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Abstract: A novel model is proposed for the Eulerian treatment of particle-laden
multiphase flows characterized by a dilute particle phase with an arbitrary num-
ber of distinguishable properties, such as size or temperature, based on an entropy-
maximization argument. Unlike previous formulations, this new moment-based model
provides a set of first-order robustly-hyperbolic balance laws that include a direct
treatment for the local statistical variance of each variable, as well as the covariance
between the internal variables or the internal variables and particle velocity. Two
variations of the model are investigated and the predictive capabilities of the new
model are explored for two representative problems. First, the ability of one version
of the model to exactly capture the state of a polydisperse particle phase settling in
still air is shown. Then, a puff of particles with initial horizontal velocity is modelled
settling in a cross wind in order to demonstrate the value of directly tracking all
particle variances and covariances for accurate prediction.

1 Introduction and Scope of Work
The accurate prediction of multiphase flow when particles are differentiated by a set of distinguishable
properties, such as size or temperature, can pose modelling and numerical challenges. Even for monodisperse
flow, traditional Eulerian methods have modelling limitations. Most of these models only treat a small
number of variables describing the particle phase—typically the density and velocity [1, 2]. As most of these
classical models assume that all particles at a location in space share the same velocity, they are inappropriate
for situations when a range of particle velocities is expected. More recently, models for monodisperse flows
that are inspired by the kinetic theory of gases have been proposed [3, 4, 5, 6, 7]. These model allow for the
direct treatment of higher-order statistics of particle velocities, such as variances and co-variances.

The focus of this work is the exploration of two different formulations of a recently proposed polydisperse
Gaussian-moment model (PGM). These models, building upon the recent PGM formulation of Forgues et
al. [8], are described by fifteen first-order hyperbolic balance laws that provide an Eulerian treatment for
higher-order statistics describing a particle phase in a background flow. The PGM formulation is an extension
of the well-known ten-moment maximum-entropy model from rarefied gas dynamics [9, 10] and provides a
direct treatment for local variances and covariances between all particle properties and velocities. This
statistical information is not commonly available or utilized in traditional Eulerian methods and holds the
promise of improved modelling accuracy at reduced computational cost.

Two variants of the PGM are investigated: the original form, which assumes a log-normal distribution
of particle diameters, and one in which particle surface area is assumed to follow a normal distribution. In
both cases, particle drag, buoyancy, and gravitational acceleration are considered. There are many practical
processes in which a log-normal distribution of the particle diameters is encountered such as the human
cough [11]. However, the original log-normal version of the model does not correctly recover the settling
rates for particles in a quiescent atmosphere. In contrast, the surface-area-based version of the model is
designed to recover this settling rate exactly.
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2 Moment Methods and the Kinetic Theory of Gases
The situation of a mutliphase flow, in which a large number of small particles are suspended in a background
fluid, has many similarities to the situation of an ideal gas. Such flows contains a large number of particles
but their individual evolution are rarely of interest. Rather, it is the evolution of the bulk that is important.
The theory of moment methods from the kinetic theory of gases provides a framework for the construction
of evolution laws for observable statistics of the collection of particles [12]. This chapter summarizes the
essential elements of the kinetic theory of gases and the construction of the maximum-entropy family of
moment closures. These closures form the basis of the moment-based models for polydisperse flows that are
proposed in the following section.

2.1 An Introduction to Kinetic Theory of Gases
In a traditional kinetic-theory model, a gas is assumed to be comprised of discrete, indistinguishable particles.
These particles are treated in a statistical manner, such that, for a given position in phase space (position, xi,
and velocity, vi), the density of particles at a given time, t, is given by a distribution function, F = (xi, vi, t).
The evolution of this distribution function is governed by the Boltzmann equation,

∂F
∂t

+ vα
∂F
∂xα

+
∂

∂vα
(aαF) =

δF
δt

. (1)

Here, aα is the particle acceleration induced by external fields and the right-hand side is the Boltzmann
collision integral [13]. This integral models the effect that inter-particle collisions have on the distribution
function.

The distribution function is a high-dimensional function that provides an enormous amount of information
describing the state of a gas—far more than is usually of interest. Traditional macroscopic, or observable,
properties of the gas are obtained by taking moments of F . This is done by pre-multiplying the distribution
by a suitably chosen velocity-dependant weight and integrating over all velocity space,

∞∫∫∫
−∞

wF(xi, vi, t) dvi = 〈wF 〉 . (2)

Here, w is a velocity dependant weight (typically a monomial). The compact notation, 〈·〉, indicates in-
tegration over all possible velocities. The lowest-order moment, the local number density of a gas, can be
obtained by choosing w = 1,

n(xi, t) =

∞∫∫∫
−∞

F(xi, vi, t) dvi . (3)

As the particle velocity appears zero times in the weight, this is denoted as a zeroth-order moment. Another
zeroth-order moment, the mass density, is found by taking w = m, where m is the mass of an individual gas
particle,

ρ = 〈mF 〉 . (4)

Taking the first-order moment, w = mvi, results in the corresponding average momentum density of the
particles,

ρµi = 〈mvi F 〉 . (5)

The average particle velocity of the distribution can thus be obtained as

µi =
〈mvi F 〉
〈mF 〉

, (6)

Additionally, it becomes useful to defined the random, or deviatoric, velocity of the particles as the difference
between the particle’s velocity, and the local average velocity of the gas, ci = vi − µi.
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The deviatoric velocity can also be used to define velocity moments. For example, the moment

nΘij = 〈cicjF〉 . (7)

defines the second-order variance-covariance tensor, Θij . This symmetric tensor contains the variance of each
component of the particle velocity on the diagonal and covariance between components off the diagonal. It
is related to the so-called pressure tensor as

Pij = ρΘij . (8)

This pressure tensor is the negative of the traditional fluid stress tensor and is related to the hydrostatic
pressure through the contraction, p = Pii.

2.2 Moments Methods
Due to its high dimensionality, the direct numerical solution of Eq. (1) is prohibitively costly for practical
cases. It would be unfeasible to solve this kinetic equation, then take moments in most cases. Fortunately,
the method of moments provides a technique to produce evolution laws for the moments themselves. This
process begins by taking moments of the Boltzmann equations,〈

w

(
∂F
∂t

+ vα
∂F
∂xα

+
∂

∂vα
(aαF)

)〉
=

〈
w
δF

δt

〉
, (9)〈

w
∂F
∂t

〉
+

〈
wvα

∂F
∂xα

〉
+

〈
w
∂

∂vα
(aαF)

〉
=

〈
w
δF

δt

〉
, (10)

∂

∂t
〈wF〉+

∂

∂xα
〈vαwF〉+

〈
w
∂

∂vα
(aαF)

〉
=

〈
w
δF

δt

〉
. (11)

This equation is known as Maxwell’s equation of change and describes the evolution of the moment, 〈wF〉.
The last term on the left-hand side, caused by external acceleration fields, can be converted to another form
that is often more convenient by using the product rule,〈

∂

∂vα
(aαwF)

〉
=

〈
w
∂

∂vα
(aαF)

〉
+

〈
aαF

∂w

∂vα

〉
. (12)

Provided that F goes to zero quickly enough as vi →∞, the left-hand side of Eq. (12) will be zero.
Typically, one is interested in the evolution of more than one moment. One can, therefore, define a vector

of weights, W , containing a collection of generating weights. This leads to

∂

∂t
〈WF〉+

∂

∂xα
〈vαWF〉 =

〈
W δF

δt

〉
+

〈
aαF

∂W
∂vα

〉
. (13)

Both moments on the right-hand side of this equation typically lead to local, algebraic expressions. Equa-
tion (13), therefore, takes the form of a system of first-order balance laws,

∂

∂t
U +

∂

∂xα
Fα = S . (14)

Here U = 〈WF〉 is the solution vector containing the moments of interest and Fα = 〈vαWF〉 is the flux
dyad corresponding to the conserved moment in U . If the eigenvalues of the flux Jacobian of this system
contains all real eigenvalues, the system is said to by hyperbolic—a property that brings mathematical and
computational benefits.

One can observe that Eq. (13) or (14) are not closed. This is because all moments present in the solution
vector, U , always depend on knowledge of a higher-order moment in the flux term, Fα. This means there
will always be moments present in the flux that are not present in the solution vector. In general, the source
terms can also be unclosed. However, for many practical cases, this is not the case. A technique to close the
system of balance laws given in Eq. (14) is known as a moment closure.

3



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, July 11-15, 2022

ICCFD11-2022-2105

2.3 Moment Closure
One technique to obtain a closed system of balance laws describing the evolution of the moments of interest
is to restrict the form of the distribution function, F . If one wishes to close a system of n moment equations,
a form for F is proposed in terms of n free parameters, or closure coefficients. The values of the coefficients
should be chosen so that moment relations, such as those given in Eqs. (3)–(7), are satisfied. Once this is
done, the distribution function is completely determined and any missing moments can be integrated.

The method of moments for gases was first proposed by Grad [12], who proposed to select a distribution
function that is an expansion around thermodynamic equilibrium in terms of polynomials. Unfortunately, it
was quickly discovered that the resulting moment systems led to first-order balance laws whose flux Jacobian
could develop complex eigenvalues. Also, the polynomial expansion is not guaranteed to remain positive and,
thus, the assumed distribution function can be negative in some regions of phase space. These facts have
limited the wide-spread adoption of the method.

More recently, a hierarchy of moment methods based on the maximization of entropy was proposed [14,
15, 9]. The hierarchy comes from assuming the distribution function has the form

F = exp
(
αTW

)
. (15)

Here, α is the vector of closure coefficients that must be found to ensure the distribution function is consistent
with the moments of the solution vector.

This hierarchy appears to have many pleasing properties. The resulting moment equations are guaranteed
to be hyperbolic whenever a function of the form given in Eq. (15) can be found and the positivity of the
distribution is guaranteed by the assumed form of the distribution.

The lowest-order member of the maximum-entropy hierarchy is obtained by choosing a vector of gen-
erating weights, W5 = [m,mvi,

1
2mvivi]

T. This gives an assumed form of the distribution function given
by

F5 = n

(
ρ

2πp

) 3
2

exp

(
− ρ

2p
cici

)
, (16)

which is the Maxwell-Boltzmann distribution that describes a gas in local thermodynamic equilibrium, and
leads to the familiar Euler equations for a compressible monatomic gas.

The next member of the maximum-entropy family of closures uses the ten moments that correspond to
velocity weights, W10 = [m,mvi,mvivj ]

T. This leads to a distribution function given by

F10 = G =
n

(2π)
3
2 (det Θij)

1
2

exp

(
−1

2
Θ−1
ij cicj

)
. (17)

This so-called Gaussian distribution resembles the Maxwell-Boltzmann distribution, but has a different
variance in different directions. In the absence of acceleration fields, it leads to a collection of ten first-order
hyperbolic balance laws,

∂ρ

∂t
+

∂

∂xk
ρµk = 0 , (18)

∂

∂t
ρµi +

∂

∂xk
(ρµiµk + Pik) = 0 , (19)

∂

∂t
(ρµiµk + Pik) +

∂

∂xk
(ρµiµjµk + µiPjk + µjPik + µkPij) = ∆(Pij) . (20)

Here, ∆(Pij) describes how inter-particle collisions attenuate anisotropy in the pressure tensor. This term
depends of the particular collision operator chosen. This closure provides a first-order hyperbolic treatment
for viscous compressible gases. It obtains its closure because the heat transfer is zero through the choice of
the distribution function. However, this model has been used to successfully model many viscous flows in
situations when heat-transfer can be neglected [10, 16, 17, 18, 19, 20, 21]. This model has also previously
been applied to the prediction of monodisperse flows with good results [3]. It is this Gaussian model that
forms the basis of the treatments for polydisperse multiphase proposed in the present work.
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3 A Kinetic Description of Polydisperse Flow
The goal of this work is to extend the moment methods presented in the previous section for the treatment of
polydisperse multiphase flows. The situation of a particle phase is similar to that of the particles comprising
a gas, which gives confidence that similar moment-based technique should be effective. Previous studies have
shown this to be true for a monodisperse flow, in which the particles are indistinguishable [3]. However,
the particles of a general polydisperse flow can be differentiated by any number of distinguishing variables,
such as size, temperature, or chemical composition. In order to treat such flows, the traditional distribution
function must be extended into higher dimensions,

F = F(xi, vi, ζĭ, t) . (21)

Here, the ζĭ can be replaced by any number of distinguishing variables describing particles and F gives the
particle density in this expanded phase space. The index decorated with a breve, ĭ, indexes the distinguishing
variables, which do not transform as regular tensors—undecorated indices are reserved for traditional spacial
components of tensors.

The evolution of the extended distribution function is described by the expanded kinetic equation,

∂F
∂t

+ vα
∂F
∂xα

+
∂

∂vα
(aαF) +

∑
ĭ=0

∂

∂ζĭ
(ΥĭF) =

(
δF
δt

)
collision

. (22)

Here, Υĭ represents the time rate of change of the ĭth distinguishing variable.
Moments of the extended distribution function are once again defined. However, the integration must

now be expanded into the space of distinguishing variables,

〈wF〉 =

∫∫∫
∞

· · ·
∫

wF dζĭ dvi . (23)

It should be noted that the space of these new variables need not span all real numbers. For example, if
the particle surface area, s, is chosen, this distinguishing variable can only take values in the half space,
0 < s <∞.

In addition to the moments defined above, the distinguishing variables can also be used as moment
weights. For example, the average value of a distinguishing variable, ζ̄ĭ, can be found as

nζ̄ĭ = 〈ζĭ F〉 . (24)

This allows the deviatoric velocity, ci, to be extended with deviations of other variables from the average,

cĩ =
[
vx − µx, vy − µy, vz − µz, ζ0 − ζ̄0, ζ1 − ζ̄1, ζ2 − ζ̄2, . . .

]T
, (25)

where indices decorated with a tilde, cĩ, indicate an expanded index comprising the traditional spacial
directions and added distinguishing variables1. This allows an expanded variance-covariance tensor to be
defined as

nΨĩj̃ = n

[
Θij Ψij̆

Ψjĭ Ψĭj̆

]
=
〈
cĩcj̃F

〉
. (26)

The off-diagonal entries, Ψij̆ , contain the covariances between components of the particle velocity and par-
ticular distinguishing variables, while Ψĭj̆ contains variances and covariances between the distinguishing
variables themselves.

One again, moments of the kinetic equation, Eq. (22), can be taken. This leads to an extended Maxwell’s
equation of change,

∂

∂t
〈wF〉+

∂

∂xα
〈vαwF〉 =

〈
w
δF
δt

〉
+

〈
aαF

∂w

∂vα

〉
+
∑
ĭ=0

〈
ΥĭF

∂w

∂ζĭ

〉
−
∑
ĭ=0

〈
∂

∂ζĭ
(wΥĭF)

〉
. (27)

1It should be noted that the Einstein summation convention is also applied to indices decorated with tildes.
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One should note that, unlike in Eq. (12), the last term on the right-hand side of Eq. (27) is not necessarily
zero, if the domain of one or more of the distinguishing variables is not (−∞,∞).

4 The Polydisperse Gaussian Model
As in the classical case, for general distribution functions, Eq. (27) is not closed. One must choose an
assumed form. In the present work, the Gaussian distribution function, shown in Eq.(28), is extended to the
expanded phase space as

G = exp

(
−1

2
M−1

ĩj̃
ĉĩĉj̃ + k

)
, (28)

where Mĩj̃ and k are closure coefficients, while ĉĩ is the deviation of the position in the expanded phase
space from the peak of the Gaussian distribution. When substituted into the expanded Maxwell’s equation
of change, Eq. (27), this leads to a set of first-order balance laws, known as the polydisperse Gaussian model
(PGM),

∂n

∂t
+

∂

∂xk
nuk = S(1) , (29)

∂

∂t
nui +

∂

∂xk
n(uiuk + Θik) = S

(2)
i , (30)

∂

∂t
n (uiuj + Θij) +

∂

∂xk
n (uiujuk + uiΘjk + ujΘik + ukΘij +Qijk) = S

(3)
ij , (31)

∂

∂t
(nζĭ) +

∂

∂xk
n (ukζĭ + Ψkĭ) = S

(4)

ĭ
, (32)

∂

∂t
n(uiζj̆ + Ψij̆) +

∂

∂xk
n
(
uiukζj̆ + uiΨkj̆ + ukΨij̆ + ζj̆Θik +Qij̆k

)
= S

(5)

ij̆
, (33)

∂

∂t
n(ζĭζj̆ + Ψĭj̆) +

∂

∂xk
n
(
ukζĭζj̆ + ζĭΨkj̆ + ζj̆Ψkĭ + ukΨĭj̆ +Qĭj̆k

)
= S

(6)

ĭj̆
. (34)

Here, Qĩj̃k = n〈cĭcj̆ckF〉 is related to the skewness of the distribution function. By the assumed form of
the distribution function, it will be equal to zero if the domain of all distinguishing variables spans all real
numbers, but can be non-zero if any of the distinguishing variables have smaller domains.

In these six equations, the terms on the right-hand side, S(1) to S(6)

ĭj̆
, result from the integrals on the

right-hand side of Eq (27). These terms will be local expressions whenever the particle acceleration, ai, and
the rate of change of each internal variable, Υĭ, are local. The exact form of these terms depends entirely
on the effects experienced by the particles and which internal variables are treated.

4.1 Two Polydisperse Gaussian Models
In this work, two specializations of the PGM in terms of a single distinguishing variable are considered. Each
model describes a polydisperse flow in which particles are distinguished by size. In the original model, the
logarithm of the particle diameter is chosen as the distinguishing variable. This leads to an assumed form
of the distribution of particle diameters that is log-normal. A second PGM is also considered in which the
distinguishing variable is chosen as the particle surface area. This new PGM has been proposed as it is able
to recover the exact settling rate of particles subjected to Stokes drag. This was not the case for the original
PGM, which predicted that particles would settle at a slightly incorrect rate. However, the fact that the
values for which the particle surface area is defined is only the half space, [0,∞), leads to more complicated
moment equations.

For both models, simple particle-acceleration models are chosen. Particles are assumed to experience
gravity, buoyancy, and Stokes drag. This leads to a particle acceleration given by

ai =
Vi − vi
τ

+ φi , (35)
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with
φi =

ρp − ρf
ρp

gi . (36)

In these expressions, Vi is the local value of the background velocity, ρp is the density of the material making
up the particles, ρf is the density of the background fluid, and gi is the gravitational acceleration. The time
scale associated with Stokes drag is given by

τ =
ρp d

2

18µf
= γs , (37)

where d is the particle diameter, µf is the viscosity of the background fluid, s is the particle surface area
and γ = ρp/(18πµf ) is a group defined for convenience, as it appears frequently in expressions related to the
particle-drag source terms.

As the flows of interest in this work are disperse, inter-particle collisions are neglected. Thus, the collision
operator is not treated in this work.

4.2 The original log-normal PGM
For the originally proposed PGMmodel, the logarithm of particle diameter is chosen as the sole distinguishing
variable. This choice leads to a very nice model described by simple, closed-form balance laws with Qĩj̃k = 0,
clean known wave speeds, and a simple entropy [8]. The resulting right-hand side for the moment equations,
S, is given by

0
n
τG

(Vi − (ui − 2Ψid)) + nφi
n
τG

(Vi(uj − 2Ψjd) + Vj(ui − 2Ψid)− 2(uiuj − 2uiΨjd − 2ujΨid + 4ΨidΨjd + Θij)) + n (ujφi + uiφj)

0
n
τG

(
Vi
(
ζ̄d − 2Ψdd)− (ζ̄dui − 2ζ̄dΨid − 2uiΨdd + 4ΨddΨid + Ψid)

)
+ nζ̄dφi

0


.

(38)
In these expressions,

τG =
ρp

18µf
e(2ζ̄d−2Ψdd) (39)

and the “d” subscript is used to denote moments related to the logarithm of the particle diameter.
For a space-homogeneous situation of particles settling in a quiescent background, the moments of the

original PGM reach a steady, terminal state described by

ui = φiτG(1 + 4Ψdd) , (40)

Θij = 4φiφjτ
2
GΨdd , (41)

Ψid = 2φiτGΨdd . (42)

However, without the moment approximation imposed by the assumed distribution function, a collection of
particles with a log-normal distribution of diameters would actually reach a terminal steady state of

µi = φi τG e
4Ψdd , (43)

Θij = φiφj τG
2 e8Ψdd

(
e4Ψdd − 1

)
, (44)

Ψid = 2φi τG Ψdde
4Ψdd . (45)

Through a Taylor-series expansion, one case see that, for small values of Ψdd, the correct solution agrees
with the moment approximation. However, as this variance increases, deviations grow. It is the inability of
the original PGM to correctly predict the particle settling rate that motivated the development of the new
closure based on the particle surface area.
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4.3 A New Particle-Surface-Based PGM
It is thought that correctly predicting the terminal settling rate of particles is important for a range of ap-
plications, including the accurate prediction of atmospheric dispersion or the modelling of biological aerosols
generated by coughs or sneezes. The terminal velocity of a spherical particle subjected to Stokes drag is well
known to be

vi =
1

18

(ρp − ρf )

µf
gid

2 = γφis . (46)

That is, the particle settling velocity is proportional to the surface area of the particle. If a PGM model
is to recover this behaviour exactly, one of the primary stress axes of the distribution function must be
along a line in velocity-surface area space. This is only possible if the particle surface area is chosen as the
distinguishing variable that characterizes the particle size. The domain of this variable is the positive half
space, 0 ≤ s ≤ ∞.

The restricted domain of allowable particle surface areas (non-negative), leads to more complicated
expressions for the moment equations. Defining the closure coefficients of Eq. (28) to be

Mĩj̃ =

[
pij qis
qjs rss

]
with ĉĩ =

[
vi − ûi
s− ŝ

]
, (47)

their values can be found through expressions given in Table 1a. In these expressions, the “s” subscript
denotes moments and coefficients related to the particle surface area and σ is the local mean surface area.
The variable, H, is the hazard rate. It is given by

H(χ) =

√
2
π exp

[
− 1

2χ
2
]

1 + erf
(

1√
2
χ
) with χ =

ŝ
√
rss

. (48)

One of the advantages of using surface-weighted moments become apparent when evaluating the source
term of the PGM. As the acceleration of the particles is directly affected by the inverse of the particles
surface, Eq. (35) using surface-weighted statistics greatly simplifies the evaluation of the source term. For
instance, evaluation of the first source term using surface-weighted statistics admits known and previously
evaluated moments of the distribution. Whereas using non-weighted statistics would require knowledge of
the following moment

〈
s−1F

〉
. This choice has for added benefit that larger particles can be regarded as

more important than the smaller particles. The moments defined above treat particles of every size as equally
important in the moments. Once can, however, use weighted moments to give more influence to the larger
particles. In this work, for the surface-area-based closure, all moments are weighted by the particle surface
area. For example, the number density is replaced by the surface density as

ṅ = 〈sF〉 . (49)

Other important moments are defined as

ṅµ̇i = 〈sviF〉 , ṅσ̇ =
〈
s2F

〉
, ṅΦ̇ĩj̃ =

〈
scĩcj̃F

〉
, ṅQ̇ĩj̃k̃ =

〈
scĩcj̃ck̃F

〉
. (50)

For these moments, the same symbols from the classical moments are maintained and decorated with dots.
A new deviatoric vector is defined as ċĩ = [vi − µ̇i, s − σ̇]T. The relations between these moments and the
closure coefficients are given in Tabel 1b.

As the particle surface area can only take on positive values, the expanded phase space is truncated in
this variable. This leads to a skewness of the distribution function, as it is not defined for negative particle
surface areas. The third-order deviatoric moment, needed in the PGM moment equations, can be computed
for both traditional and sufrace-area weighted moments. The expressions are given in Table 1c.

For the remainder of this work, surface-weighted statistics are used for the surface-area-based variant of
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Table 1: Relationships between moments and closure coefficients for surface-area-based PGM

(a) Moments of the surface-based PGM

Name Weight Moment Expression

Number Density 1 n 2π2 det(Mĩj̃)
1
2 ek

(
1 + erf

(
ŝ√

2rss

))
Average Velocity vi

n µi ûi + qis√
rss
H

Average Surface s
n σ ŝ+

√
rssH

Velocity (Co)Variance 1
ncicj Θij pij − qisqjs H

r
3/2
ss

σ

Velocity-Surface Covariance 1
ncics Ψis qis − qis H√rssσ

Surface Variance 1
nc

2
s Ψss rss −

√
rssHσ

(b) Surface-weighted (S-W) moments of the surface-based PGM

Name Weight Moment Expression

Surface Density s ṅ nσ

S-W Average Velocity svi
ṅ µ̇i û+ qis

σ

S-W Average Surface s2

ṅ σ̇ ŝ+ rss
σ

S-W Velocity (Co)Variance s
ṅ ċiċj Ψ̇ij pij +

qisqjs
σ2

(
H√
rss
σ − 1

)
S-W Velocity-Surgace Covariance s

ṅ ċiċs Ψ̇is qis + qisrss
σ2

(
H√
rss
σ − 1

)
S-W Surface Variance s

ṅ ċ
2
s Ψ̇ss rss +

r2ss
σ2

(
H√
rss
σ − 1

)

(c) Skewness Moments

Weight Moment Closure Coefficients

1
ncicjck Qijk qisqjsqks

H
r
5/2
ss

((
2H2 − 1

)
rss + 3ŝ

√
rssH+ ŝ2

)
s
ṅ ċiċj ċk Q̇ijk

qisqjsqks

σ

(
2
σ2 − 3H√

rssσ
− ŝ

r
3/2
ss

H
)

1
ncicjcs Qijs qisqjsrss

H
r
5/2
ss

((
2H2 − 1

)
rss + 3ŝ

√
rssH+ ŝ2

)
s
ṅ ċiċj ċs Q̇ijs

qisqjsrss
σ

(
2
σ2 − 3H√

rssσ
− ŝ

r
3/2
ss

H
)

1
ncic

2
s Qiss qisr

2
ss
H
r
5/2
ss

((
2H2 − 1

)
rss + 3ŝ

√
rssH+ ŝ2

)
s
ṅ ċiċ

2
s Q̇iss

qisr
2
ss

σ

(
2
σ2 − 3H√

rssσ
− ŝ

r
3/2
ss

H
)
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the PGM. In this case, the resulting source terms for the moment equations are

Ṡ =



0
n
γ (Vi − µi) + ṅφi

n
γ (Viµj + Vjµi − 2 (Ψij + µiµj)) + ṅ (φiµj + φjµi)

0
ṅ
γ (Vi − µ̇i) + ṅσ̇φi

0

 . (51)

One should note that these expressions contain both surface-weighted and regular moments. This is done
because it greatly simplifies the form of the expressions.

One of the main motivations for investigating the surface-area-based PGM was in the hope of recovering
particle settling exactly. For a still background, the above source term leads to a steady-state terminal state
given by

µ̇i = φiγσ̇ , (52)

Ψ̇ij = φiφjγ
2Ψ̇ss , (53)

Ψ̇is = φiγΨ̇ss . (54)

These are in perfect agreement with the exact solution of the kinetic equation with a distribution function
for particles that have normally distributed surface areas. This agreement between the surface-based PGM
and the kinetic equation for settling particles is further demonstrated in Section 6.

5 Robust Hyperbolicity of the PGM
Each variant of the PGM leads to a set of fifteen first-order balance laws that are robustly hyperbolic. This is
true when either traditional or surface-weighted moments are used. This hyperbolicity is demonstrated here
for the surface-weighted variant. The corresponding proof for the traditional moments is nearly identical
and obvious once this form is understood.

The proof of hyperbolicity starts by remembering the general form of the distribution function, given in
Eq. (15), and defining density and flux potentials,

h = 〈sF〉 , and ji = 〈sviF〉 . (55)

The solution vector and flux are the gradients of these potentials,

U =
∂h

∂α
= 〈sWF〉 , and Fi =

∂ji
∂α

= 〈sviWF〉 . (56)

One can also compute the Hessians

∂U

∂α
=

∂2h

∂α∂α
=
〈
sWWTF

〉
, and

∂Fi
∂α

=
∂2ji
∂α∂α

=
〈
sviWWTF

〉
. (57)

This means the balance laws describing the system can be written as

∂U

∂t
+
∂Fi
∂xi

= S , (58)

∂U

∂α

∂α

∂t
+
∂Fi
∂α

∂α

∂xi
= S , (59)

∂2h

∂α∂α

∂α

∂t
+

∂2ji
∂α∂α

∂α

∂xi
= S . (60)

The hyperbolicity of these equations is assured, as the two Hessians are symmetric, with the Hessian of the
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Table 2: Initial conditions for space-homogeneous particle-settling case

(a) Surface-weighted moments

Moment Initial value

ṅ 1
µ̇i 10 m/s

Θ̇ij (1 m2/s2)δij
σ̇ 5.6× 10−7 m2

Ψ̇is 0 m3/s

Ψ̇ss 8.58× 10−14 m4

(b) Traditional moments

Moment Initial value

n 1
µi 10 m/s
Θij (1 m2/s2)δij
ζ̄ -8.11

Ψid 0 m/s
Ψdd 0.113

density potential also being positive definite, as

wT
〈
sWWTF

〉
w =

〈
swTWWTwF

〉
=
〈
s
(
wTW

)2 F〉 ≥ 0 (61)

for any non-zero vector, w. The exact same proof can be done for the traditional PGM, but without the
surface weighting in the density or flux potentials.

6 Numerical Results
In order to validate and compare the two presented version of the PGM, two test cases are considered. The
first test case consists of a space-homogeneous distribution of particles with an initial downward velocity and
variance of all properties. The particles come to a steady terminal state in which the effects of gravitational
acceleration, buoyancy, and Stokes drag are balanced. Comparisons are made with solutions obtained through
the direct numerical integration of the kinetic equation, Eq. (22), the solution of which is affordable in this
case without spacial variations.

The second test case is a spherical puff of particles with initial horizontal velocity ejected into a transverse
background flow. This case demonstrates the evolution of the higher-order statistics directly treated by the
model and demonstrates how the inclusion of this information in the model leads to improved predictive
capabilities.

6.1 Space-Homogeneous Particle Settling
The first numerical result is for a case in which the particle phase has no variation in any spacial direction.
That is, all spacial derivatives in Eqs. (29)–(34) are zero. The system then degenerates into a coupled set of
ordinary differential equations (ODEs) where the moment state evolves purely due to the source term. For
this case, the initial conditions are chosen to be described by a surface-area-based distribution function with
moments given in Table 2a. A cloud of particles has an initial downward (positive x in this case) velocity
that is far higher than the terminal velocity. The particle cloud therefore decelerates to it’s steady state
settling configuration. The particles are modelled as being droplets of water in the medium of air such that
the density of the particles and of the background are given by ρp = 1000 kg/m3, and ρf = 1.225 kg/m3,
respectively. The dynamic viscosity of air is set as µf = 1.82× 10−5 m2/s, which corresponds to ambient
air at 20 °C. This leads to source-term parameters, γ = 971 641 s/m2 and φz = 9.79 m/s2, for a simplified
expressions in the source term.

Both the surface-weighted PGM and the original log-normal PGM are investigated. In order to set initial
conditions for the log-normal variant of the model, classical moments based on the logarithm of particle
diameter must be evaluated for the initial condition. The values obtained are shown in Table 2b. These
serve as the initial conditions for the log-normal PGM computation.

The ODEs are advanced in time until a steady-state for each model is obtained. This can be seen as the
terminal-velocity state of each model. Results are shown in Figure 1. Comparisons between each model and
the moments of the exact kinetic solution are shown. Figure 1a shows the evolution of the average particle
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velocity. One can see that both variants of the PGM relax slightly too quickly to their steady-state values.
The original log-normal PGM also under-estimates the average settling speed of the particles, however the
deviation is not overly large. As predicted, the surface-weighted PGM predicts the steady settling velocity
correctly.

In Figures 1b and 1c, the evolution of two components of the variance-covariance tensor are shown. One
can see, in Figure 1b that the cloud of particles evolves from an initial vertical-velocity variance of 1 m/s2

to a higher value. Again, the new surface-weighted PGM settles to the correct value in the steady state.
However, the deficiency of the original log-normal PGM is now much more clear. At steady-state the log-
normal variant predicts a variance that is far to small. The effect of this will be that settling particles will
not spread in space correctly.

Looking at Figure 1c, one can see a similar deficiency in the prediction by the log-normal PGM. Where
the new surface-weighted PGM comes to the correct steady-state settling condition, the original log-normal
variant under-predicts the final covariance. This covariance shows the dependency between a particle’s size
and its terminal velocity. It shows that larger particles will settle more quickly than smaller ones. As the
original PGM underestimates this values, it will incorrectly predict the degree to which a cloud of settling
particles will separate based on particle size.

The cause of the superiority of the new surface-weighted PGM for this case can be better understood by
examining the evolution of the distribution function in each model. Figure 2 shows this evolution. In this
figure, the two distribution functions are represented in a slice of phase space in the vx-s plane. On the left,
one observes the surface-weighted distribution as it relaxes towards the red line, which indicates the correct
settling speed for particles of a given surface area. As time progresses, the distribution function eventually
collapses onto the line.

On the right-hand side of Figure 2, the same settling for the log-normal distribution function is shown.
The non-linear mapping between the space of the logarithm of particle diameter and particle surface area
causes the distribution function to bend as it settles. In the end, the distribution function will never land
on the correct line and will always under-predict relevant variances and covariances.

6.2 Three-Dimensional Sedimentation of a Puff of Particles
As a final demonstration case to show how the direct tracking of higher-order particle statistics yields
information that is often invisible to traditional methods, a puff of particles with initial velocity moving and
settling in a background cross wind is considered. The domain of this problem is a cube with five-meter
sides. The puff is initially positioned at (x, y, z) coordinates of (1 m, 1 m, 4 m) and has a diameter of
0.5 m. The particles for this case are assumed to follow a log-normal distribution of diameters. The original
log-normal version of the PGM is considered first. Within the initial sphere of particles, the particle number
density is n = 29.6× 106 particles/m3. The mean surface area of the particles is σ = 4.04× 10−6 m2, with
variance, Ψss of 6.21× 10−12 m4. The initial velocity is 3 m/s in the x direction with a variance of 0.1 m/s2

in all directions. All covariances are initially zero. The background wind is 1 m/s in the positive y direction.
Particle properties are chosen such that the initial value of τG = 0.1 s. This allows all relevant physical
processes to act on similar time scales. The initial condition is illustrated in Figure 3.

Calculations are done using a simple first-order finite-volume scheme using the HLL flux function [22]. A
simple point-implicit time-marching scheme is used that treats the fluxes explicitly, while treating the local
sources implicitly. This is necessary, as the source terms can often be stiff. Fortunately, as the sources take
on simple expressions, this can be done quite easily. The domain is discretized using 4,096,000 cells, and
time steps are limited by the maximum wave speed within the domain at every step with a CFL number of
0.15.

For this case, results are visualized at t = 0.5 s and t = 1 s. Figure 4 shows the predicted average particle
diameter at these two times. Regions where the number density of particles is larger than 1× 103 particles/m3

are visualized. One can clearly observe that the large particles have kept their initial velocity for longer, as
they are less affected by particle drag. They have also been more heavily affected by gravity. This is why the
larger particles have travelled farther in the x direction and fallen further. The smaller particles decelerated
due to drag much more quickly and have a lower terminal velocity. They are also more strongly affected by
the drag of the background wind. These effects cause a cloud of smaller particles to remain higher in the
domain while translating more in the y direction due to the wind.
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Figure 1: Moment prediction for a settling cloud of particles subjected to gravity, buoyancy, and Stokes
drag: exact kinetic solution, surface-weighted PGM and original log-normal PGM.
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(b) Log-normal PGM, t = 0 s

0.0 0.2 0.4 0.6 0.8 1.0

Surface
[
m2
]

×10−6

−2

0

2

4

6

8

10

12

14

V
el

oc
ity
[ m

s−
1
]

Steady-State Solution

(c) SW-PGM, t = 0.2 s

0.0 0.2 0.4 0.6 0.8 1.0

Surface
[
m2
]

×10−6

−2

0

2

4

6

8

10

12

14

V
el

oc
ity
[ m

s−
1
]

Steady-State Solution

(d) Log-normal PGM, t = 0.2 s
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(e) SW-PGM, t = 1.0 s
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(f) Log-normal PGM, t = 1.0 s

Figure 2: Distribution function for a settling cloud of particles subjected to gravity, buoyancy, and Stokes
drag as compared to the correct terminal velocity line: surface-weighted PGM and original log-normal PGM.
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Figure 3: Initial condition for a puff of polydisperse particles with an initial x-direction bulk velocity with
a cross wind in the y directions. Region where n ≥ 1× 103 particles/m3 is visualized.

(a) t = 0.5 s
(b) t = 1 s

Figure 4: Particle size distribution. Region where n ≥ 1× 103 particles/m3 is visualized.
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(a) µz, t = 0.5 s (b) Ψzd, t = 0.5 s

(c) µz, t = 1 s (d) Ψzd, t = 1 s

Figure 5: z-direction bulk velocity and covariance with particle size. Region where n ≥ 1× 103 particles/m3

is visualized.

The importance of the covariance between particle sizes and velocities is shown in Figures 5 and 6.
Figure 5 examines the bulk vertical velocity and its covariance with particle size. In the left subfigures, one
can clearly see that the particles that have fallen furthest have the most negative vertical velocity, obviously.
More importantly, the right subfigures show that the covariance between the vertical component of the
velocity and the particle size is always negative and has the highest magnitude in the particles that have
fallen furthest. A negative covariance indicates that particles with largest negative vertical velocities are
more likely to be larger particles. Again, this is entirely expected, however it is an effect that is not often
directly considered by classical models. It is expected that this information will lead to improved predictive
capabilities for the PGM models.

Figure 6 shows statistics related to the x-direction velocity. The left-hand subfigures show the x compo-
nent of the bulk velocity. One can see that, at t = 0.5 s, the particles moving the fastest in this direction
have a velocity of about 3 m/s, which was the initial value. This is because there is a group of larger particles
that has not yet been significantly slowed by drag and has travelled the largest distance in this direction.
This is confined by examining the plots on the right, which show the covariance between the x component
of velocity and the particle size. The positive value of this moment indicates that larger particles are more
likely to have larger positive x-direction velocities. One can also observer that, by t = 1 s, drag forces have
begun to have more of an effect on particles of all sizes. The average x-direction velocities are decreasing,
as is the covariance.
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(a) µx, t = 0.5 s (b) Ψxd, t = 0.5 s

(c) µx, t = 1 s (d) Ψxd, t = 1 s

Figure 6: x-direction bulk velocity and covariance with particle size. Region where n ≥ 1× 103 particles/m3

is visualized.
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(a) log-normal PGM, t = 0.5 s (b) SW-PGM, t = 0.5 s

(c) log-normal PGM, t = 1.5 s (d) SW-PGM, t = 1.5 s

Figure 7: Particle size distribution as predicted by the log-normal and surface weighted versions of the PGM.
Region where n ≥ 1× 103 particles/m3 is visualized.

6.2.1 Comparison with prediction of the surface-weighted PGM

As a final study, differences in the predicted solution for this problem provided by the original log-normal
PGM and the new surface-weighted PGM are explored. Figure 7 compares the local particle-size distribution
for this case as predicted by each model Results are visualized at t = 0.5 s and t = 1.5 s. The left-hand
subfigures were obtained from the log-normal PGM, which the right-hand figures used the surface-weighted
PGM. For this case, differences are surprisingly minor. The exact shape of the region occupied by particles
is slightly different and the distribution of particle sizes is not quite identical, however results are very close.
The similarity of the two predictions is probably due to the fact that the variance in particle size is not overly
large in this case. Though it is large enough to affect the flow, as demonstrated in the previous section. It is
expected that larger differences in predictions should be expected for polydisperse flows that display a larger
range of particle sizes.

7 Conclusion
This paper presented the derivation and analysis of two new models for the efficient prediction of polydisperse
multiphase flows. These models belong to the family of Polydisperse Gaussian Models (PGM). In one model,
the logarithm of the particle diameter is used to differentiate particle sizes, while, in the other, particle surface
area is used. Regular and surface-weighted velocity moments are presented and used. Both models lead to
first-order balance laws and are shown to be robustly hyperbolic. The surface-weighted version of the PGM
is demonstrated to exactly recover the correct state for particles settling in a quiescent background. This is
thought to be important for several practical problems. However, the surface-weighted version of the closure
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brings added complexity and numerical difficulties that are not present in the original log-diameter version
of the closure. The importance of high-order statistics of the particle phase to predictions are demonstrated
for the three-dimensional case of a settling puff of particles in a cross wind.
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