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The F-16 has a documented history of exhibiting LCOs for certain configurations at 

specific flight conditions, which has prompted a significant research effort using this 

configuration. The Open Source Fighter configuration of F-16 was investigated in this 

study by a time-accurate and fast-running CFD method. The geometry is based on 

publicly available data for the F-16. Our focus is on the capability of predicting the 

flutter boundary and then LCO. First, an efficient and robust fluid modal method 

through the use of a CFD solver is developed to reduce the fully-coupled aeroelasticity 

problem to a second-order multi-degree-of-freedom (DOF) system while maintaining 

dominant nonlinearity and effects of all desired DOFs. A technique for rapid extraction 

of nonlinear fluid modal mass, damping, and stiffness from a CFD solver is shown. 

These fluid mass, damping, and stiffness are then used to construct a system of ordinary 

differential equations, thereby replacing the need for coupled CFD/CSD simulations. 

The developed method is then used to rapidly predict the flutter boundary of a full F-6 

aircraft flutter boundary.   

Keywords: Numerical Algorithms, Computational Fluid Dynamics, Aeroelasticity 

1 Introduction

Accurate analysis of complex flows and the associated aeroelastic response is necessary for the design of 

next-generation flight vehicles. The coupling of computational fluid dynamics (CFD) solvers and 

computational structure dynamics (CSD) solvers can give accurate aeroelastic simulations. However, the 

increase in accuracy comes with a significant additional increase in computational cost. To mitigate this 

increased cost, the solution runs time, and the total number of solutions generated needs to be minimized. 

Reduced-order modeling (ROM) is an accurate and cheap alternative to CFD/CSD simulations to study the 

dynamic aeroelastic response [1][2]. 

In this paper, an innovative "nonlinear fluid modal method" will be presented to rapidly predict and offer 

unique physical insight into the nonlinear aeroelasticity of aircraft [3-5]. The distinguishing factors of this 

effort are: (1) It is physics-based so that changes in aerodynamics, mass, inertia, and center of gravity are 

accounted for. (2) It is time-accurate and fast running. The coupled CFD/CSD problem is reduced to a set 

of ordinary differential equations, which can be solved in a matter of seconds compared to several hundred 

CPU hours. (3) It is CFD/CSD code independent. Any existing CFD solver can be used to build the 

nonlinear fluid modal model. (4) It is applicable to any geometry and flight condition. 

2 Problem Statement

Limit-cycle oscillation (LCO) is a limited-amplitude, self-sustaining oscillation produced by an aero-

structural interaction. LCO results in an undesirable airframe vibration and limits the performance of the 

flight vehicle. Our fluid modal method reduces the fully coupled aeroelasticity problem to an Ordinary 

Differential Equation (ODE) that is solved fast and efficiently. In this study, the Open Source Fighter 

configuration of F-16 was investigated. The geometry is based on publicly available data for the F-16. The 
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F-16 has a documented history of exhibiting LCOs for certain configurations at specific flight conditions, 

which has prompted a significant research effort using this configuration. Our focus will be on the capability 

of predicting the flutter boundary and then LCO.   

 

2.1 Simulation Model 

The CFD mesh consists of 4.5 million cells of mixed elements and can be seen in Figure 1. An adiabatic 

no-slip wall boundary condition is applied on the Wing, Fuselage, and Tip Launcher Rail. A far-field 

boundary condition is applied to the outer boundary of the fluid domain. The freestream initial conditions 

are listed as follows: Mach = 0.96, Q (dynamic pressure) = 27 kPa, Density = 0.6 kg/m3, Velocity = 300 

m/s, and Altitude = 6864 m. 

 

       
Figure 1. CFD mesh of the Open Source Fighter 

 

The structural model shown in Figure 2 contains 10 modal shapes and has three structural components: 

Fuselage, Wing, and Stores. Stores are a pair of under-wing fuel tanks whose aerodynamic effects are 

neglected in the current CFD model.    

 

 

 
Figure 2. Structural Model of the Open Source Fighter: Fuselage (green), Wing (red), and Stores (light 

blue) 

 

The structural model shown in Figure 3 shows the first 4 modal shapes.  
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Figure 4.    Structural Mode Shapes of the First Four Modes of the Open Source Fighter 

 

 

Procedure for the Flutter Prediction Using Our Fluid Modal Method [3-5] 

The process employed for the demonstration of the nonlinear fluid modal method developed in this study 

can be broken down into the following five main steps: 

1. Extract the fluid stiffness matrix, k; 

2. Identify possible couplings between modes; 

3. Calculate the critical dynamic pressure Q values and frequencies with the nonlinear fluid modal 

method 

4. Run the fully-coupled FSI simulation; 

5. Analyze and compare the predictions from the fully-coupled solution and the fluid modal method 

solution.  

 

2.2 Efficient Flutter Prediction Using Fluid Modal Method 

Formulation of Decoupled Equation 

Our approach can be best explained with one degree-of-freedom system, as shown in Figure 4, where a 2D 

airfoil with plunging degree-of-freedom (y) is subject to fluid flow.   
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Figure 4. A demonstration example of an airfoil with a vertical degree of freedom in a flow field. 

 

The dynamics equation for the airfoil's plunging motion can be written as: 

  (1) 

where ms, cs, and ks are the mass, damping coefficient, and stiffness of the airfoil structure, respectively. 

The right-hand side Fy is the integrated aerodynamic force in the y-direction and is a function of the airfoil 

motion. In our approach, we express  

 

  (2) 

with Fy
rig  as the aerodynamic force acting on the rigid airfoil without any motion. Presently, the existence 

of the second term in Equation (2) is purely due to the motion of the airfoil. We then express it as: 

 

  (3) 

The subscript f represents a fluid quantity. Now, combining equations (1-3) gives us: 

 

  (4) 

It is observed that the fully-coupled system has been profoundly simplified into a simple structural 

dynamics problem with modified mass, damping, and stiffness. Most importantly, the forcing is the 

aerodynamic force under rigid body conditions, which can be obtained on a routine basis using any CFD 

tool. For a small displacement y, the fluid mass, damping, and stiffness are constant, and the flutter 

instability can be determined from the condition of zero total damping. When the structural deformation is 

large, we can extract the fluid properties as: 

 

𝑚𝑓 = 𝑚𝑓(𝑥̈);   𝑐𝑓 = 𝑐𝑓(𝑥̇);  𝑘𝑓 = 𝑘𝑓(𝑥)                                                (5) 

Now, Equation (4) is a time-accurate, fast-running algorithm for describing the aeroelastic response of the 

aircraft structures and for defining critical flight conditions.  

 

 

Extraction of Fluid Mass, Damping, and Stiffness 

The fluid side of the decoupled system can be written as follows. 

  

−𝐹𝑓−𝑠 = 𝑚𝑓𝑥̈ + 𝑐𝑓𝑥̇ + 𝑘𝑓𝑥 
(6) 

 

If the CFD/CSD simulation is perturbed such that x is held constant at x=x0 while 𝑥̇ and 𝑥̈ and are zero, 

then the remaining terms become:  

 
𝑘𝑓 = −

(𝐹𝑓−𝑠)

𝑥0
 (7) 

 

With the known x0, and Ff-s from the CFD/CSD simulation, kf can be found from Equation (6). For the 

extraction of the fluid modal mass and damping, the system is instead driven at: 

 

 𝑥 = 𝑥0𝑠𝑖𝑛(𝜔𝑡) (8) 

which results in a response of the form: 

 -𝐹𝑓−𝑠 = 𝐹0 ∗ 𝑠𝑖𝑛( 𝜔𝑡 + 𝜃) (9) 

F0 and the phase shift, θ, can be directly computed by comparing the input displacement and resulting force. 

The response can be represented as: 
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 -(𝐹0 𝑠𝑖𝑛( 𝜔𝑡) 𝑐𝑜𝑠( 𝜃) + 𝐹0 𝑐𝑜𝑠( 𝜔𝑡) 𝑠𝑖𝑛( 𝜃)) = (−𝑚𝑓𝜔2 + 𝑘𝑓)𝑥0 𝑠𝑖𝑛( 𝜔𝑡) +

𝑐𝑓𝜔𝑥0 𝑐𝑜𝑠( 𝜔𝑡) 
(10) 

 

Grouping similar terms result in equations for the modal mass and modal damping as follows. 

 

 
𝑚𝑓 = −

𝐹0 𝑐𝑜𝑠( 𝜃) − 𝑥0𝑘𝑓

(−𝑥0𝜔2)
= −

𝐹0 𝑐𝑜𝑠( 𝜃) − 𝑥0𝑘𝑓

𝑥̈
 (11) 

 
𝑐𝑓 = −

𝐹0 𝑠𝑖𝑛( 𝜃)

𝑥̇
 (12) 

   

Multiple DOF Structural Modal Representation 

First, the dynamic Equation for an elastic structure can be generally written as: 

  (13) 

 

where [M] is a mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, and {F} is a force vector. 

The above Equation can be transformed into modal space using: 

  (14) 

where [] is the modal matrix that contains modal shape vector {φi}, and Zi is the modal displacement.  

 

With the modal shape defined, we can substitute Eq. (14) into Eq. (13) to get: 

 

  (15) 

 

[Mz], [Cz], and [Kz] are all diagonal matrices, representing the structural modal mass, modal damping, and 

modal stiffness. The right-hand side of Eq. (15) is the generalized force. As the left-hand side of the above 

Equation is decoupled, we can write each mode as follows: 

       (16) 

The above Equation is strikingly similar to Equation (1). The exception is that the mass, damping, and 

stiffness are now the local modal values, and the force is the generalized modal force. Now the generalized 

force is expressed as: 

  (17) 

with the first term representing the generalized force acting on the rigid structure and the second term 

representing the generalized force due to structural modal displacement. Because of the complexity of the 

multi-degree-of-freedom problem, all fluid modal mass, damping, and stiffness must be considered. We 

write Eq. (16) as: 

  (18) 

Or, in matrix form,  

  (19) 

Now, our final equation becomes: 

  (20) 
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Extraction of Fluid Modal Stiffness, Mass, and Damping for Multiple DOF 

To extract the fluid properties in modal space, a similar procedure can be applied. The steps are as follows: 

1. Select the first M modes from a structural solver (for example, NASTRAN or CoBi). Output the 

modal shape vectors  

2. Define a modal displacement:  Zi=Zio  

3. Impose boundary conditions on the boundary of the CFD grid through modal shape for the ith mode: 
{𝑥𝑖} = 𝑍𝑖𝑜(𝑖) 

4. Solve a fluid dynamics problem using a CFD solver with the above boundary condition. Find the 

modal force for all M modes: , j=1,... M 

5. Determine the fluid modal stiffness: 

                                𝐾𝑧𝑓𝑖,𝑗 = −
𝑗

𝑍𝑖0
                                                                            (21) 

6. Define a modal displacement:   

7. Impose boundary condition on the boundary of the CFD grid through modal shape for the ith mode: 

, with i as the ith modal frequency. 

8. Solve a fluid dynamics problem using a CFD solver with the above boundary condition. Find the 

modal force for all M modes: , j=1,... M 

9. Determine the fluid modal mass and damping: 

 

 𝑀𝑧𝑓𝑖,𝑗 = −
𝜁𝑗 𝑐𝑜𝑠(𝜃)−𝐾𝑧𝑓𝑖,𝑗𝑍𝑖0

−𝜔2𝑍𝑖𝑜
,  𝐶𝑍𝑓𝑖,𝑗 = −

𝜁𝑗 𝑠𝑖𝑛(𝜃)

𝜔𝑍𝑖0
                                               (22) 

 

Formulations of Full-Coupled Fluid-Structure Interaction Problem into an ODE Equation.  

The simulation was conducted for AGARD 445.6 wing for freestream dynamic pressures of q=50 and q200. 

The resulting matrices are shown in Table 1 for q=50 and q=200. 
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Table 1. Extracted fluid modal properties for AGARD 445.6 wing at freestream dynamic pressure 

q, (a) q=50, (b) q=200. 

 (a) q=50  (b) q=200 

 
 

One notices that all the components of the matrix are proportional to q. We only need to extract the matrix 

for one value of q and obtain the rest using the above feature. With the extracted fluid mass, damping, and 

stiffness, the modified structural Equation (20) can be written as: 

 

 

 (23) 

 

 

Now the coupled fluid-structure problem has been decoupled into an ODE problem.   

 

2.3 Reduction of Flutter Boundary Determination into an Algebraic Problem 

From the above analysis, we can make the following simplifications: 

 

1. The fluid modal mass contributions can be neglected as they are 4 orders of magnitude smaller 

than the structural mass. 

2. Fluid damping can be neglected, as it is less than 1%. 

3. The fluid modal stiffness for mode 3 and mode 4 can be neglected as they are much smaller than 

the structural stiffness. So, mode 3 and mode 4 can be decoupled from the aeroelastic equation. 

4. Define:  k11=11q;  k12=12q;  k21=21q; k22=22q 

 

Now, equation (23) can be reduced further to the eigenvalues of 2 ODE of: 
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[
1 0
0 1

] {
𝑥̈1

𝑥̈2
} + [

𝜔1
2 + 11𝑞 12𝑞

21𝑞 𝜔2
2 + 22𝑞

] {
𝑥1

𝑥2
} = 0                                  (24) 

 

All the off-diagonal terms are due to fluid modal contribution. By setting: 

 

 𝑥𝑗 = 𝑥𝑗0
𝑒𝑖𝑟𝑡 ;         𝑥̈𝑗 = −𝑟2𝑥𝑗0

𝑒𝑖𝑟𝑡;  𝑗 = 1,2                                          (25) 

 

The determinant of the above 2x2 eigenvalue problem becomes: 

 

              (−𝑟2 + 𝜔1
2 + 11𝑞)(−𝑟2 + 𝜔2

2 + 22𝑞) − 1221𝑞2 = 0                                    (26) 

 

The solution gives: 

 𝑟2 =
1

2
[(𝜔2

2 + 22𝑞 + 1
2+11𝑞) ± √(2

2 + 22𝑞 − 1
2−11𝑞)

2
+ 4𝑘12𝑘21𝑞2]             (27) 

 

One can see that since 12 < 0 and  21 > 0, there is a critical q value that leads to: 

 

                  (𝜔2
2+22𝑞 − 1

2−11𝑞)2 + 4𝑘12𝑘21𝑞2 = 0                                      (28) 

 

 

The critical flutter frequency is then: 

 

                     𝑟 = √
1

2
(𝜔1

2 + 𝜔2
2 + 11𝑞 + 22𝑞)                                                        (29) 

 

First, we notice that if 1221 ≡ 0, the two roots from equation (28) are: 

 

𝑟1 = ±√1
2 + 11𝑞;      𝑟2 = ±√2

2 + 22𝑞                                             (30) 

 

For M=0.5, the  values are listed in Table 2 below: 

 

Table 2. Fluid Stiffness Value for the First Two Structural Modes 

 11 12 21 22 

Extracted Value 2.911 -23.43 3.16 -17.66 

 

 

We can see that k22 is negative, which has the potential to lead to flutter.   But in our problem 1221 <  0, 

this term is more important, as seen from equation (27). The mechanism leading to flutter 1221 <  0 is 

illustrated in Figure 5. With a small perturbation in mode 1 𝛿𝑥1, a force on mode 2 is induced, which is 

12𝑞 ∗ 𝛿𝑥1. This force will generate a mode displacement 𝑥2. Again, the mode 2 displacement will generate 

a force on mode 1 21𝑞 ∗ 𝛿𝑥2 , which will lead to mode 1 displacement. When 1221 <  0, there is 

potential to lead to the continuous growth of the mode displacement, and hence the flutter.  
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Figure 5. The mechanism leading to flutter due to fluid stiffness 

 

 

As for the accuracy of the algebraic expression (28), the comparison with experimental data is shown in 

Figure 6. One can see that: 

• For subsonic flow, the algebraic equation gives a good agreement with fully coupled FSI and 

experimental data. For transonic and supersonic flow, the algebraic equation over-predicts flutter 

boundary. 

• As derived, the flutter frequency falls between the first and second structural modal frequencies 

(Figure 7).   

• The algebraic equation model can provide a quick estimate of flutter boundary, and it only needs 

two steady-state extractions:  one for k11 and k21 and one for k21 and k22. 

 

 
Figure 6. Validation of fast running fluid modal method extracted from N-S solver for the prediction of 

flutter dynamic pressure boundary of an AGARD 445.6 wing using the developed algebraic solver with 

two modes. 
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Figure 7. Validation of fast running fluid modal method extracted from N-S solver for the prediction of 

flutter frequency boundary of an AGARD 445.6 wing using the algebraic expression from the first two 

structural modes. 

 

2.4 Efficient Flutter Prediction of F-16 Mode Using Fluid Modal Method 

 

In the following, we will demonstrate our procedure for obtaining the flutter boundary for the F-16 model.    

 

Extraction of Stiffness Matrix 

First, the fluid stiffness is extracted by displacing each mode by a specified value 𝑥0 and holding that 

modal displacement until a steady-state solution is reached. An appropriate value for 𝑥0 can be 

approximated using the following equation: 

 
𝑚𝑜𝑑𝑒 1 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑤𝑖𝑛𝑔 𝑡𝑖𝑝

𝑤𝑖𝑛𝑔 𝑠𝑝𝑎𝑛
∗ 𝑥0 = 1%                                                   (31) 

This ramp and hold simulation was conducted for each mode individually at the specified freestream 

conditions. A "zero perturbation" simulation was also executed to obtain the modal load biases. This was 

achieved by forcing all the modes in the system to stay at an amplitude of 0 until a steady-state solution 

was reached. All simulations were conducted using the SA (Spalart-Allmaras) turbulence model. 

 

Once the modal force is obtained, the stiffness is calculated using the following equation: 

 

𝑘𝑓 =
−(𝐹𝑓−𝑠 − 𝐹𝑏𝑖𝑎𝑠)

𝑥0
 

𝐹𝑓−𝑠 is the resulting modal load for each mode. 𝐹𝑏𝑖𝑎𝑠 is the resulting modal load of each mode from the 

"zero perturbation" simulation. Upon reaching a steady-state these modal loads values are extracted, and 

the nonlinear fluid modal stiffness is calculated. Table 3 shows the format of the modal stiffness matrix. 

 

Table 3. Format of the Fluid Modal Stiffness Matrix 

𝒌𝒇 Mode 1 Mode 2 … 

Mode 1 
Mode 1 response to 

Mode 1 displacement 

Mode 1 response to 

Mode 2 displacement 
… 

Mode 2 
Mode 2 response to 

Mode 1 displacement 

Mode 2 response to 

Mode 2 displacement 
… 

… … … … 
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Table 4 presents the resulting fluid modal stiffness matrix of the Open Source Fighter.  

 

Table 4.  Fluid Modal Stiffness Matrix of Open Source Fighter at M = 0.96 and Q = 27kPA 

𝒌𝒇 
Mode

1 

Mode

2 

Mode

3 

Mode

4 

Mode

5 

Mode

6 

Mode

7 

Mode

8 

Mode

9 

Mode1

0 

Mode1 -21.25 -3.75 -3.75 26.25 -2.5 -3.75 162.5 1.25 162.5 -1.25 

Mode2 0 76.25 -65.75 0 0 -3 0 -215 0 173.75 

Mode3 0 57.5 
-

31.625 
0 0 -1.875 0 -129.5 0 72.25 

Mode4 -27.5 0 0 -262.5 0 0 -87.5 0 -3.75 0 

Mode5 -0.625 -0.2 -0.125 
-

0.4625 
-0.125 -0.125 2.5 

-

0.0625 
3 -0.125 

Mode6 0 
-

1.0875 
0 0 0 

-

0.3375 
0 2.8375 0 -1.1625 

Mode7 -56.25 -1.25 -0.5 -105 0 0 178.75 8.75 278.75 1.25 

Mode8 0 -105 100 0 5.625 5.625 0 290 0 -257.5 

Mode9 -48.75 0 0 
-

156.25 
0 0 12.5 0 145 0 

Mode1

0 
0 

-

34.625 
-7.7 0 0.875 0.875 0 53.375 0 -6.6 

 

Identification of Mode Coupling 

The possible coupling modes are identified by the color marks. These modes are coupled because they have 

opposite signs in the off-diagonal terms. These are highlighted in the table above and listed here: 

  

• k1,4 and k4,1 

• k1,7 and k7,1 

• k1,9 and k9,1 

• k2,3 and k3,2 

• k2,10 and k10,2 

• k3,8 and k8,3 

• k3,10 and k10,3 

• k5,8 and k8,5 

• k5,10 and k10,5 

• k6,10 and k10,6 

• k8,10 and k10
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Calculate the Critical 𝑄 Values and Frequencies 

Our fluid modal method needs the following inputs for each modal coupling: omega1, omega2, 

kappa11, kappa12, kappa21, kappa22, and gmass. Where 1 represents the first mode of the coupling and 

2 the second. The equations for these inputs are as follows: 

 

• 𝜔𝑥 = 2 ∗ 𝜋 ∗ 𝑓𝑥1, where 𝑓𝑥1 is the natural frequency of mode x, 

• 𝜅𝑥𝑥 = 𝑘𝑥𝑥/𝑄, where 𝑘𝑥𝑥 comes from the stiffness matrix and 𝑄 is the dynamic 

pressure, 

• and 𝑔𝑚𝑎𝑠𝑠 is the generalized mass term and for this case it has a value of 1. 

 

The algebraic equation for the Nonlinear Fluid Model Method is as follows: 

 

 
 

Solving for 𝑟 (root) will result in a pair of critical 𝑄 values (due to the ±) which can then be used to 

calculate corresponding critical frequencies. If a 𝑄 value is negative, it is expected not to exist, but 

this will need verification. 

 

The output of the Nonlinear Fluid Modal Method for the Open Source Fighter is shown in Table 5. Note 

that the – and + represent the solution by using either the – or + before the square root in the equation. 

All cells highlighted in grey either have a negative 𝑄 value or a corresponding frequency that resulted 

in NAN (not a number). The modal couplings with these results are expected to not occur.  

 

Table 5. Results of the Nonlinear Fluid Modal Method 

Coupled Modes 𝑸 − 𝑸 + 𝒇 − 𝒇 + 

k1,4 and k4,1 75,919 119,431 3.8 2.9 

k1,7 and k7,1 -12,989,777 -291,754 NAN 6.8 

k1,9 and k9,1 10,737,977 -366,807 26.4 7.2 

k2,3 and k3,2 24,107 -368,578 4.8 3.9 

k2,10 and k10,2 783,993 -2,581,353 11.5 4.8 

k3,8 and k8,3 -1,186,052 -203,057 NAN 7.3 

k3,10 and k10,3 8,172,596 -2,507,093 NAN 12.5 

k5,8 and k8,5 -243,563 -241,580 8.0 8.0 

k5,10 and k10,5 19,597,892 24,057,391 8.2 7.3 

k6,10 and k10,6 16,621,896 32,417,051 8.7 5.0 

k8,10 and k10,8 130,838 1,118,370 13.4 17.6 

 

 

Based on our theory, the possible mode couplings sorted in ascending 𝑄 value (dynamic pressure) are 

shown in Table 6. From the table, it can be seen that at a dynamic pressure of 24K, one can expect 

modes 2 and 3 to be coupled together and have a coupling frequency of 4.8 Hz. Even though several 

other mode couplings are listed, this coupling is the most important since it will occur first.  
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Table 6. Possible Mode Couplings of the Open Source Fighter 

Coupled Modes 𝑸 𝑓 

k2,3 and k2,3 24 kPa 4.8 Hz 

k1,4 and k4,1 76 kPa 3.8 Hz 

k1,4 and k4,1 119 kPa 3.0 Hz 

k8,10 and k10,8 131 kPa 13.4 Hz 

k2,10 and k10,2 784 kPa 11.5 Hz 

k8,10 and k10,8 1.1 MPa 17.6 Hz 

k1,9 and k9,1 10.7 MPa 26.4 Hz 

k6,10 and k10,6 16.6 MPa 8.7 Hz 

k5,10 and k10,5 19.6 MPa 8.2 Hz 

k5,10 and k10,5 24 MPa 7.3 Hz 

k6,10 and k10,6 32.4 MPa 5.0 Hz 

 

 

2.5 Verification of Predicted Flutter Values Using Fully Coupled Solution 

The fully coupled FSI simulation will be used to verify the accuracy of the nonlinear fluid modal 

method. The fully coupled aeroelastic simulation can be conducted in two steps: 1) obtaining a steady-

state solution of the flow field and 2) ping the structure (start of FSI) and observing the unsteady 

response.  

 

Steady-State Solution 

Obtaining a steady-state solution ensures a good initial condition before any structural motion occurs. 

This can be done by running a fully coupled CFD and structural code with global time-stepping or by 

using a larger time-step with startup iterations with local time stepping. An example steady-state 

solution result can be seen in Figure 8. The free-stream conditions of this case are: Mach = 0.96, Q = 

60 kPa, Density = 0.6 kg/m3, Velocity = 447 m/s, and Altitude = 717 m. Note that the dynamic pressure 

for this example is a little more than double that which was used for extracting the stiffness matrix. Lift, 

drag, and pitch coefficients are all converged. As expected, several shocks are present in the flow field 

along the fuselage and on the wing. 

 

     

 
Figure 8. Steady-State Flow Field and Convergence Properties of the Q = 60 kPa Run 
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Ping the Structure and Observe the Unsteady Response 

The structure can be "pinged" by supplying an initial velocity to all modes. With the ping, each mode 

will begin to oscillate. After some time, the modes will either decay or grow. The modes that grow are 

unstable. For example, the modal displacements of Modes 2 and 3 for the same case from Figure 8 are 

shown in Figure 9. The predicted critical Q value for flutter onset was calculated to be 24 kPa. Since 

the simulation was conducted well above that region at a dynamic pressure of 60 kPa, one should expect 

the modes that lead to instability to grow without bound, as shown in Figure 9. 

 

 
Figure 9. Modal Displacements of Modes 2 and 3 for the Q = 60 kPa Run 

 

 

2.6 Capturing the Critical Q value and Frequency of Flutter Onset 

For this study, flutter was defined as when the coefficient of Roll of the simulation resulted in a damping 

factor of zero. A total of 8 dynamic pressure values ranging from 10 kPa to 60 kPa were simulated to 

narrow in on the critical Q value. Figure 10 shows the damping factors of the 27.5 kPa, 30 kPa, and 35 

kPa runs. A quadratic fit was employed to extrapolate the critical Q value. The critical Q value 

extrapolated from the simulation runs is very close to that predicted by the nonlinear fluid modal 

method, resulting in a percent error of less than 2%. To determine the flutter frequency, the FFT (fast 

Fourier transform) of the coefficient of Roll of the Q = 40 kPa simulation run is shown in Figure 11. 

The theoretical critical frequency determined by the nonlinear fluid modal method was 4.8 Hz, as given 

in Table 7. The plot of Figure 11, which determines the frequency content of the cRoll data, shows a 

peak at 4.8 Hz as well.  
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Figure 10. Extrapolation of the Simulated Critical Q Value of the Open Source Fighter at          Mach 

= 0.96 

 

 

 

 
Figure 11. FFT of the Coefficient of Roll of the Q = 40 kPa Simulation Run 

 

 

Table 7 shows the comparison of dynamic flutter pressure and flutter frequency from the fully 

coupled solution and the current fluid modal method. One can see very good agreements.  

   

Table 7.   Comparison of Flutter Dynamic Pressure and Flutter Frequency 

 Current Fluid Modal 

Method 

Fully Coupled Solution 

Flutter Dynamic Pressure (kPa) 24.1 24.4 

Flutter Frequency (Hz) 4.80 4.80 

 

 

2.7 Prediction of Flutter Boundary 

All results up to this point have only been dealing with the onset of flutter at a Mach number of 0.96. 

However, from past aeroelastic analysis, the critical Q value has been shown to be dependent on the 

Mach number. Several methods for predicting flutter have been developed over the years. One such 

method, known as the Schur method, was implemented in the Open-Source Fighter Geometry by 

Marques et al. [6]. These results are presented in Figure 12, along with the calculated critical Q value 

determined by the nonlinear fluid modal method. Since the Schur method included Euler solutions, the 

stiffness matrices for each Mach number were extracted using an Euler solver. As seen in the figure, 

the nonlinear fluid modal method compares well with the Shur method. The critical Q values calculated 

for the nonlinear fluid modal method were determined using only the coupling between Mode 2 and 

Mode 3. 
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Figure 12. Flutter Boundary for the Open-Source Fighter with Comparisons between the Schur and 

Nonlinear Fluid Modal Methods   

 

3 Conclusion and Future Work 

An innovative "nonlinear fluid modal method" is presented to rapidly predict and offer unique physical 

insight into the nonlinear aeroelasticity of aircraft. The distinguishing factors of this effort are: (1) It is 

physics-based so that changes in aerodynamics, mass, inertia, and center of gravity are accounted for. 

(2) It is time-accurate and fast running. The coupled CFD/CSD problem is reduced to a set of ordinary 

differential equations, which can be solved in a matter of seconds compared to several hundred  CPU 

hours. (3) It is CFD/CSD code independent. Any existing CFD solver can be used to build the nonlinear 

fluid modal model. (4) It is applicable to any geometry and flight condition. 
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