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Abstract: This work establishes a DG method for three-dimensional multi-material flows, on
unstructured tetrahedral meshes. A novel discontinuous Galerkin (DG) method with Hyperbolic-
Tangent Interface Capturing (THINC) for the single-velocity multi-material (two or more materi-
als) system is presented. The physical system considered here assumes stiff velocity relaxation, but
no pressure and temperature equilibrium between the multiple materials. Second- and third-order
DG methods are presented. A well-balanced DG discretization of the non-conservative system
is proposed, and is verified by numerical test problems. To ensure strict conservation of mate-
rial masses and total energy at the discrete level, a consistent interface strategy is implemented.
Comparisons with the second-order finite volume method show that the DG method results in
more accurate solutions for multi-material problems. With the help of numerical experiments, it
is demonstrated that the DG method shows great potential in the field of multi-material hydrody-
namics.
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1 Introduction
Multi-material hydrodynamics has wide-ranging scientific and engineering applications from ICF and deto-
nation studies to astrophysics. Resolving the multi-material interfaces constitutes a fundamental challenge
in simulations of compressible multi-material phenomena. Consequently, over the years a large effort has
concentrated on effectively resolving such interfaces. Diffuse interface methods (DIM) are one category of
interface treatments that received wide acceptance due to its algorithmic simplicity. However, DIMs cause
interfaces to smear over multiple computational cells; often in the order of dozens of cells for long simulation
times. This is a major drawback of DIMs. Several research efforts were directed at using either compressive
limiting strategies and/or aggressive interface reconstructions, that address this problem by “violating” TVD
bounds in appropriate regions to obtain sharper interfaces. One such interface approach that algebraically
reconstructs the volume-of-fluid (VOF or volume fraction) field is the THINC method [1]. THINC has the
benefits of being algorithmically simple due to its purely algebraic and non-iterative nature (as opposed
to geometric reconstructions), while being able to resolve material interfaces in 2-3 cells, regardless of cell-
geometry [2, 3]. Recently, THINC has also been extended to be used with multiple materials [4]. Due to
these reasons, THINC has great potential to be used in multi-material hydrodynamics.

Many multi-material problems involve large swaths of single material regions separated by such material
interfaces. If sharp resolution of interfaces is retained through the simulation times, most of the computa-
tional domain is expected to be comprised of single material cells. To obtain highly accurate solutions in
these single material regions, we propose the use of high-order DG. In this work, we present a high-order
diffuse interface method for multi-material hydrodynamics. We combine the THINC reconstruction with
the multi-material Discontinuous Galerkin (DG) discretization. This results in a method that benefits from
the strengths of THINC and DG: 1) the DG high-order solution can compute highly accurate solutions in
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smooth single material regions of the domain; 2) the interface capturing capabilities of THINC can resolve
interfaces sharply and efficiently. A novel DG method for one-dimensional non-equilibrium multi-material
hydrodynamics was recently proposed [5]. In this work, we extend this method to three-dimensional systems
on unstructured meshes while combining it with THINC, and demonstrate the benefits for multi-material
hydrodynamics.

2 Governing equations
The stiff velocity equilibrium limit of the multi-material hydrodynamics equations [6, 7] is considered here,
with non-equilibrium pressures and temperatures. Finite-rate pressure relaxation is used to model physical
pressure response of materials. The Eulerian form of this multi-material system of equations is,

∂U

∂t
+
∂F j

∂xj
+ D = S, (1)

where,

U =
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αρk
ρui
αρEk
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0
0
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 . (2)

k = 1, 2, ...,m is the material index, and m is the number of materials. Summation over repeating indices is
implied, except for the material index k, where a summation will be explicitly stated when necessary. αk,
αρk, and αρEk are the volume fraction, density and total energy of material k respectively. Bulk properties
such as density ρ, pressure p, and internal energy ρe are defined as,

φ =
∑
k

αkφk, (3)

where φk is the material density ρk, material pressure pk, or material internal energy ρek as required. The
specific total energy of material k is, Ek = ek + ujuj/2, and its specific total enthalpy is, Hk = Ek + pk/ρk,
where ek is the specific internal energy of k. Yk = αρk/ρ is the mass fraction of k. The source term Sα,k
corresponds to the pressure relaxation via differential compaction of each material. It is defined as follows:

Sα,k =
1

τ
(pk − p∗)

αk
Kk

, (4)

where p∗ is the equilibrium pressure that the multi-material cell is expected to reach after sufficient time:

p∗ =

∑
k

(
pk

αk

Kk

)
∑
k
αk

Kk

, (5)

Kk = ρka
2
k is the material’s bulk modulus, and τ is the pressure-equilibration time-scale,

τ = cτ max
k

(
h

ak

)
. (6)

This term models the material response to pressure by redistributing volume fractions based on material
bulk modulii, resulting in a finite amount of relaxation between material pressures. For further details about
the model, c.f. [8, 9]. For m materials, the above system has (4m+ 3) unknowns in a three-dimensional case;
m · [αk, ρk, pk, Ek], u, v, w. The system is composed of (3m+ 3) equations. The additional m equations are
obtained from the material equations of state, usually in the form of pk = pk(ρk, ek). This single-velocity
multi-material system is hyperbolic [6, 7] with characteristic speeds u and u±ac, where ac =

√
(
∑
k αρka

2
k) /ρ

is the mixture speed of sound.
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The system described above is similar to a stiff velocity relaxation limit of the Baer and Nunziato two-
phase model [10, 11, 6, 12, 7]. The difference between these models is the pressure relaxation term. The finite
pressure relaxation used here accounts for material properties while redistributing volumes as a response to
pressure changes, rather than instantaneously relaxing the distinct material pressures. This results in a
more physical depiction of energy distribution between materials with vastly different bulk modulii, for the
problems of interest in this work.

2.1 Equations of state
For the purposes of demonstration, the stiffened-gas equation of state (SG-EoS) is used. However, the
numerical method discussed here is not limited to this choice of EoS, and other EoS can be easily incorporated.
The internal energy, temperature and speed of sound for material-k using the SG-EoS are given, respectively,
as:

ρek =
pk + Pck

γk − 1
+ Pck , (7)

Tk =

(
γk

γk − 1

)
pk + Pck

ρkCpk

, (8)

ak =

√
γk
pk + Pck

ρk
, (9)

where Pck , γk, Cpk
, and Tk are the stiffness parameter, heat capacity ratio, specific heat at constant pressure,

and temperature for material-k respectively.

3 The discontinuous Galerkin discretization
The discontinuous Galerkin discretization from [5] is used in this work. Consider a domain Ω with a closed
boundary Γ on which Eq. (1) are to be solved. Ω is subdivided into finite elements Ωe ∈ Ω, each with a
boundary Γe. The semidiscrete form of Eq. (1) is,
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where Uµ are the N unknown coefficients of the high-order polynomial U . Dubiner polynomials [13, 14]
are used as the solution basis here. The Greek alphabet is specifically used as a modal index to help
avoid confusion with directional indices (i, j). Surface and volume integrals are computed using Gaussian
quadrature of appropriate order of accuracy. Surface fluxes at quadrature points are approximated by the
AUSM+-up scheme [15]. Integrals of non-conservative products are computed in a manner compatible with
the surface flux terms, as concluded by Abgrall and Saurel [16, 11]. An explicit three-stage third-order TVD
Runge-Kutta method [17] is used to discretize (10) in time. Further details can be found in [5].
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3.1 Limiting
Limiting is used to maintain stability in regions where the solution becomes discontinuous. The spectral
decay indicator [18] is used to detect such discontinuities. The spectral decay function is given as:

ηk =

∫
Ωe

((αkρk)p − (αkρk)p−1)
2∫

Ωe
(αkρk)2

p

(11)

η = max
i
ηk (12)

where k is the material index, and ·p and ·p−1 are the polynomial solutions of pth and p−1th order. Elements
with η > 10−5.7 are marked for limiting. Limiting is only used in elements where discontinuities are detected.
Once a troubled element is detected, the 3rd order terms are dropped from the DG expansion, and only
the 2nd order DG coefficients are limited using a vertex-based limiter [19]. Since the limiter does not affect
solutions otherwise, the method can retain high-order accuracy in smooth regions. An example of shock
detection for the triple-point problem is shown in Fig. 1.

Figure 1: Density for triple-point; elements with discontinuities detected by spectral-decay indicator high-
lighted

3.2 THINC reconstruction with DG discretization
The Tangent of Hyperbola for Interface Capturing (THINC) [1, 2] approach is used for problems with sharp
material interfaces. In this case, the volume fraction values at quadrature points are determined from the
THINC reconstruction, rather than the DG polynomial solution. The following condition is used to detect
if an element Ωe lies within a material interface:

ε <

(∫
Ωe

αkdΩ

)
< (1− ε) , ε = 10−8. (13)

This ensures retention of sharp interfaces. For problems with sharp interfaces, this is the same as using a
second-order FV scheme for volume fraction equations, while using high-order DG for the rest of the equations
in the system. This is actually ideal, since high-order methods have little benefit in capturing discontinuities.
Therefore switching to FV for the volume fraction equations (which only have discontinuities, not smooth
variations) saves some computational effort.

For multi-material (> 2) interfaces, a modified THINC reconstruction [4] is used. The basic idea of this
modification is to drop the value of the steepness parameter β when more than two materials with volume
fractions of more than 2.5% are detected in a cell. This drop is achieved by linearly varying β from 2.5 to
1.5 between volume fractions of 2.5% to 5% for the third material in the computational cell. Further details
and discussion can be found in [4]. Shyue and Xiao’s interface treatment [20] is used to maintain consistency
between reconstructions of volume fraction and other quantities such as αρk, αρEk in interface elements.

4



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, USA, July 11-15, 2022

ICCFD11-2501

4 Numerical studies
The multi-material DG method has been implemented in Quinoa, a distributed memory parallel code with
automatic dynamic load balancing (see https://quinoacomputing.github.io). We now present numerical
solutions to a few benchmark problems to verify the THINC-DG method. Where applicable, L2-norms of
errors are used. The minimum volume fraction of εM = 10−12 is used to represent non-existent materials in
single material regions. A material indicator function defined as

∑
k αkk is used to visualize material volume

fractions, which is useful for problems with more than two materials. Tetrahedral meshes are used for all
the test problems.

4.1 Manufactured solution: advection of equilibrium interface
A manufactured solution problem is developed for the multi-material system of equations using the method
described in [21]. Since this problem is smooth, it is used to verify the order of accuracy of the DG method.
THINC reconstruction is not used for this problem, since the interfaces are not sharp by design, so as to
allow order-of-accuracy studies. The analytical solution for this problem is:


α1

ρk
uj
pk
ρek

 =


1
2

(
1.0− tanh

(
10((x− xc(t)) + (y − yc(t)) + (z − zc(t)))

))
x+ y + z + 5.0

(3, 2, 1)
p0

(p0(γk − 1))−1

 (14)

where, xc(t) = x0 + u1t, and so on, and x0 = y0 = z0 = 0.45. The source-terms for this manufactured
solution are: 

sαk

sρk
suj

sEk

 =


0∑

j ujsαk

uj(sρ1 + sρ2)
1
2ujujsρk

 (15)

Here p0 = 0.4. A one-dimensional representation of the partial material densities and bulk density for
this problem is shown in Fig. 2. Both material partial densities have non-linear distributions, making this
problem ideal for testing the order-of-accuracy.

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

α
ρ
k

z

Figure 2: Material density and bulk density distributions for the manufactured solution problem

An order of accuracy study was performed on 3D tetrahedral meshes for the 2nd and 3rd order multi-
material DG method. A set of meshes with 35974, 287792, 2302336, and 18418688 tetrahedra was used.
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The L2 norms of errors in αρk for each of these meshes (max. edge length ∆x) using DG(P1) and DG(P2)
are shown in the table below. The two methods demonstrate design order-of-accuracy, as shown in Fig. 3.
Second and third order lines are shown for reference.

∆x NDOFP1 log ||e||P1 NDOFP2 log ||e||P2

0.042752 143896 7.911897e-03 359740 6.022763e-04
0.021376 1151168 1.920980e-03 2877920 7.408737e-05
0.010688 9209344 4.694062e-04 23023360 9.095131e-06
0.005344 73674752 1.159295e-04 184186880 1.120956e-06

Table 1: L2-norms of errors in solution (αρk) using DG(P1) and DG(P2)
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Figure 3: Error reduction with mesh refinement for 2nd and 3rd order multi-material DG

4.2 Osher-Shu shock-entropy wave interaction test problem for two materials
The the two material version of Osher-Shu’s shock-entropy wave problem [22] is used to assess performance
of the DG method as compared to the second order FV method (FV2). The initial conditions are:

(
α1, α2, u, ρk, pk

)
=

{
εM , (1.0− εM ), 2.6294, 3.8571, 10.3333 forx ≤ −4

(1.0− εM ), εM , 0, 1 + 0.2 sin(5x), 1.0 forx > −4.

A tetrahedral mesh with 22,400 elements (average edge length 0.03563) is used. The domain spans −5 ≤
x ≤ 5, with two layers of elements in the y and z directions. The THINC-FV2 and THINC-DG(P1) methods
are compared in this test. Material indicator profiles at final time t = 1.8 are shown in Fig. 4. The left
figure shows the contour plot using THINC-DG(P1) on the 3D mesh. The right figure shows the material
indicator profile along the domain center line and compares the cell-average material indicators obtained
by the THINC methods with a DG method that does not use THINC. The advantages of using THINC
are clear from this plot. Both THINC methods are able to capture the material interface in 2-3 elements,
as opposed to 6-7 cells when THINC is not used. Since the interface is only 2-3 cells wide, the first-order
approximation from [20] is applied to a very narrow band of cells. Thus, the accuracy in the majority of the
domain is unaffected.
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Figure 4: Material indicator function for the two material shock-entropy wave interaction problem: contour
plot (left), line plot zoomed in at the interface location (right)
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Figure 5: Mixture density (left) for the shock-entropy wave problem obtained by the two methods; closer
view of the high-gradient zone (right)

This is confirmed in the density profiles shown in Fig. 5. The oscillatory behavior of this problem
downstream of the shock is captured very sharply by the THINC-DG method as compared to the THINC-
FV method; thereby highlighting the usefulness of the DG method. The multi-material nature of the problem
only shows in the narrow band of interface cells, while in the rest of the domain the high-accuracy of the
DG method is retained.

4.3 Triple point problem
The multi-material triple point problem [23] is a standard benchmark test used to verify hydro-methods. This
problem involves three materials and a pressure-jump between two of these. Zones for the initial conditions
are shown in Fig. 6. These zones are initialized as:

(
α1, α2, α3, u, pk, Tk

)
=


(1.0− 2εM ), εM , εM , 0 m/s, 1.0, 4.3554007× 10−4 for zoneA
εM , (1.0− 2εM ), εM , 0 m/s, 0.1, 3.4843206× 10−4 for zoneB
εM , εM , (1.0− 2εM ), 0 m/s, 0.1, 3.4843206× 10−4 for zone C.

with the EoS parameters for the three materials as:
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Material γ Pc (Pa) Cp (J/K)
1 1.5 0 4592.0
2 1.4 0 1004.5
3 1.5 0 4592.0

This gives densities of 1, 1, and 0.125 in zones A, B, and C respectively. A large amount of vorticity is
generated at the intersection of the three interfaces causing a roll-up, thereby making this problem a good
test of interface reconstruction capabilities of the method.

Figure 6: Initial conditions for the triple-point problem

First, the effect of THINC reconstruction is shown in Fig. 7. Both results in Fig. 7 are obtained using
an FV scheme on the same mesh. The difference between the two calculations is that one does not use
THINC for interface treatment, while the other does. If an interface reconstruction technique is not used for
this problem, the interfaces get extremely distorted due to numerical dissipation. On the other hand, when
THINC is used, the interfaces are resolved sharply.

Figure 7: Bulk density (top planes) and material indicator (bottom planes) function for the triple-point
problem; left: without THINC reconstruction, right: with THINC reconstruction

Now, the THINC-FV2 and THINC-DG(P1) are compared on the same mesh. A mesh with 165,712
tetrahedra is used. It has two layers of elements in the z direction, and an average edge length of 0.051195.
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Density and x-velocity plots along the domain symmetry axis are shown in Fig. 8. The shock is captured
more sharply by THINC-DG as compared to THINC-FV.
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Figure 8: Density (left) and x-velocity (right) for the triple-point problem obtained by FV2 and DG(P1)
along the domain symmetry-axis

4.4 Shock He-bubble interaction problem
The shock-Helium bubble interaction problem has been used [24, 23] to study the interface capturing capa-
bilities of numerical methods after shock impact. A Mach 1.22 shock strikes a Helium bubble with radius
2.5 cm. The problem is solved on a domain [0 m, 0.2225 m] × [0 m, 0.0445 m] × [0 m, 0.0445 m], with the
bubble centered at (0.1725, 0.0, 0.0). The initial conditions are:

(
α1, α2, u, pk, Tk

)
=

{
εM , (1.0− εM ),−113.5 m/s, 1.5698× 105 Pa, 283.86 K for x ≥ 0.2125 m

εM , (1.0− εM ), 0 m/s, 105 Pa, 248.88 K for x < 0.2125 m.

The bubble is initialized in the region (x − 0.1725)2 + y2 + z2 < (0.025 m)2: with α1 = (1.0 − εM ) and
α2 = εM . Initial conditions are also shown in Fig. 9, where L and R represent the pre- and post-shock states
respectively. The EoS parameters for this test are:

Material γ Pc (Pa) Cp (J/K)
1 (Helium) 1.648 0 5192.6
2 (Air) 1.4 0 1004.5

Figure 9: Initial conditions for the shock He-bubble interaction. All dimensions in mm.
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A coarse mesh with 258,157 tetrahedra (average edge-length 0.002606) is used. The density and material
indicator contours are shown in Fig. 10, with a surface contour of the bubble (α1 = 0.5). Sharp interface
capturing is observed from the material indicator contours. Interface fragmentation is observed, as in the
experiments.

Figure 10: Bulk density (front cut-plane) and material indicator (rear cut-plane) contours for the shock
He-bubble interaction test at t = 169 µs, t = 246 µs, t = 455 µs, and t = 731 µs, from left to right and top
to bottom.

Pressure profiles obtained by THINC-FV2 and THINC-DG(P1) along the center axis of the domain, and
along an axis offset from the center by [0.0225, 0.0225] in the y and z directions are shown in Figs. 11 and 12
respectively. The fluctuations (peaks and troughs) in the transmitted and reflected shocks and rarefactions
are captured more accurately by DG as compared to FV. Density profiles at t = 360 µs along the centerline
are shown in Fig. 13. The initial density profile along the same line is also shown in dotted lines, where
the Helium bubble is visible as a region of low density. At the time instant shown, the bubble is close to
collapse, and the shock and rarefaction waves have been transmitted out of the bubble. DG(P1) shows some
improvements in capturing the peak of the shock.

However, the benefits from DG(P1) are limited, especially considering the increase in computational
effort from FV2. One of the reasons this might be the case, is the ineffectiveness of the shock detector. It is
observed that the shock detector marks most elements for limiting, except the ones with constant states (see
Fig. 14). This behavior will lead to reduced accuracy in smooth regions of the flow. A third-order DG(P2)
method might also lead to better gains in accuracy, despite even higher computational cost increases. These
topics will be studied in a future work.

10



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, USA, July 11-15, 2022

ICCFD11-2501

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 0  0.05  0.1  0.15  0.2

P
re
s
s
u
re

x

THINC-FV

THINC-DG

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 0  0.05  0.1  0.15  0.2

P
re
s
s
u
re

x

THINC-FV

THINC-DG

Figure 11: Pressure profiles at center axis using FV2 and DG(P1) at 360 µs and 400 µs
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Figure 12: Pressure profiles at offset axis using FV2 and DG(P1) at 400 µs and 440 µs
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Figure 13: Densities obtained by FV2 and DG(P1) along the domain center-axis at 360 µs
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Figure 14: Density at 360 µs, detected “troubled” cells highlighted; central axis of bubble in red

5 Summary and conclusions
A THINC-DG method for multi-material hydrodynamics is proposed in this work. The method leverages
the strengths of the THINC and DG methods, resulting in a high-order multi-material method that: i)
can compute highly accurate solutions in smooth single material regions of the problem domain, and ii)
can maintain sharp multi-material interface resolution efficiently. The proposed method is verified with the
help of a few numerical tests, that also demonstrate the accuracy of the method. Based on the results, the
THINC-DG method shows potential to be used for multi-material hydrodynamics simulations.

However, further research on shock detectors for multi-material flows is needed to maximize gains from
the DG methods. Studies and comparisons of various available shock detectors are a topic of ongoing work.
Using AMR will allow use of coarser mesh elements in single material regions and refine around material
interfaces, thereby leveraging the benefits of DG. This will be explored in future work. Further V&V is of
interest and will be reported in a future publication.
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