach used in the so-called embedded DG method [46]. 
Figure 2 illustrates the dimension of the test function space for the interface condition in the case of a 
CG(P1) approximation. In this case, the number of nonlinear equations obtained from Eq. (3.6) is 
n_points×n_equations, i.e., the number of red dots in Figure 2. The number of the geometric variables 
is only n_points, i.e., the x-coordinate of the grid vertices, as the mesh cannot move in the t-direction. 
This formulation always leads to an over-determined system of equations for a system of conservation 
laws and a determined system of equations in the case of a scalar equation. Since meshes are uniform 
in time, the interface condition does not need to be enforced on the faces that separate the time slabs, 
i.e., all horizontal faces as shown in Figure 2. In this case, fluxes on these faces in Eq. (3.3) are 
computed in a naturally upwind manner, as the information can only be propagated from the past to 
the future according to the causality principle.   
 

                                                      
Figure 2. Illustration for the dimension of the test function space for the interface condition in 
the case of a CG(Q1) approximation 
 
In our implementation, one element in time with a uniform time-step size is used, which leads to the 
traditional space-time DG formulation [31-33] normally described on one single space-time slab [𝑡!, 
𝑡!!!] as shown in Figure 3. Our justifications of using this MDG-ICE formulation are the following: 
Firstly, the size of the resultant system of nonlinear equations is significantly reduced. For the 
DG(Q1) approximation, the number of unknown flow variables is 
n_degrees×n_equations×n_elements, while the number of geometric variables is n_points/2, i.e., the 
number of the grid points at time step n+1, as illustrated in Figure 3, where n_degrees designates the 
number of degrees of freedom in DG(P) approximation (3 for DG(P1) and 4 for DG(Q1) in general). 
Thus, an over-determined system of nonlinear equations for 
(n_degrees×n_equations×n_elements+n_points/2) solution unknowns needs to be solved at each time 
step. Secondly, the implementation of the MDG method for the 3D unsteady problems becomes easy 
and straightforward. Otherwise, one would need to work in 4D space, which can be challenging and 
intimidating. Thirdly, this MDG-ICE formulation advances solutions using one cell in time and with a 
uniform time-step size, leading to a time-marching-like method, and consequently is easy to 
understand, analyze, implement, and solve.   
 

 
 
Figure 3. Illustration for the dimension of the DG(Q1/Q2) solution for conservation law and the 
dimension of CG(Q1/Q2) for interface condition   
 
3.3     Numerical space-time fluxes  
 
Since the numerical solution 𝐔! is discontinuous between element interfaces, the interface space-time 
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fluxes in the surface integral in Eq. (3.3) are not uniquely defined, and therefore need to be computed 
carefully for the consideration of consistency and stability. In the standard discontinuous Galerkin and 
space-time discontinuous Galerkin formulation, the flux function is replaced by a common numerical 
flux based on an exact or approximate Riemann solution, which is absolutely required to maintain the 
stability. However, in the MDG-ICE formulation, the interface space-time fluxes are uniquely defined 
by the enforcement of interface condition Eq. (3.5), which indicates  
 

  𝐅 𝐔𝒉! ∙ 𝐧 = 𝐅 𝐔𝒉! ∙ 𝐧.                                                               (3.7) 
 
Therefore, the flux function is not substituted by a common numerical flux function and instead the 
element interior flux is retained. This means that the information exchange between two neighboring 
cells, i.e., the global coupling, is only achieved through the enforcement of the interface condition. 
Instead of using the separate flux function, a common flux function as the average of the left and right 
flux functions 

  𝐅 𝐔𝒉  ∙ 𝐧 = !
!
(𝐅 𝐔𝒉! ∙ 𝐧 + 𝐅 𝐔𝒉! ) ∙ 𝐧                                                     (3.8) 

 
is used in our MDG-ICE formulation in order to enhance the stability and coupling for under-resolved 
flows. This simple average flux function satisfies the so-called consistency requirement for the 
numerical fluxes in the MDG-ICE formulation, i.e., Eq. (3.8) and is found to enhance the stability of 
the MDG-ICE method. It should be emphasized that the MDG-ICE formulation does not need an 
upwind flux function from a Riemann solution, as solving the conservation laws on interfaces 
enforces the interface conservation. In fact, how to extend an upwind flux to the space-time DG 
formulation, that satisfies the consistence requirement (3.7), is unclear and remains an open problem. 
On the other hand in the steady-state MDG-ICE formulation, most of the well known upwind flux 
functions can be directly.  
 
3.4     Solving the nonlinear least-squares problem 
 
As can be seen, the MDG-ICE formulation leads to an over-determined system of nonlinear equations 
that needs to be solved at each time step or more precisely for one space-time slab 
 

                             R(U) = 0,                                                                       (3.9)                                                                     
 
where U is the unknown solution vector, which includes both flow variables 𝐔! and geometric 
variables x, 

𝐔 = 𝐔!
𝒙                                                                     (3.10) 

 
and R represents the nonlinear residual function, which includes both residuals for the conservation 
laws 𝐑!" from Eq. (3.3) and interface conservation 𝐑!" from Eq. (3.6), 
 

𝐑 = 𝐑!"
𝐑!"

                                                                               (3.11) 

 
Let the dimension of the solution vector U be n and the dimension of the nonlinear residual vector R 
be m. Since m>n, the over-determined system of nonlinear equations (3.9) is solved in a least-squares 
sense  

min !
!

𝐑!!!
!!! = !

!
𝐑 !                                                        (3.12) 

 
A number of numerical methods exist to solve the non-linear optimization problem (3.12), including 
steepest decent method, Newton method, Gauss-Newton method, Newton method, and Levenberg-
Marquardt method [47-50]. In the current work, a self-adaptive Levenberg-Marquardt method [44] is 
used for solving the unconstrained minimization problem (3.12).  
 



 8 

4     Numerical Examples 
 
The developed MDG-ICE method is used to solve a variety of compressible multi-material flow 
problems. A few examples are presented here to demonstrate the accuracy, robustness, and ability of 
the MDG-ICE method for both 1D unsteady and 2D steady compressible multi-material flow 
problems. Since there is no confusion, we will use abbreviation MDG-ICE and MDG interchangeably.   
 
A. Multi-material Sod shock tube problem 
 
The classic multi-material Sod shock tube problem is one of the most widely used test cases, since it 
represents an exact solution to the full system of one-dimensional unsteady multi-material Euler 
equations. The exact solution contains simultaneously a shock wave, a contact discontinuity, and a 
rarefaction wave, which all emanate from one singularity point at t=0. This constitutes a particularly 
interesting and challenging problem for the space-time formulation where the singularity point exists 
and for the discontinuity tracking methods where different types of unknown interfaces exist. This 
example is chosen to assess (1) the ability of the MDG-ICE method to resolve singular points, and 
detect and fit discontinuities, (2) the robustness of the MDG-ICE method on highly distorted grids, 
and (3) the order of p-convergence of the MDG-ICE method for discontinuous solutions. The initial 
conditions in the computation are the following:   

 
(𝜌, 𝑣, 𝑝, 𝛾) 𝑥, 𝑡 = 0 = 1, 0, 1,1.667 , −0.5 ≤ 𝑥 < 0,

(0.125,0,0.1,1.2)        0 < 𝑥 ≤ 0.5  
 
Computation is performed on a single space-time slab Ω(x,t)=(-0.5,0.5)×(0,0.2) with 8 quadrilateral 
elements where the left 7 elements are initiated with the piecewise left constant state and the right one 
element is initiated with the piecewise constant right state. Figure 3 shows the initial grid used in this 
numerical experiments along with the initial density fields. Six middle cells are degenerated at the 
origin (0,0), which are necessary to resolve the singularity point accurately and adequately.  
Numerical solutions are computed using the MDG(P1), MDG(P2), and MDG(P3) methods. Figure 4 
shows a comparison of the density, pressure, and velocity profiles at t=0.2 between the exact solution 
and the computed MDG(P1) and MDG(P2) solutions, respectively. The MDG(P3) solutions are 
compared with the analytical solution in Figure 5, where a comparison of the mass fraction profile at 
t=0.2 for MDG(P1), MDG(P2), and MDG(P3) solutions is also provided. The MDG (P1) solutions 
are represented using a two-point connecting straight line on each element, while the MDG(P2) and 
MDG(P3) solutions are represented using a three-point connecting line on each element. As expected, 
the MDG(P1) solution is under-resolved for the rarefaction wave, because of the coarse grid used in 
this test case, although both shock and contact discontinuity are accurately fitted. Both MDG(P2) and 
MDG(P3) solutions are able to capture and fit both shock and contact as true discontinuities at the 
correct locations. In addition, the position of the head and tail of the refraction wave, where a 
derivative discontinuity exists, is virtually resolved exactly by the MDG(P2) and MDG(P3) solutions. 
This superior accuracy of the MDG method should be attributed to the fact that the interface 
conservation is solved and enforced explicitly, as all discontinuity tracking and fitting methods are not 
purposely designed to accurately fit continuous solutions where their derivatives are discontinuous. A 
p-refinement study for this problem is conducted to numerically obtain quantitative measurement of 
the absolute errors and order of p-convergence for the MDG method. The following 𝐿! function norm 
in the space-time domain Ω(x,t) is used to measure the error of the MDG method 
 
 
 
 
 
where 𝑢! and 𝑢! are the computed and exact solutions, respectively. 𝐿! function norm of the error 
function is plotted in Figure 6 against the inverse of the square root of the number of degrees of 
freedom on a log-log scale. One can clearly observe that the MDG method exhibits an exponential 
rate of convergence for the p-type refinement, which is reflected by the downward curving line 
instead of a straight line for the h-refinement. This example demonstrates some of the most attractive 
features of the MDG method due to the interface conservation enforcement: being able to detect and 
fit different types of discontinuities automatically without resorting to specialized logics specific to 
each type and achieving the formal rate of p-convergence even for discontinuous solutions and 
solutions with singularities, that no other numerical methods can to the best of our knowledge. 
Solving and enforcing the conservation laws on interfaces enable the MDG-ICE method to not only 
detect and fit the contact discontinuity and shock wave but also exactly resolve the head and tail of the 
rarefaction wave, where the solutions are continuous but their derivatives are discontinuous. 

uc −ue L2
= (uc −ue

Ω(x ,t )
∫ )2dΩ
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Figure 3. Initial space-time grids and density fields on Ω=(-0.5,0.5)×(0,0.2) for multi-material 
Sod shock tube problem 

 

 

 
Figure 4. Comparison of density, pressure, and velocity at t=0.2 between the analytical solution 
and MDG(P1) (left), and the analytical solution  and MDG(P2) (right) solution, respectively. 
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Figure 5. Comparison of density, pressure, and velocity at t=0.2 between the analytical solution 
and MDG(P3) (top and lower-left), and comparison of mass fraction profile at t=0.2 among 
MDG(P1), MDG(P2), and MDG(P3) solutions (lower-right) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Convergence histories of density, velocity, and pressure for p-refinement   
 
B.  Multi-material Lax-Harden Riemann problem 
 
This is another well-known test case for the multi-material shock tube problem. The initial 
conditions in the present computation are the following: 

(𝜌, 𝑣, 𝑝, 𝛾) 𝑥, 𝑡 = 0 = 0.445, 0.698876404, 3.52773, 1.4 , −0.5 ≤ 𝑥 < 0,
(0.5,0,0.571,5/3)                                        0 < 𝑥 ≤ 0.5  

 
Computation is performed using 8 quadrilateral cells on a space-time domain Ω =(-0.5,0.5)×(0,0.15) 
where the left 7 elements are initiated with the piecewise left constant state and the right one element 
is initiated with the piecewise constant right state. Initial mesh and density field are shown in Figure 7. 
Six middle cells are degenerated at the origin (0,0), which are necessary to resolve the singularity 
point accurately and adequately. Numerical solutions are computed using the MDG(P1) and MDG(P2) 
methods. Figure 8 shows the density, pressure, and velocity profiles at t=0.15, comparing the exact 
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solution and the two computed MDG solutions, respectively. A comparison of the mass fraction 
profile at t=0.2 for the MDG(P1) and MDG(P2) solutions is provided in Figure 9. Both MDG 
solutions are able to fit both shock and contact as true discontinuities at the correct locations. 
Moreover, the position of the head and tail of the refraction wave, where a derivative discontinuity 
exists, is also fit moderately by the MDG(P1) solution due to lack of resolution and virtually exactly 
by the MDG(P2) solution.  Again, one can observe that the MDG methods are able to detect and track 
multiple types of discontinuities automatically and implicitly.  

 
Figure 7. Initial space-time grids and density fields on Ω=(-0.5,0.5)×(0,0.15) for multi-material 
Lax-Harden shock tube problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Comparison of density, pressure, and velocity at t=0.15 between the analytical solution 
and MDG(P1) (left), and the analytical solution  and MDG(P2) (right) solution, respectively. 
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Figure 9. Comparison of the mass fraction profile between the MDG(P1) and MDG(P2) 
solutions at t=0.15. 
 
C. Multi-material shock tube problem with a reflectionless shock 
 
We consider a multi-material shock tube problem with a reflectionless shock. This test case is 
chosen to assess the ability of the MDG method for resolving singularity points, and capture 
and fit discontinuities on highly stretched grids. The initial conditions in the present 
computation are the following: 
 

(𝜌, 𝑣, 𝑝, 𝛾) 𝑥, 𝑡 = 0 = 3.2, 9.43499279,100,5/3 , −0.5 ≤ 𝑥 < −0.3,
(1, 0, 1, 1.2 )                                       −0.3 < 𝑥 ≤ 0.5  

 
Computation is performed using 8 quadrilateral cells on a space-time domain Ω =(-0.5,0.5)×(0,0.06) 
where 6 middle elements are degenerated at the origin (-0.3,0). The solutions are initiated with the 
piecewise left constant state and the right one element is initiated with the piecewise constant right 
state. Initial mesh and density field are shown in Figure 10. Numerical solution is computed using the 
MDG(P1) method. Figure 11 shows the density and pressure profiles at t=0.06, comparing the exact 
solution and the computed MDG(P1) solution. A comparison of the velocity profile with the exact 
solution along with the computed mass fraction profile at t=0.06 is provided in Figure 12. One can 
observe the ability of the MDG method for resolving singularity points, and capture and fit 
discontinuities.  
 
 
 
 
Figure 10. Initial space-time grids and density fields on Ω=(-0.5,0.5)×(0,0.06) for a multi-
material  shock tube problem with reflectionless shock 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Comparison of the density and velocity profile at t=0.06 between the analytical 
solution and MDG(P1) solution. 
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Figure 12. Comparison of the pressure profile at t=0.06 between the analytical solution and 
MDG(P1) solution (left) and the computed mass fraction profile (right) at t=0.06 
 
D. Multi-material shock wave refraction problem 
 
In this test case, we consider regular shock refraction at a carbon dioxide (CO!) /Methane 
(CH!) interface as illustrated in Fig. 13. This example is chosen to assess the ability of the MDG-ICE 
method for fitting discontinuities with non-trivial topology. The Mach number, pressure, and 
stagnation enthalpy are 2, 1, and 3, respectively. The wedge angle is 23.2!. The ratios of specific 
heats for CO! and CH! are 1.288 and 1.303, respectively. The mesh consists of 69 elements, 47 points, 
and 23 boundary faces. The solution is initialized with a uniform flow. The initial density field on the 
initial grid and the density field obtained by the MDG(P1) solution on the final grid are shown in 
Figure 14. One can observe that shock reflection, shock transmission, and refracted material interface 
are accurately resolved and fitted by the MDG-ICE method, clearly demonstrating the ability of the 
MDG-ICE method to detect, resolve, and fit discontinuities with complex topology. In fact, the MDG-
ICE method is able to obtain the analytical solution for this problem due to the interface conservation 
enforcement, which consists of five constant states.  
 
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Illustration of the Multi-material shock wave refraction problem 
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Figure 14. Initial density field on the initial grid (left) and density field obtained by the MDG(P1) 
solution on the final grid. 
 
5     Conclusion and Future Work 
 
A MDG-ICE method based on a continuous variational formulation for the interface conservation 
and a space-time discontinuous Galerkin formulation for the conservative laws has been developed 
for compressible multi-material flows using a mixing model. A number of test cases for both 1D 
unsteady and 2D steady compressible multi-material Euler equations have been conducted to assess 
the accuracy and robustness of the MDG-ICE method. The preliminary results are highly promising 
and encouraging, demonstrating that an exponential rate of convergence for Sod and Lax-Harden 
shock tube problems can be achieved, something that no other numerical methods can do to the best 
of our knowledge. Indeed, by recognizing the importance of the interface conservation and by 
enforcing the interface conservation via grid movement and grid management, the MDG-ICE 
method, (1) can automatically detect and fit all types of discontinuities virtually exactly and resolve 
accurately solutions with discontinuous derivatives, which in turn allows the MDG-ICE method to 
achieve the designed optimal rate of convergence even for discontinuous solutions; (2) does not have 
to use any exact or approximate Riemann solver-based numerical flux function to achieve stability 
nor does it require any strategies (limiter/ENO-WENO/artificial viscosity) to suppress spurious 
oscillations in the vicinity of strong discontinuities; and (3) is extremely robust in the sense that a) It 
can handle highly distorted and even tangled meshes with zero or even negative volumes; and b) 
Even negative pressure and negative density do not lead to the breakdown of a solution process. This 
MDG-ICE method has successfully been extended for thermal and chemical non-equilibrium 
reacting hypersonic flows, which will be reported in another paper. Ongoing work is focused on 
exploring and developing numerical algorithms to solve the resultant nonlinear least-squares 
problems efficiently, effectively, and reliably. The extension of the MDG-ICE method for solving 
viscous flow problems is also underway.   
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