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Abstract: The description of liquid sprays is commonly modelled using a statistical approach and
can be described using a droplet number density function (NDF) which evolves according to the
Williams-Boltzmann equation. Approximate solutions to the Williams-Boltzmann equation can be
obtained either using Lagrangian particle methods or Eulerian moment closure methods. While
Lagrangian methods have been applied to a wide range of sprays in the disperse spray regime,
the method can potentially be computationally expensive and require a large number of particles
in order to obtain converged statistics. Conversely, moment closure methods operate within an
Eulerian framework which can take advantage existing techniques to reduce the computational
cost, such as load balancing and mesh adaptation strategies. In addition, an Eulerian framework is
consistent with descriptions of the dense spray regime and background carrier phase which simpli-
�es the coupling between the di�erent models. In this study, an extended moment closure model
based on the 10-moment anisotropic Gaussian (AG) closure from kinetic theory is presented. Ad-
ditional size and size-velocity moments are introduced in order to describe the spray polydisperity
and droplet size-velocity correlations. Closure is achieved by assuming functional forms of the
size-conditioned moments based on entropy maximization and polynomial expressions. The size
distribution is modelled using a �ve-moment maximum entropy distribution which is valid over the
entire realizable size moment space and can describe a wide range of di�erent size con�gurations
in practical combustion applications. To deal with numerical robustness issues that can occur at
the moment realizability space boundaries, an interpolative approximation for the closing �uxes is
proposed. Finally, treatments for relevant spray physics, such as droplet drag and evaporation have
been incorporated for realistic applications of large Reynolds and Stokes numbers. Several spray
problems are considered to illustrate the predictive capabilities of the moment closure, including a
purely evaporating laminar jet using the d2-evaporation law, a space-homogeneous problem with
Stokes drag, a laminar liquid jet in a cross�ow with a general drag law, and an atomizing turbulent
jet coupled to a dense spray description with two-way coupling to the gaseous carrier phase.

Keywords: Maximum-entropy Moment Closures, Multiphase �ows, Spray Modelling, Polydisperse
sprays.

1 Introduction

Liquid atomization is ubiquitous in everyday applications and can be found in many engineering systems and
devices related to power generation, engines, agriculture and chemical engineering [1]. Of particular interest
here is the application of liquid spray atomization to the fuel injection systems of gas turbine engines burning
hydrocarbon fuels, where e�orts are underway to lower emissions of carbon dioxide (CO2), mono-nitrogen
oxides (NOX), as well as soot particulate matter. One possible area of improvement in the design of cleaner
engines is the fuel injection nozzles. Finer atomization of fuel droplets can promote both better fuel-air
mixing and hence cleaner combustion. Crucial to the development of improved fuel injection systems is
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the ability to accurately model the spray atomization process using computational �uid dynamic (CFD)
simulations. Accurate, a�ordable, and reliable computational tools are required to explore di�erent design
con�gurations prior to the prototyping process.

The challenge of modelling disperse sprays, which are of primary interest here, is directly related to the
multi-phase nature of the problem, as sprays are liquid phase droplets suspended within a gaseous phase
carrier �ow. The most common spray models are based on an Euler-Lagrange framework wherein the carrier
�ow is treated as a continuum (Eulerian treatment) while the droplets are modelled as a collection of particles
(Lagrangian treatment) whose trajectories are tracked based on Newton's second law. Such a framework
can present several computational issues, such as the need for a large number of particles to obtain accurate
and converged results. An Euler-Lagrange treatment is also at odds with mesh re�nement techniques [2�4]
now commonly used in many CFD approaches, as increasing the number of cells in a simulation with a
�xed �nite number of particles decreases the number of particles per cell, which has the e�ect of increasing
the statistical error of quantities within each cell [5]. It can also introduce errors in cases where the mesh
resolution becomes on the order or smaller than the typical droplet size, in which case the droplets can space
several computational cells [6]. Furthermore, representing phases as disparate entities works well for one-
way coupled �ows (wherein the carrier �ow a�ects the disperse phase only), but does not work well two-way
coupled �ows (wherein the carrier and droplet phases a�ect each other). Euler-Lagrange-based solutions of
the latter often fails to provide grid-independent solutions for inter-phase momentum exchange [7].

An alternative approach is pursued in this study in the form of an Euler-Euler framework, wherein
both phases are treated as (Eulerian) continua and an Eulerian-based moment closure method is adopted
for the disperse liquid phase. This approach does not require particle tracking and allows for the solution
of the carrier gaseous �ow and droplets on the same computational mesh. The Euler-Euler treatment
is thereby readily amenable to mesh adaptation strategies and provides for a natural two-way coupling
between the phases. Furthermore, parallel implementations on multi-processor/multi-core systems are also
more straightforward with the Euler-Euler framework, making such approaches potentially more e�cient
from a computational standpoint. Note that Euler treatments for the disperse phase are however not without
their drawbacks. They introduce numerical dissipation that Lagrange disperse phase treatments of do not
have. In addition, they require special treatments to handle vacuum regions (i.e., regions with no droplets)
and high Stokes number phenomena, such as particle trajectory crossings (PTCs). The associated moment
equations can also allow for the occurrence of discontinuous solutions and shock structures which must be
properly dealt with when constructing numerical solutions.

For the proposed Euler-Euler treatment, a polydisperse, polykinetic, Eulerian-based model for disperse
liquid sprays is developed herein, along with a robust �nite-volume method for the numerical solution
of the resulting system of hyperbolic moment equations. The polydisperse, polykinetic, moment closure
provides approximate solutions to the Williams-Boltzmann equation for disperse sprays and is based on
the 10-moment Anisotropic Gaussian (AG) velocity moment closure [8�12] which presents many desirable
mathematical properties, such as strict hyperbolicity and moment realizability. Spray droplets of varying
sizes can be described by assuming that the velocity moments are conditional functions of a droplet size
variable and then transporting additional moments in both size and velocity to describe the polydisperse
behaviour. The moment closure is formulated for general drag and evaporation laws for the case of a disperse
droplet population moving through a prescribed background gaseous �ow. Numerical results are presented
for a purely evaporating jet using the d2-evaporation law, a space-homogeneous problem with Stokes drag,
a liquid jet in a cross�ow with a general drag law, and a plain ori�ce atomizing turbulent jet coupled to a
dense spray description with two-way coupling to the gaseous carrier phase to demonstrate the abilities of the
moment closure method, combined with a robust �nite-volume scheme, to capture a range of polydisperse,
polykinetic, spray phenomena.

2 Polydisperse, Polykinetic, Moment Closure for Dilute Sprays

2.1 Williams-Boltzmann Kinetic Equation

The Williams-Boltzmann kinetic equation [13] governs the time-evolution and transport of the number
density function (NDF), F(t, xi, vi, S), for disperse spray droplets through a seven dimensional phase space,
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(xi, vi, S), and in time, t, and can be written as

∂F
∂t

+
∂

∂xi
(viF) +

∂

∂vi
(aiF) +RS

∂F
∂S

= Q+ Γ, (1)

where vi is the droplet velocity vector, S is the droplet surface area, xi is the position vector in physical
space, RS is the evaporation rate (strictly negative), ai is the acceleration due to external forces, Q is the
rate of formation associated with new droplets, and Γ is associated with inter-droplet collisional processes.
In this study, the sprays are taken to be dilute and coalescence, breakup and collisions are neglected. The
focus here is placed on treatments for drag and evaporation.

2.2 20-Moment Anisotropic Gaussian (AG) Moment Closure

Direct solution of the Williams-Boltzmann equation is prohibitively expensive due to the high dimensionality
of the associated phase space. However, approximate solutions of the Williams-Boltzmann equation can be
obtained by deriving a set of transport equations for the moments of the droplet NDF which are relevant, since
the quantities of interest for typical engineering applications are macroscopic quantities such as the mean
droplet size and velocity, and then formulating a closure for the moment system. The transport equations
can be obtained by multiplying the NDF by a combined size-velocity weight, W(vi, S), and integrating over
phase space, which is represented in this manuscript by the angle-bracket notation, 〈.〉. Size moments related
to the geometrical parameters of the spray can be obtained for W(vi, S) = Sk and are given by

Mk = 〈S k
2F〉 =

∫ Smax

0

∫∫∫
∞
S

k
2F d3vdS . (2)

Similarly, velocity moments related to the weighted mean droplet velocity can be obtained for W(vi, S) =

Skvi. For example, the number density weighted mean droplet velocity, U
(0)
i , can be obtained from

M0U
(0)
i = 〈S0viF〉 =

∫ Smax

0

∫∫∫
∞
viF d3vdS . (3)

The polydisperse, polykinetic, moment closure proposed herein is an extension of the 10-moment AG
maximum-entropy velocity closure from kinetic theory, essentially a monodisperse description, that has been
extended to include dependency of the NDF on droplet size. Similar to the approach adopted by Wang [14],
the 20-Moment AG polydisperse closure is derived by considering a vector of combined size-velocity weights,
W(vi, S), given by

W(vi, S) =
[
1, S

1
2 , S, S

3
2 , S2, vi, S

1
2 vi, Svi, vivj

]T
, (4)

which de�ne a �nite set of size and velocity moments, M, given by

M =
[
M0,M1,M2,M3,M4,M0U

(0)
i ,M1U

(1)
i ,M2U

(2)
i ,M0

(
U

(0)
i U

(0)
j + Σ

(0)
ij

)]T
. (5)

The corresponding system of moment equations for these macroscopic size and velocity moments is then
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given by

∂

∂t
(M0) +

∂

∂xi

(
M0U

(0)
i

)
= A(0)

∂

∂t
(M1) +

∂

∂xi

(
M1U

(1)
i

)
= A(1)

∂

∂t
(M2) +

∂

∂xi

(
M2U

(2)
i

)
= A(2)

∂

∂t
(M3) +

∂

∂xi

(
M3 U

(3)
i

)
= A(3)

∂

∂t
(M4) +

∂

∂xi

(
M4 U

(4)
i

)
= A(4)

∂

∂t

(
M0U

(0)
i

)
+

∂

∂xi

[
M0

(
U

(0)
i U

(0)
j + Σ

(0)
ij

)]
= B

(0)
i

∂

∂t

(
M1U

(1)
i

)
+

∂

∂xi

[
M1

(
U

(1)
i U

(1)
j + Σ

(1)
ij

)]
= B

(1)
i

∂

∂t

(
M2U

(2)
i

)
+

∂

∂xi

[
M2

(
U

(2)
i U

(2)
j + Σ

(2)
ij

)]
= B

(2)
i

∂

∂t

[
M0

(
U

(0)
i U

(0)
j + Σ

(0)
ij

)]
+

∂

∂xi

[
M0

(
U

(0)
i U

(0)
j U

(0)
k + U

(0)
i Σ

(0)
jk + U

(0)
j Σ

(0)
ik + U

(0)
k Σ

(0)
ij + Q

(0)
ijk

)]
= C

(0)
ij .

(6)
The �rst �ve equations are associated with mass conservation and describe the evolution of mean geometrical
quantities of the spray, such as droplet length, surface area, volume, and hypervolume, respectively. The
next three equations represent momentum conservation for the polydisperse spray and describe the evolution
of mean droplet velocity weighted by the number density, length, and surface area, respectively. Finally, the
last equation is akin to energy conversation equation for the spray and represents the total kinetic energy of
the spray droplets.

Unfortunately, the highlighted �uxes in Eq. (6) above are unclosed and an approach to formal closure is
required. Various source terms may also require closure, depending on the modelled spray physics. Closure
of the system is obtained here by imposing additional assumptions on the form of the NDF. In the proposed
AG-based closure, the NDF, F(t, xi, vi, S), is taken to have the form

F(t, xi, vi, S) =
n(t, xi, S)

(2π)3/2
√

detσ(t, xi, S)
exp

{
−σij(t, xi, S)−1

2
[vi − ui(t, xi, S)] [vj − uj(t, xi, S)]

}
, (7)

where n(S), ui(S) and σij(S) are the size-conditioned number density, mean velocity and variance, respec-
tively, which depend directly on the droplet size parameter, S. Functional forms of these size-conditioned
moments are required to complete the closure and are outlined in the sections to follow.

2.3 Maximum Entropy Closure in Size Space

The size-conditioned number density, n(S), is approximated here via the maximum-entropy distribution,
which has several desirable properties: it is the most probable distribution based on the available information
[15, 16] and is able to represent every possible con�guration within the moment realizablity space [17]. The
maximum-entropy solution for n(S) is derived in terms of the droplet probability density function (PDF),
f(s), where s is the normalized droplet size de�ned for the �nite interval s ∈ [0, 1]. This PDF, f(s), is taken
to be the solution that maximizes the Shannon entropy subject to the �ve purely size moment constraints
given and is given by

H[(s)] = −
∫ 1

0

f(s) ln f(s)ds, m =

∫ 1

0

x(s)f(s)ds, (8)

where H is the Shannon entropy, m is the vector of normalized size moments and x(s) is the monomial

basis vector given by x(s) = [1, s
1
2 , s, s

3
2 , s2]T . The maximization of the entropy, H, subject to the moment
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constraints, m, can then be obtained numerically via Lagrange's method combined with a damped Newton
iterative method [18�20].

2.4 Size-Conditioned Mean Velocity and Variance of Velocity

Having de�ned n(S), the size-conditioned velocity, ui(S), is then modelled as a polynomial in S given by

ui(S) = ai + biS
1
2 + ciS , (9)

where ai, bi and ci are the polynomial closure coe�cients. Such an approximation has several advantages:
the coe�cients can be obtained e�ciently by solving a linear system, the distribution is able to represent
every possible con�guration within the moment realizability space and the distribution is non-monotonic
and therefore capable of describing velocity reversal in an oscillating turbulent �ow [17]. In previous studies
[17, 21], the constant ai is expressed directly as a function of the gaseous carrier phase velocity. However,
this condition is not imposed in the current model since it can cause issues when the Stokes number is very
large or the carrier phase is absent (i.e. particles in a vacuum with no background gas).

Finally, in the present work, the velocity variance, σij(S), is assumed to be constant with size, resulting
in a so-called partially-polydisperse closure [14]. The full implications of this simplifying assumption remain
to be explored and such an assumption may be relaxed in future follow-on research.

2.5 Closure of Moment Equations

Based on the assumptions outlined in the previous sections, the unclosed �uxes appearing in Eq. (6) above
can be then expressed as follows:

U
(3)
i = ai + bi

m4

m3
+ ci

m5

m3
, (10)

U
(4)
i = ai + bi

m5

m4
+ ci

m6

m4
, (11)

Σ
(1)
ij = bibj

[
m3

m1
−
(
m2

m1

)2
]

+ cicj

[
m5

m1
−
(
m3

m1

)2
]

+ (bicj + bjci)

[
m4

m1
− m2m3

m2
1

]
, (12)

Σ
(2)
ij = bibj

[
m4

m2
−
(
m3

m2

)2
]

+ cicj

[
m6

m2
−
(
m4

m2

)2
]

+ (bicj + bjci)

[
m5

m2
− m3m4

m2
2

]
, (13)

Q
(0)
ijk = (aibjbk + ajbibk + akbibj)

[
m2 −m2

1

]
+ (aibjck + aibkcj + ajbick + ajbkci + akbicj + akbjci) [m3 −m1m2]

+ (bibjbk)
[
m3 −m3

1

]
+ (aicjck + ajcick + akcicj)

[
m4 −m2

2

]
+ (cibjbk + cjbibk + ckbibj)

[
m4 −m2

1m2

]
+ (bicjck + bjcick + bkcicj)

[
m5 −m1m

2
2

]
+ (cicjck)

[
m6 −m3

2

]
+ (ai + bim1 + cim2)

[
σjk − Σ

(0)
jk

]
+ (aj + bjm1 + cjm2)

[
σik − Σ

(0)
ik

]
+ (ak + bkm1 + ckm2)

[
σij − Σ

(0)
ij

]
,

(14)
where the highlighted terms, mk, are higher-order size moments which can be obtained directly via inte-
gration using the maximum-entropy size distribution, f(s). It should however be noted that the solution of
the maximum-entropy problem requires the iterative solution of a non-linear system of equations and can
therefore be computationally expensive. As an alternative, these terms can be approximated using an inter-
polative procedure based on pre-computed solutions of the maximum-entropy problem. Such an approach is
considered here and discussed in a later section.

2.6 Treatment of Moment Closure Near the Realizability Space Boundaries

A key issue associated with moment closure is realizability [22]. Moment realizability is concerned with
ensuring that the predicted moments of the closure are physically realizable and can be associated with
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(a) Size-conditioned Droplet PDF (b) Size-conditioned Droplet Velocity

Figure 1: Size-conditioned droplet PDF and velocity near the moment realizability space boundary.

a strictly positive NDF. In the case of the solution of the maximum-entropy problem de�ning the size-
conditioned number density, n(S), moment realizability places constrints or conditions on the values of the
pure size moments, mk. When the vector of size moments for the maximum-entropy solution approaches
the boundaries of realizability space de�ned by the contraints, the size distribution approaches a linear
combination of delta-functions, as shown in Figure 1(a), causing numerical issues which can impact the
numerical solution of the maximum-entropy problem as well as the accurate treatment of the size-conditioned
velocity, ui(S).

First, at the realizability space boundaries, the constraints on the maximum entropy problem are almost
linearly dependant and the Hessian used in the Newton method can be badly conditioned. The conditioning
can be improved by transforming the original set of constraint equations to an orthonormal set using a
Cholesky factorization procedure [20]. In addition, the numerical integration of the moments used in the
constraint equations are inaccurate when the size distribution is very peaked. One approach for improving
the accuracy is to use adaptive quadrature [17]; however, it was found that this approach had a slower
convergence rate and was prone to stall. Instead, it was found to be more e�cient to use a �xed number of
quadrature points and if the solver is unable to converge within a reasonable number of iterations, the solver
is reset and the number of quadrature points used for the integration is doubled. In the cases tested, it was
found that a 65-point Clenshaw-Curtis quadrature rule was su�cient for obtaining a converged maximum
entropy solution to within an absolute error of 10−9.

Another potential issue that can arise is associated with the modelling of the size-conditioned velocity,
ui(S), which is a function of the �rst-order velocity moments given by the following

〈SkviF〉 =

∫ Smax

0

Skn(S)ui(S)dS. (15)

In the equation above, the �rst-order velocity moments are weighted by n(S), which is close to singular near
the realizability space boundaries. For values of S where n(S) is close to zero, ui(S) can essentially take on
any value since the second-order polynomial construction of ui(S) is unbounded. Consequently, very large
and unreliable values of ui(S) can be obtained when n(S) is very small, as can be seen in Figure 1(b), where
the magnitude of ui(S = 1) is very large relative to the mean velocity, where Ux = 2.85 m/s, and this can
potentially a�ect the modelling accuracy since the size-conditioned velocity is used to compute the closing
�uxes. The issue can be alleviated by introducing a relaxation parameter, r, that modi�es ui(S) such that
it approaches a �rst-order polynomial as r = 0, with the modi�ed polynomial coe�cients de�ned as

ai = (1− r)ap2

i + rap4

i ,

bi = (1− r)bp2

i + rbp4

i ,

ci = rcp4

i .

(16)
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The parameter r acts as a blending function which is bounded between 0 and 1 and is de�ned as

r =

{
r̃
r0

if r̃ ≤ r0

1 otherwise
, r̃ = p1p2p3p4(1− p1)(1− p2)(1− p3)(1− p4) , (17)

where r0 is a user-de�ned constant and r̃ is a function that approaches zero as the moment vector approaches
the realizability space boundaries. The relaxation or blending parameter, r, allows for a relatively smooth
transition between a �rst and second-order polynomial reconstruction of ui(S) so that the closing �uxes
are relatively smooth functions of the known size and velocity moment vectors. Finally, the polynomial
coe�cients in Eq. (16) are obtained by solving the following linear systems

Ap2xp2 = bp2 ,

Ap4xp4 = bp4 ,
(18)

where

Ap2 =

[
〈S0F〉 〈S 1

2F〉
〈S 1

2F〉 〈S1F〉

]
,xp2 =

[
ap2

i

bp2

i

]
, bp2 =

[
〈S0F〉U (0)

i

〈S 1
2F〉U (1)

i

]
, (19)

and

Ap4 =

〈S0F〉 〈S 1
2F〉 〈S1F〉

〈S 1
2F〉 〈S1F〉 〈S 3

2F〉
〈S1F〉 〈S 3

2F〉 〈S2F〉

 ,xp4 =

ap4

i

bp4

i

cp4

i

 , bp4 =

〈S0F〉U (0)
i

〈S 1
2F〉U (1)

i

〈S1F〉U (2)
i

 . (20)

2.7 Interpolative Closure for the Fluxes

To improve the e�ciency and robustness of the proposed 20-moment AG closure, an interpolative approach is
also proposed here where the high-order moments, mk, are approximated using spline functions. The higher-
order moments can be expressed as a function of the lower-order canonical moments, which correspond to
moments normalized by the realizability space boundaries and are de�ned as

pk =
mk −m−k
m+

k −m
−
k

, (21)

where m−k and m+
k are respectively the minimum and maximum realizable values for the kth moment. The

interpolative-based approximations for the size moments are obtained by �tting spline basis functions to the
higher-order moments of the maximum-entropy distribution with the following form

m̃ME
k (p1, p2, p3, p4) =

Na−1∑
a0=−3

Nb−1∑
b0=−3

Nc−1∑
c0=−3

Nd−1∑
d0=−3

τk,abcdNa(p1)Nb(p2)Nc(p3)Nd(p4) , (22)

where τ are the control points and Ni(pk) are the basis functions. Near the boundaries of realizability
space where p2 and p4 approach zero, the variation of the high-order moments with respect to the canonical
moments is more signi�cant and more data points are used for the approximation.

2.8 Treatment of Drag and Evaporation Source Terms

Important physical processes associated with spray transport are incorporated in the moment closure through
the imposition of source terms and, in the present study, drag and evaporation are considered. The velocity
and size dependent droplet acceleration, ai, due to the drag force is taken to have the form

ai(vi, S) =
18πµg

ρlS
[ug,i − vi]

Re(vi, S)

24
CD(Re), (23)

where µg is the viscosity of the carrier phase, ρl is the droplet density, ug,i is the velocity of the carrier
phase, Re is the Reynolds number of the droplet and CD is the droplet drag coe�cient. The drag coe�cient
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Figure 2: Comparison of various empirical drag correlations with experimental results.

is a function of the Reynolds number, as illustrated in Figure 2, where di�erent empirical correlations are
compared to the drag coe�cient obtained from experiment. There are essentially three regions in the curve:
a region for Re ∼ 0.1 (also known as Stokes �ow) where the drag coe�cient is given by CD = 24

Re , a region for
Re ∼ 103 where the drag coe�cient is approximately constant with a value of CD = 0.4 and an intermediate
region where the drag coe�cient is a complicated function of Re. For very small Reynolds numbers, the
Stokes correlation is a good approximation of the drag force but can signi�cantly under-predict the drag
force for larger Reynolds numbers. The other correlations shown all have relatively good agreement with the
experimental data over the full range of Reynolds number. In this study, the Haider-Levenspiel empirical
correlation [23] is used to specify CD since it is a smooth function function of the Reynolds number, unlike
the Schiller-Naumann and Morsi-Alexander correlations which have discontinuous derivatives with respect
to Re. The drag source term vector can then be obtained by integrating the following expression over phase
space

Sdrag =

〈
W(vi, S)

∂

∂vi
(aiF)

〉
, (24)

where the Curtis-Clenshaw and Gauss-Hermite quadrature rules are used for integration over size and velocity
space, respectively.

For treatment of droplet evaporation, which a�ects the evolution of the size moments, the system of
equations is solved using a fractional step or splitting method in order to preserve realizability of the mo-
ment vector. A �rst-order fractional step approach is adopted here, where the original kinetic equation is
decomposed into the following two stages given by

∂F
∂t

+
∂

∂xi
(viF) = − ∂

∂vi
(aiF) , (25)

∂F
∂t

= −RS
∂F
∂S

. (26)

For the d2-evaporation law considered here, then RS is then constant and the exact solution of Eq. (26) is
given by

F(t, S) = F(S −RSt), (27)

which represents the translation of the NDF in size space. The conserved moments at the new time step are
obtained by integrating the product of Eq. (27) with the vector of size-velocity weights, W(vi, S), and are
guaranteed to be realizable since they are obtained from the integration of a non-negative NDF.
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3 Eulerian-Eulerian Spray Atomization Model (EESA): Coupling
of Σ-Y 20-Moment Closure

As part of the current e�ort, the proposed 20-moment AG closure has also been coupled to the Σ-Y model,
providing a complete approximate description of both the dense spray atomization processes and subsequent
droplet transport associated with polydisperse sprays. In the dense spray regime, the spray is not yet fully
atomized into droplets and consists of an intact liquid core and larger ligaments of the liquid spray which
cannot be accurately described by a statistical resprentation in terms of a droplet NDF. The Σ-Y model is a
previously proposed quasi-multiphase mixture model with two additional equations which tracks the liquid
volume fraction and interface area density [6,24,25] and can be used here to represent the dense phase. The
primary atomization processes in this case are modelled using empirically derived source terms. When the
spray is considered to be su�ciently disperse (based on the local values of the liquid volume fraction and
surface density), the disperse spray content of the AG moment closure is introduced via source term transfer
in both the Σ-Y and moment closure descriptions. In addition, the Σ-Y model and AG moment closure is
two-way coupled to the background gaseous carrier phase via additional momentum source terms and the
full Navier-Stokes equations for the carrier phase are solved along with the transport equations of the Σ-Y
model and AG moment closure using a segregated solution procedure. The complete description of the dense
and disperse spray processes is referred to here as the Eulerian-Eulerian spray atomization model (EESA).

Details regarding the implementation of the Σ-Y model used in this work will now be discussed. Similar
to RANS-based turbulence models, the Σ-Y model describes the large scale processes for turbulent spray at-
omization while the subgrid features are modelled using di�usion and source terms. The transport equations
for the liquid mass fraction, Ỹ , and mass-weighted surface density, Ω̃, are given by

∂

∂t

(
ρ̄Ỹ
)

+
∂

∂xi

(
ρ̄ũiỸ

)
= − ∂

∂xi

(
ρ̄ũ′′i Y

′′
)

+ SY,trans , (28)

∂

∂t

(
ρ̄Ω̃
)

+
∂

∂xi

(
ρ̄ũiΩ̃

)
=

∂

∂xi

[(
µt

Sct

)
∂Ω̃

∂xi

]
+Ψ(Sinit+Sprimary)+(1−Ψ)(Scoll+S2ndBU )+Sevap+SΩ,trans ,

(29)

where ρ̄ũ′′i Y
′′ is the turbulent liquid �ux and is modelled using a gradient-based closure [24] given by

ρ̄ũ′′i Y
′′ ≈ − µt

Sct

∂Ỹ

∂xi
. (30)

The source terms that appear on the RHS of equation (29) correspond to di�erent atomization processes
including: primary breakup, collision/coalescence, secondary breakup and evaporation. Following the mod-
elling approach of Lebas et. al [25], they are modelled as relaxation processes of the following general
form

S = α
ρ̄Ω̃

τ

(
1− Ω̃

Ω̃∗

)
, (31)

where α is an empirical constant, τ is the characteristic time scale and Ω̃∗ is the equilibrium surface density.
The model transition between the Σ-Y model and the 20-moment AG closure occurs when the liquid

volume fraction is below some critical value, at which point the spray is considered to be disperse and
the transition source terms, SY,trans and SΩ,trans in equations (28) and (29) become active. Although the
activation criteria is currently discontinuous with respect to the liquid volume fraction, smooth functions
will be investigated in the future. Below the critical value, the transition source terms vary linearly with
respect to the liquid volume fraction and remain active until the liquid volume fraction is zero.

For the initialization process of the 20-moment closure, some additional assumptions about the droplet
NDF are necessary since the Σ-Y model does not include a complete description of the droplet NDF. During
the initialization process, it is assumed that the droplet size and velocity are uncorrelated. In addition, the
size-conditioned number density is assumed to be log-normal and the SMD is assumed to be a function of the
arithmetic mean diameter. Finally, it is assumed that the velocity distribution is Gaussian and the velocity
variance is related to the turbulent kinetic energy [26].
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(a) Total Droplet Number Density

(b) Mean Droplet Radius

Figure 3: Numerical predictions of purely evaporating jet showing the predicted distributions of the total
droplet number density and mean droplet diameter.

4 Numerical Solution Method
The hyperbolic moment equations of the proposed 20-moment AG closure admit discontinuous solutions and
shock structures (such features are common as the velocity variance of the droplets can be small and hence
the droplet �ow is �supersonic�) and are therefore solved here using a Godunov-type �nite-volume method
with piecewise limited linear reconstruction, Venkatakrishnan slope limiter [27], HLL �ux function [28] and
a two-step second-order accurate strong stability preserving (SSP) Runge-Kutta [29] time-marching scheme.
Strang splitting is used for the treatment of the evaporative source term, which is strongly stable and second-
order accurate in time. The solution for the carrier or background gas is fully speci�ed and assumed to be
una�ected by the spray solution for the �rst three cases considered in this study. For the �nal case, the
spray solution is two-way coupled to the carrier phase which is solved using ANSYS FLUENT within a
second-order �nite-volume framework using the pressure-based solver and coupled solution algorithm, where
the continuity and momentum equations are solved simultaneously.

5 Numerical Results

5.1 Purely Evaporating Laminar Jet

In the �rst example test case, a jet of droplets is injected into quiescent air. The problem is solved on a
uniform planar mesh consisting of 2,000 cells along the x-axis, 400 cells along the y-axis and 100 cells across
the jet. The boundary conditions for the droplet jet at the inlet are: n(S) = 1.0 particles/m3, Σyy = 1.0
m2/s2 and Ux = 10 m/s. Evaporation is modelled using the d2-evaporation law with RS = −0.7 and it is
assumed that there is no drag between the droplets and background gas. As the jet travels downstream, the
total number density and mean droplet radius decrease because the droplets are evaporating and mixing with
the background carrier phase and the jet spreads out in the y-direction due to the velocity variance speci�ed
at the inlet, as can be seen in Figure 3(a) and 3(b), respectively. In Figure 4, the size-conditioned number
density, n(S), at di�erent locations along the centerline is shown, con�rming that the number density and
droplet radius are decreasing as the droplets evaporate.
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Figure 4: Numerical predictions of purely evaporating jet showing the size-conditioned number density, n(S),
at di�erent stations along the centerline of the jet.

Figure 5: Initial size-conditioned PDF corresponding to the 5-moment maximum entropy closure (red) and
log-normal distribution (green) for space homogeneous problem with Stokes drag.

5.2 Space-Homogeneous Problem with Stokes Drag

The second test case is a space-homogeneous problem in physical space in which polydisperse droplets with
an initial prescribed velocity are relaxed to the background gas velocity �eld due to the e�ects of Stokes
drag. The velocity �eld of the background gas is at rest and the particles have an initial velocity of velocity
of Ux = 5 m/s, a velocity variance of Σxx = 1.0 m2/s2, and a size-velocity covariance of Σxd = 0.0 m2/s. The
initial size-conditioned PDF is a �ve-moment maximum entropy distribution where the �rst �ve moments
are identical to that of a log-normal distribution with d̄ = 3.173 × 10−5 m and Σdd = 2.86 × 10−10 m2, as
depicted in Figure 5. As there is no spatial variation in the problem, the evolution of the droplet NDF is
fully described by the drag source term and an exact analytic solution can be obtained for this problem [30],
which will be used as a benchmark solution to assess the accuracy of the proposed 20-moment AG closure
model. In addition, since there is no evaporation, the shape of the size-conditioned PDF does not change in
this problem.

First, the NDF obtained from the exact solution is compared to the 20-moment AG closure at three
di�erent times shown in Figure 6. From the exact solution, it can be seen that the smaller droplets respond
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(a) Exact NDF at t = 0.0 s (b) 20-moment AG closure at t = 0.0 s

(c) Exact NDF at t = 0.61 s (d) 20-moment AG closure at t = 0.61 s

(e) Exact NDF at t = 3.03 s (f) 20-moment AG closure at t = 3.03 s

Figure 6: Droplet NDF for the space-homogeneous problem with Stokes drag shown at di�erent instances
in time. The exact NDF corresponding to the reference analytical solution is shown on the left and the
predictions of the 20-moment AG closure are shown on the right.

more quickly to the drag force and relax to the background gas velocity, where the velocity of the smallest
droplets are monokinetic at v = 0 m/s. The 20-moment AG closure is able to capture the general shape of
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Figure 7: Comparison of the primitive variables between the reference exact solution and the predictions of
the 20-moment AG closure for the space-homogeneous problem with Stokes drag.

the NDF, as can be seen in Figures 6(d) and 6(f), although there is a slight overshoot in the velocity of the
smallest droplets in Figure 6(f). Nonetheless, it can be seen that the transient behaviour of the proposed
model agrees well with that of the exact solution.

Next, the evolution of the primitive variables is compared between the exact solution and the 20-moment
AG closure in Figure 7, where the mean velocity, Ux, velocity variance, Σxx, and size-velocity covariance,
Σxd are compared. It can be seen that the behaviour of Ux and Σxd agree well with the exact solution,
while the initial peak of Σxx is over-predicted and then subsequently under-predicted compared to the exact
solution. The source of the modelling error is likely due to the fact that the size-conditioned velocity of
the small droplets are independent of size (since they have relaxed to the carrier phase velocity) while the
velocity of the large droplets are still strongly dependant on size, as can be seen in Figures 6(c) and 6(e).
This type of behaviour cannot be replicated using a polynomial model for the size-conditioned velocity as
seen in Figure 6(f), where the velocity is a function of size for both small and large droplets. Finally, it
should be noted that as t→∞, all the droplets will eventually relax to the background gas velocity and the
solution of the exact NDF relaxes to a monokinetic velocity distribution at v = 0 where Ux, Σxx and Σxd

are zero, which is captured by the 20-moment AG closure.

5.3 Laminar Liquid Jet in a Cross�ow at High Reynolds and Stokes Numbers

In the third test case, a liquid jet is injected into a cross�ow with a Reynolds number of Re = 8, 636. The
problem is solved on a uniform planar mesh consisting of a total of 62,500 cells with eight cells across the jet
inlet. The Haider-Levenspiel empirical correlation is used to specify CD in this case. The Stokes number,
which represents the ratio of the droplet relaxation time to the surrounding characteristic time scale, is very
large for this case and as a result, there is a very high level of segregation of the droplet sizes, as can be
seen in Figure 8(c). Due to the drag force, the spray evolves into �nearly-monodisperse� size distributions
which occur when the moment vector approaches the boundary of realizability space and the distribution is
de�ned as a linear combination of delta functions. Examples of the maximum-entropy solution can be seen
in Figure 9, where it can be seen that in regions downstream of the jet, the size-conditioned number density
is essentially a delta-function about s = 0 (blue curve). Consequently, maximum-entropy descriptions of
these moment vectors can be challenging to obtain numerically since the optimization problem is poorly
conditioned and distribution is very �peaked�. However, it is promising that the proposed moment closure
is capable of resolving the spray region where the segregation occurs as these situations are also expected in
practical spray problems due to the segregating e�ects of drag forces.
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(a) Total Droplet Number Density (b) Mean Droplet x-velocity

(c) Mean Droplet Radius (d) Variance of Droplet Radius

Figure 8: Numerical predictions of the 20-moment AG closure a liquid jet in a cross�ow showing the spatial
distributions of various size and velocity moments.

5.4 Axisymmetric Turbulent Plain Ori�ce Atomizer

Finally, the EESA modelling approach outlined above is validated here using the conditions associated with
the plain ori�ce atomizer of Wu et. al [31], which consists of a liquid water turbulent jet injected into a
quiescent air environment. The Reynolds and Weber number of the liquid jet are 16, 000 and 94, respectively.
The droplet drag coe�cient in the disperse spray regime is modelled here again using the Haider-Levenspiel
empirical correlation and turbulence in the carrier phase is modelled using the SST k-ω model [32]. The
problem is solved on an axisymmetric mesh consisting of 500 cells (800d) in the axial direction, 50 cells in
the radial direction (250d) and ten cells across the jet ori�ce, where d is the ori�ce diameter.

Contour plots for the predicted liquid mass fraction and mass-weighted surface density for the plain
ori�ce atomizer are provided in Figures 10 and 11. The predictions of quasi-multiphase Σ-Y model alone
are compared to those of the full EESA treatment. Finally, the droplet size distribution obtained from
experiment after primary breakup is shown in Figure 12 and it can be seen that the predictions of the EESA
moment approach is in rather good agreement with the predictions of the numerical model for the larger
droplet sizes. However, as the EESA model results presented here do not include either droplet evaporation

14



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, USA, July 11-15, 2022

ICCFD11-2022-2104

Figure 9: Predicted maximum entropy solutions of the size PDF, f(s), for liquid jet in a cross�ow showing:
(i) PDF at the inlet (green); (ii) PDF upstream of the jet (red); (iii) PDF at center of the jet (black); and
(iv) PDF downstream of the jet (blue).

(a) Σ-Y model

(b) EESA model (Σ-Y model coupled to the 20-moment AG closure for the disperse phase)

Figure 10: Numerical predictions of the liquid mass fraction obtained for the plain ori�ce atomizer showing
comparisons of the quasi-multiphase Σ-Y model to those of the EESA model based on the 20-moment AG
closure for the disperse phase.

or secondary breakup, the smaller droplet sizes observed in experiment are not predicted in the simulation
of the plain ori�ce atomizer. These e�ects will be examined in future studies.
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(a) Σ-Y model

(b) EESA model (Σ-Y model coupled to the 20-moment AG closure for the disperse phase)

Figure 11: Numerical predictions of the mass-weighted surface density obtained for the plain ori�ce atomizer
showing comparisons of the quasi-multiphase Σ-Y model to those of the EESA model based on the 20-moment
AG closure for the disperse phase.

Figure 12: Comparison of the predicted droplet size distribution after primary breakup obtained using the
EESA model based on the 20-moment AG closure for the disperse phase to the experimental results of Wu
et. al [31] for plain ori�ce atomizer.

6 Concluding Remarks

In this paper, a 20-moment polydisperse, polykinetic and Eulerian-based moment closure has been proposed
based on the 10-moment AG closure for monodisperse sprays where modelling of the closing �uxes is achieved
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using an interpolative approximation procedure and treatments for drag and evaporation are imposed though
the use of source terms. The numerical framework is second-order and fully multi-dimensional with both
one-way and two-way coupling to the gaseous background carrier phase. In addition, the proposed moment
closure has been coupled with the Σ-Y model for a complete spray description of both dense and disperse
spray regimes.

Several test cases are presented to demonstrate the predictive capabilities and robustness of the 20-
moment AG closure under extreme conditions. Good agreement is shown when comparing the closure
against the exact solution for a space-homogeneous problem and to the experimental results of a atomizing
turbulent jet after primary breakup. In addition, the closure is tested for a laminar jet in cross�ow with a
very large Stokes number and is shown to be capable of handling spray regions where the size distribution is
�nearly-monodisperse�, which can naturally occur in practical problems involving drag but can be challenging
for maximum-entropy-based moment closure methods to treat.

Future research will involve the validation of the proposed closure for a larger variety of practical spray
con�gurations and comparison to solutions obtained using existing Lagrangian methods as well as available
experimental data. The Eulerian framework of the 20-moment AG closure has many compelling advantages
over a Lagrangian framework in terms of coupling to the background carrier phase and dense spray models
since the solutions can be discretized using the same mesh. The eventual goal is to exploit the advantages
of the Eulerian framework and show that solutions of comparable accuracy can be obtained at signi�cantly
reduced computational costs when Eulerian moment closure methods are used in place of more commonly
adopted Lagrangian methods.
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