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Abstract: A Lattice-Boltzmann Method (LBM) based numerical method is applied 

in this study to solve the time accurate three dimensional flow field of a Taylor-

Green vortex (TGV) problem at high Reynolds number. Two turbulence modeling 

approaches, LBM-RANS/URANS (Unsteady Reynolds-Averaged Navier Stokes) 

and LBM-VLES (Very Large Eddy Simulation) are investigated. Simulations are 

performed at Reynolds number of 1600, analysis of temporal evolutions of flow 

structures, power spectrums and decay rates of kinetic energy, is made on the 

solutions from the two turbulence models and compared with results from direct 

numerical simulation (DNS). The comparisons indicated that LBM-RANS approach 

is over dissipative and cannot capture the vorticity dynamics and evolutions 

correctly, while the LBM-VLES solution is consistent with data from DNS. Results 

from TGV simulations at much higher Reynolds numbers (Re=106) also verified that 

LBM-VLES is able to capture the right turbulent structures and spectrum scaling 

laws for the inertial range, while LBM-RANS predicted over damped results.  
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1     Introduction 

The quality of CFD prediction for complex turbulent flow field is greatly dependent on the underlying 

closure model for flow turbulence [1,2]. Conventional CFD approaches are based on the closure 

formulation for the Navier-stokes equations, where the averaged RANS equations or space-filtered 

equations (LES) are solved. The contributions from either the Reynolds stresses or the Sub Grid Scales 

(SGS) are approximated based on the model assumptions [1,2]. The most popular linear eddy viscosity 

type of RANS models uses a linear stress-strain assumption. These models are intrinsically isotropic 

and were found not suitable for highly unsteady anisotropic turbulent flows [2]. Advanced models such 

as Reynolds stress model (RSM) or LES has to be used, which increase the model complexity and 

consequently the computation cost [2].  

Lattice Boltzmann method (LBM) is an alternate CFD methodology that solves the Boltzmann equation 

in its discrete form on a square (or cubic) lattice) [3-7]. The LBE has been shown to recover the 

compressible Navier-Stokes equation at the hydrodynamic limit [3, 4, 8]. In the nearly incompressible 

limit, it produces the incompressible Navier-Stokes equations with an error proportional to the local 

Mach number squared. The key advantages in LBM include parallel computation for time dependent 

flows, ease of modeling various complex fluids, and physical and more straightforward handling of 

complicated geometries and boundary conditions [6,9,10] . A number of numerical benchmarks have 

been presented to illustrate the accuracy of LBMs for laminar flows [4, 11]. The LBM-VLES based 
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turbulence modeling approach has been incorporated into commercial CFD software SIMULIA 

PowerFLOW@ and has been demonstrated as a viable and desirable approach for doing very large eddy 

simulations (VLES) of high Reynolds number turbulent flows in industrial applications [6, 12-15] . 

The Taylor-Green vortex (TGV) serves as one of the canonical flow problems developed to study the 

generation of small scales by three-dimensional vortex dynamics and the transition of flow field from 

well-organized large-scale motion into decaying turbulence [16-23]. It has been chosen in this study to 

demonstrate the effectiveness of LBM-VLES in predicting three dimensional, unsteady turbulent flows, 

the results will be directly compared with available LBM based Direct Numerical Simulations (DNS) 

data and LBM-RANS turbulence model simulation predictions.  This paper is organized as follows. 

First, a description of the studied problem is given (Section 2). Next, some basics of the numerical 

algorithm and the related turbulence modeling approaches are presented (Section 3). This is followed 

by the generated results (Section 4) and the conclusions (Section 5). 

2     Problem Statement 

The three dimensional Taylor-Green vortex flow is a well-documented problem to test the accuracy and 

the performance of numerical methods and turbulence models [16-23]. The flow is solved on a cubic 

domain which spans [0,2πL] in x,y,z coordinate direction, with an initial flow field given by:  

         (1) 

The flow is assumed compressible, and the Reynolds number is defined as 𝑅𝑒 =
𝜌𝑉0𝐿

𝜇
, where µ is the 

dynamic viscosity. For the two turbulence models (LBM-VLES and LBM-RANS) studied, a Reynolds 

number of 1600 was chosen and three resolutions: 128×128×128, 256×256×256 and 512 × 512 × 512 

were used to study the effects of grid resolution, the results from turbulence simulations are then 

compared against a LBM-DNS one performed at a resolution of 512 × 512 × 512. For Reynolds number 

1×106, the simulations were performed only with LBM-VLES and LBM-RANS, since a DNS 

simulation at such high Re is not feasible.  In all the LBM simulations, a simulation Mach number of 

0.1 is used. 

3     The Numerical algorithm 
3.1     The Lattice Boltzmann Methods 

The lattice Boltzmann equation has the following form: 

( , ) ( , ) ( , )i i i if x c t t t f x t C x t       (2) 

where fi is the distribution function for particles moving in the ith direction, according to a finite set of

the discrete velocity vectors { ic : i = 0, ... b}. ic t  and t  are space and time increments respectively. 

For convenience, we choose the convention 1t   in the subsequent discussions. The collision term on 

the right hand side of Eq. (1) adopts the simplest and also the most popular form known as the 

Bhatnagar-Gross-Krook (BGK) form [3, 8, 24]: 

1
( , ) ( , ) ( , )eq

i i iC x t f x t f x t

      (3) 

Here τ is the single relaxation time parameter, and eq

if  is the local equilibrium distribution function, 

which depends on local hydrodynamic properties [3, 4, 8]. On the other hand, an extension of the 

Hermite "filtered" collision operator can be applied [26, 27] to enhance numerical stability and 

symmetry. In the current study, a regularized collision procedure is calculated using the non-equilibrium 
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distributions                               , where Φ is a regularization operator that uses Hermite polynomials 

and Π is the non-equilibrium part of the momentum flux. The basic concept of regularized collision 

procedure can be found in [26, 27]. 

The basic hydrodynamic quantities, such as fluid density  and velocity u , are obtained through 

moment summations; i.e. 

( , ) ( , )i

i

x t f x t  , ( , ) ( , )i i

i

u x t c f x t                                           (4) 

The three-dimensional D3Q19 model[3, 8] shown in figure 2  is used in the present three-

dimensional study to represent the possible velocity directions. The local equilibrium distribution 

function eq

if  takes the following form so that the recovered macroscopic hydrodynamics satisfy the 

conservation laws and the leading order resulting macroscopic equations are Galilean invariant at low 

Mach number[3, 8]. 
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              (5) 

where wi are weighting parameters: 

1/18,   in 6 coordinate directions;

1/ 36,   in 12 bi-diagonal directions;

1/ 3,     rest particles

iw




 



    (6) 

and T is the lattice temperature which is generally set to 1/3 for isothermal simulations. 

In the low frequency and long-wave-length limit, one can recover the Navier-Stokes equations 

through Chapman-Enskog expansion. The resulting equation of state obeys the thermally perfect gas 

law, p T . The kinematic viscosity of the fluid is related to the relaxation time parameter,  , by[3, 

8, 24] 

0 ( 1/ 2)T          (7) 

The combination of Eq. (2) to Eq. (7) forms our LBM scheme (LBM momentum solver) for fluid 

dynamics. 

 

3.1     Fluid Turbulence Model 
 

In order to model the turbulent fluctuations, the LBE is extended by replacing its molecular 

relaxation time scale with an effective turbulent relaxation time scale; i.e., 
eff  , where 

eff  can be 

derived from a systematic renormalization group (RG) procedure[6] as 

2

2 1/ 2

/

(1 )
eff

k
C

T



 


 


      (8) 

 
Figure 1.  D3Q19 Model. 
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where   is a combination of a local strain parameter ( /k S  ), local vorticity parameter (

/k   ), and local helicity parameters.  

A modified k   two-equation model based on the original RG formulation describes the subgrid 

turbulence contributions[6, 27, 28, 29], and is given by 
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   (9) 

The parameter 2 /T C k  is the eddy viscosity in the RG formulation. All dimensionless coefficients 

are the same as in the original models [28, 29].  

This LBM-VLES based description of turbulent fluctuation carries flow history and upstream 

information, and contains high order terms to account for the nonlinearity of the Reynolds stress [6, 

10]. This model has unique features to excite the explicit small scale eddies via strong dynamic 

interactions between the large scale resolved motions and small scale unresolved turbulence, thus 

creates a broad range energy cascading between the two distinct turbulence spectrums. The LBM-VLES  

model has been successfully implemented into the state-of-the-art high-fidelity CFD solver SIMULIA 

PowerFLOW@ and its accuracy and performance have been extensively validated over a wide range of 

complex flow problems from aerodynamics, aeroacoustics, to heat transfer in automotive and aerospace 

industries [12-15].   In the LBM-RANS/URANS approach, large-scale coherent flow structures are 

resolved, while the effects of small scales turbulence are modeled via a Boussinesq eddy-viscosity 

approximation with two transport equations from extended renormalization-group theory [28, 29]. This 

is achieved by setting the effective turbulence viscosity directly equivalent to the eddy viscosity 

obtained from RG linear eddy viscosity model (equation 9).  

 

4     Results and Discussions 
 

For the Reynolds number of 1600, figure 2 shows the evolution of simulated flow structures (identified 

through λ2 criterion [30]) at different instances of time t* of  6, 9 and 12, with a grid resolution of 

512×512×512. Here t* is a time scale defined as t* = V0t/L.  All the simulations predicted that the 

initially well-defined flow field gradually evolves from “inviscid” like field into a one that being 

stretched by large vortex structures, the large vortices then breakdown into smaller vortices then 

cascaded into even smaller ones, and finally forms a near-isotropic state. Apparently, by comparing 

the results from LBM-VLES and LBM-RANS/URANS, LBM-RANS/URANS appears to be very 

dissipative and it damped out most of the small-scale structures as the flow transitions to turbulence 

even when run at such a fine resolution as the LBM-DNS one. On the contrary, LBM-VLES shows 

predicted flow structures nearly identical to LBM-DNS, this indicates that LBM-VLES can preserves 

most of the small-scales associated with turbulence.  

 

The evolution of kinetic energy decay is shown in figure 3. Here both the LBM-VLES (figure 2a) and 

LBM-RANS/RUANS (figure 2b) are compared against LBM-DNS results as well as the DNS results 

from Van Rees et al. [31]. First, the current LBM-DNS result is in excellent agreement with the one 

from spectral method [31] at same grid resolution. Second, it is evident that LBM-VLES shows good 

resolution convergence and predicts results, which are very close to LBM-DNS. Finally, LBM-URANS 

predicts an incorrect trend for the kinetic energy decay, mainly due to a lack of proper energy 

transferring mechanism from large-scale structures to small-scale structures.  

 

Figure 4 shows the 3D energy spectra measured at different time intervals. Compared with the reference 

DNS solutions, at all instances of time the predictions of LBM-VLES are far superior over the ones 

from LBM-RANS/URANS. At t*  = 12, the classic Kolmogorov’s −5/3 power law in the inertial 
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subrange is well captured by LBM-VLES, indicating that the LBM-VLES approach can correctly 

modela the energy cascading from larger scales to smaller scales. It should be noted that, at higher wave 

numbers (>200), the LBM-VLES simulation with a resolution of 512 × 512 × 512 predicted a slightly 

higher wave spectra than the DNS one, this will need further investigations.  

 

 
Figure 2. Comparison of flow structures between LBM-DNS, LBM-VLES and LBM-URANS at 

Reynolds number 1600 and resolution 512 × 512 × 512 :  (a) t* = 6. (b) t* = 9. (c) t* = 12. 

 

 
Figure 3. Decay of kinetic energy at Reynolds number 1600. (a) LBM-VLES. (b) LBM-

RANS/URANS. 
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Figure 4. 3D energy spectra at Reynolds number 1600 and (a) t* = 6 (b) t* = 9 (c) t* = 12. 

 

Additional simulations were performed for the TGV problem at a Reynolds number 1×106, such 

Reynolds number is too high to perform a feasible DNS study, so the simulations are only done with 

the two turbulence models (LBM-VLES and LBM-RANS/URANS).  In figure 5 it is shown that LBM-

VLES is still able to capture the right scaling laws in the inertial range, while LBM-RANS/URANS is 

unable to do so. This confirms the validity of LBM-VLES approach for highly unsteady turbulent flow 

predictions. 
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Figure 5. 3D energy spectra at Reynolds number 1 × 106 and (a) t* = 6 (b) t* = 9 (c) t* = 12. 

 

5     Conclusion 
 
We presented the study of three-dimensional Taylor Green Vortex flow problem by two turbulence-

modeling approaches: the LBM-RANS/URANS approach and LBM-VLES approach, In the LBM-

RANS/URANS (Reynolds-Averaged Navier Stokes) approach, large scale coherent flow structures are 

resolved, while the effects of small scales turbulence are modeled via a Boussinesq eddy-viscosity 

approximation with two transport equations from extended renormalization-group theory. In the LBM-

VLES (Very Large Eddy Simulation) approach, explicit small scale eddies are excited by strong 

dynamic interactions between the large scale resolved motions and small scale unresolved turbulence, 

which creates a broad range energy cascading between the two distinct turbulence spectrums. The 

simulation results show that LBM-VLES is able to capture to correct kinetic energy decay, can predict 

the right turbulent structures and recover the classic Kolmogorov’s −5/3 power scaling laws for the 
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inertial range, while LBM-RANS/URANS approach gives over-damped predictions. This confirms the 

validity of the LBM-VLES approach for highly unsteady complex turbulent flow predictions. 

 

References 
 
[1] Pope, S. B. “Turbulent Flows,” Cambridge University Press, 2001. 

[2] Davidson, L. "Fluid mechanics, turbulent flow and turbulence modeling." Chalmers University 

of Technology, Goteborg, Sweden (Nov 2011) (2018). 

[3] Chen, H., Chen, S., and Matthaeus, W. H., “Recovery of the Navier-Stokes equations using a 

lattice-gas Boltzmann method,” Physical Review A, Vol. 45, No. 8, 1992, pp. R5339. 

[4] Chen, S. and Doolen, G. D., “Lattice Boltzmann method for fluid flows,” Annual review of fluid 

mechanics, Vol. 30, No. 1, 1998, pp. 329–364. 

[5] Succi, S., The Lattice Boltzmann equation: For fluid dynamics and beyond, Oxford university 

press, 2001.  

[6] Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., and Yakhot, V., “Extended 

Boltzmann kinetic equation for turbulent flows,” Science, Vol. 301, No. 5633, 2003, pp. 633–

636. 

[7] Shan, X., Yuan, X.-F., and Chen, H., “Kinetic theory representation of hydrodynamics: A way 

beyond the Navier–Stokes equation,” Journal of Fluid Mechanics, Vol. 550, 2006, pp. 413–441. 

[8] Qian, Y., d'Humieres, D. and Lallemand, P., “Lattice BGK Models for the Navier-Stokes 

Equation,” Europhys. Lett., Vol. 17, 1992, pp. 479-484. 

[9] Chen, H., Teixeira, C., and Molvig, K., “Realization of Fluid Boundary Conditions via Discrete 

Boltzmann Dynamics,” Int. J. Mod. Phys. C, Vol. 9, 1998, pp. 1281-1292. 

[10] Chen, H., Orszag, S., Staroselsky, I., and Succi, S., “Expanded Analogy between Boltzmann 

Kinetic Theory of Fluid and Turbulence”, J. Fluid Mech., Vol. 519, 2004, pp. 307-314. 

[11] Li,Y., Shock, R., Zhang, R. and Chen, H., “Numerical Study of Flow Past an Impulsively 

Started Cylinder by Lattice Blotzmann Method,” J. Fluid Mech., Vol. 519, 2004, pp. 273-300. 

[12] Kotapati, R., Keating, A., Kandasamy, S., Duncan, B., Shock, R., and Chen, H., “The lattice-

Boltzmann-VLES Method for automotive fluid dynamics simulation, a review,” Tech. rep., SAE 

Technical Paper, 2009. 

[13] Meskine, M., Pérot, F., Senthooran, S., Freed, D., Sugiyama, Z., Polidoro, F., and Gautier, S., 

“High speed train aeroacoustic solution for community noise using Lattice Boltzmann Method,” 

SIA, Le Mans, France, 2012. 

[14] Wang, Z., Alajbegovic, A., Han, J., Donley, T., Horrigan, K., Bloch, D., Pell, M., and Holz, 

A., “Long Term Transient Cooling of Heavy Vehicle Cabin Compartments,” Tech. rep., SAE 

Technical Paper, 2010. 

[15] Singh, D., Konig, B., Fares, E., Murayama, M., Ito, Y., Yokokawa, Y., and Yamamoto, K., 

“Lattice-Boltzmann simulations of the JAXA JSM high-lift configuration in a wind tunnel,” 

AIAA Scitech 2019 Forum, 2019, p. 1333. 

[16] Taylor, G. I. and Green, A. E., “Mechanism of the production of small eddies from large 

ones,” Proceedings of the Royal Society of London. Series A-Mathematical and Physical 

Sciences, Vol. 158, No. 895, 1937, pp. 499–521. 

[17] Orszag, S. A., “Numerical simulation of the Taylor-Green vortex,” Computing Methods in 

Applied Sciences and Engineering Part 2, Springer, 1974, pp. 50–64. 

[18] Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B., Morf, R. H., and Frisch, U., “Small-

scale structure of the Taylor–Green vortex,” Journal of Fluid Mechanics, Vol. 130, 1983, pp. 

411–452. 

[19] Wang, Z. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., 

Hartmann, R., Hillewaert, K., Huynh, H. T., et al., “High-order CFD methods: current status and 



 9 

perspective,” International Journal for Numerical Methods in Fluids, Vol. 72, No. 8, 2013, pp. 

811–845. 

[20] DeBonis, J., “Solutions of the Taylor-Green vortex problem using high-resolution explicit 

finite difference methods,” 51st AIAA Aerospace Sciences Meeting including the New Horizons 

Forum and Aerospace Exposition, 2013, p. 382. 

[21] Bull, J. R. and Jameson, A., “Simulation of the Taylor–Green vortex using high-order flux 

reconstruction schemes,” AIAA Journal, Vol. 53, No. 9, 2015, pp. 2750–2761. 

[22] Berselli, L. C., “On the large eddy simulation of the Taylor–Green vortex,” Journal of 

Mathematical Fluid Mechanics, Vol. 7, No. 2, 2005, pp. S164–S191. 

[23] Fauconnier, D., De Langhe, C., and Dick, E., “Construction of explicit and implicit dynamic 

finite difference schemes and application to the large-eddy simulation of the Taylor–Green 

vortex,” Journal of Computational Physics, Vol. 228, No. 21, 2009, pp. 8053–8084. 

[24] Bhatnagar, P., Gross, E. and Krook, M., “A Model for Collision Processes in Gases. I. Small 

Amplitude Processes in Charged and Neutral One-component System,” Phys. Rev., Vol. 94, 

1954, pp. 511-525. 

[25] Chen H, Zhang R, Staroselsky I, Jhon M. Recovery of full rotational invariance in lattice 

Boltzmann formulations for high Knudsen number flows. Physica A: Statistical Mechanics and 

its Applications. 2006 Mar 15;362(1):125-31. 

[26] Chen, Hudong, Raoyang Zhang, and Pradeep Gopalakrishnan. "Filtered lattice Boltzmann 

collision formulation enforcing isotropy and Galilean invariance." Physica Scripta 95, no. 3 

(2020): 034003. 

[27] Yakhot, V. and Orszag, S. A., “Renormalization group analysis of turbulence. I. Basic 

theory,” Journal of scientific computing, Vol. 1, No. 1, 1986, pp. 3–51. 

[28] Yakhot, Victor, and Leslie M. Smith. "The renormalization group, the ɛ-expansion and 

derivation of turbulence models." Journal of scientific computing 7, no. 1 (1992): 35-61. 

[29] Yakhot, V. S. A. S. T. B. C. G., S. A. Orszag, Siva Thangam, T. B. Gatski, and CG1167781 

Speziale. "Development of turbulence models for shear flows by a double expansion technique." 

Physics of Fluids A: Fluid Dynamics 4, no. 7 (1992): 1510-1520. 

[30] Jeong, J. and Hussain, F., “On the identification of a vortex,” Journal of fluid mechanics, Vol. 

285, 1995, pp. 69–94.  

[31] Van Rees, W. M., Leonard, A., Pullin, D. I., and Koumoutsakos, P., “A comparison of vortex 

and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds 

numbers,” Journal of Computational Physics, Vol. 230, No. 8, 2011, pp. 2794–2805. 

 

 


