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Abstract: The aerodynamic design of aircraft often involves evaluating flow conditions that span
low subsonic to transonic, or even supersonic Mach numbers. Compressible flow solvers are a nat-
ural choice for such design problems, but these solvers encounter reduced accuracy and efficiency
at low Mach numbers. In addition, simulations with supersonic conditions can be challenging to
converge because of large gradients in the flow field. This paper presents three contributions to
address these issues in the context of an approximate Newton—Krylov solver for the Reynolds-
averaged Navier—Stokes equations. First, we propose a method for scaling artificial dissipation
that improves accuracy at low Mach numbers while retaining the simplicity of the original scalar
dissipation scheme. Second, we show that characteristic time-stepping combined with an approx-
imate Newton method can accelerate convergence for low Mach number flows by reducing the
stiffness in the linear system for each Newton iteration. Third, we introduce a dissipation-based
continuation method for flows with shocks that improves robustness and accelerates convergence
without sacrificing accuracy. These methods can be used to make compressible flow solvers more
accurate and eflficient across low and high Mach number regimes.
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1 Introduction

The aerodynamic design of aircraft often requires evaluating performance over a wide range of flow
conditions. For example, the flight envelope of a supersonic transport aircraft can span Mach numbers from
0.25 to 2.0 [1]. A conventional transonic aircraft will fly through Mach numbers from 0.2 to 0.85 in a typical
mission [2]. In addition, certain applications produce flow fields with a range of Mach numbers at a single
operating condition. Helicopter rotors experience nearly incompressible flow at blade roots and compressible
flow at the tips [3]. Nacelles in crosswind can experience supersonic flow around the inlet lips despite low
subsonic flow outside the nacelle [4]. This motivates the need for CFD solvers that are accurate and efficient
across a wide range of Mach numbers.

In theory, compressible flow solvers represent the true physics across all Mach numbers, making them a
natural choice for aerodynamic design. In practice, these solvers commonly suffer from reduced accuracy and
speed at low Mach numbers. Resolving this through low-speed preconditioning has been studied in depth
by several authors for both explicit and implicit time-stepping schemes. Turkel [5] introduced a class of
preconditioning matrices for low-speed flows based on analysis of the Euler equations. This approach modifies
the time stepping to minimize the ratio of advective and acoustic wave speeds, which accelerates convergence.
The same preconditioners can improve accuracy at low Mach numbers if the artificial dissipation in the scheme
is based on preconditioned fluxes [6]. This approach has also been applied to viscous flows [7, 8, 4]. van
Leer et al. [9] proposed a preconditioner for all Mach numbers that is also based on the idea of minimizing
the spread in wave speeds. They interpreted this approach as using different time steps along different



characteristic directions, which led to the name “characteristic time-stepping”. The authors demonstrated
the preconditioner’s effectiveness on the Euler equations at Mach numbers from 0.01 to 1.8 and on viscous
flow at Mach 7.95. Lee [10] showed that preconditioning approaches based on the Euler equations work well
for viscous flows in most practical cases.

Some work has also been done on low-speed preconditioning for Newton-based solvers. Newton-based
solvers are fully implicit and offer more flexibility in addressing the accuracy and speed issues independently
without introducing unwelcome stability restrictions. To speed up convergence with Newton—Krylov solvers,
Knoll et al. [11] considered multiplicative Schwarz preconditioning and Weston et al. [12] used approximate
block factorizations. Both of these papers take an algebraic approach to preconditioning. In contrast, Mary
et al. [13] applied characteristic-based preconditioning to an approximate Newton solver. This work was
limited to a maximum Reynolds number of 800 and primarily considered accuracy. These limitations suggest
that there is unexplored potential for improved performance with Newton-based solvers using characteristic
preconditioning methods.

In addition, high-speed flows have not been explored as extensively as low-speed cases. Kaushik et al. [14]
and Olawsky et al. [15] found that Newton-based solvers can run into difficulties converging supersonic flows
with second-order schemes compared to more dissipative first-order schemes. They resolved this by starting
the solution with a first-order scheme before switching to a second-order scheme closer to convergence. This
approach lacks reliability because it is not always clear when to switch to a second-order scheme for a
given case. A related approach for improving convergence for flows with shocks is to increase the artificial
dissipation in the discretization. For upwind schemes, this usually corresponds to modifying the entropy
fix. For example, changing the entropy fix to be more dissipative is an option in the widely used FUN3D
code [16]. The equivalent for central schemes is increasing the artificial dissipation constants, as done by
Ohrman [17] for example. Increasing dissipation improves robustness in exchange for reduced accuracy. We
desire an automated approach that increases robustness without sacrificing accuracy.

In this work, we introduce three methods to improve the efficiency and accuracy of Newton-based com-
pressible flow solvers across low and high Mach number regimes. In Sec. 3, we describe a simple method for
improving low-speed accuracy by scaling the artificial dissipation of a scalar dissipation scheme. This method
preserves the simplicity of the original scheme and is easy to implement. We then formulate a characteristic
time-stepping approach for an approximate Newton solver in Sec. 4. Characteristic time-stepping improves
nonlinear convergence rates by reducing the stiffness of the linear system at each nonlinear iteration. Lastly,
we present a dissipation-based continuation method in Sec. 5 that addresses nonlinear convergence difficulties
that arise from high Mach number flows. This method leverages the idea that more dissipative methods are
easier to converge by starting with high artificial dissipation and smoothly reducing the dissipation to the
desired level as the solution converges.

2 Baseline RANS Solver

The CFD solver we use in this work is ADflow [18], a second-order finite volume code for multiblock and
overset structured meshes. We solve the steady, compressible Reynolds-averaged Navier-Stokes (RANS)
with the Spalart—Allmaras (SA) turbulence model [19]. The flow is assumed to be fully turbulent.

The Navier—Stokes equations can be written as

d . .
—/QdV—i-?{ F.-ndA— Fy-ndA =0, (1)
dt Jy ov ov
where Q = [p, pu, pv, pw, pE]T represents the conservative variables, F, is the convective flux, and Fj is the
diffusive flux. This system is augmented by the SA equation, which adds the turbulent contribution to the
diffusive flux. Discretizing in space with a cell-centered finite volume method, the equation for a cell i is

dQ;
dt

w+ZFCAAf—ZFdAAf=o, (2)
f f

where the discretized fluxes, F. and Fd, are summed over the faces of the cell. We use the Jameson—Schmidt—



Turkel (JST) scheme [20, 21] to discretize the convective flux and a central scheme with Green—Gauss
gradients for the diffusive flux.

2.1 Artificial dissipation formulation

JST is a central scheme with a combination of second and fourth order artificial dissipation terms for
stability. We now describe the artificial dissipation formulation in the I mesh direction. The formulation for
the J and K directions follow similarly. The second-order dissipation coefficient at a face between cell i and
i+ 1 is given by

) )
e<+>7 = m Yy s Al 4, (3)

and the fourth-order coefficient is given by

(@
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By default, we use r2 = 0.25, 4 = 0.0156, ¢4 = 1. T;, /5 is the shock sensor at the face, which ensures that
second-order dissipation is only applied near shocks and fourth-order dissipation is only applied away from
shocks. The shock sensor at the face is computed as the maximum of the neighboring cell sensor values:

Tl-_‘_% = max (sz Ti+l) . (5)
The shock sensor value in each cell is based on the local change in entropy, s:

o |5i+1 — 28+ Si_1|
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(6)

Af +1/2 is the spectral radius of the flux Jacobian in the I direction at the face and is computed as the average
of the neighboring cell radii:

AZ'IJr% - % (Az‘la[\fﬂ) . (7)

To compute the spectral radius in the I direction, we first compute the isotropic spectral radius, A, in each
direction. The isotropic spectral radius in the I direction is

A =T -7l + ||, (8)

where U = [u,v,w]T is the local velocity vector, ¢ is the local speed of sound, and 7’ is the face normal
projected in the I direction. Similarly, for the J and K directions, we have

N =T i +cld’|, (9)

—

AR =U - i" + k). (10)

We then compute a scaled spectral radius that is appropriate for high aspect ratio cells as suggested by

Martinelli [22]:
) AT 067 AR 067
I _ I

The artificial dissipation terms are proportional to the spectral radius, so appropriately scaling the spectral
radius is critical for solver convergence and solution accuracy.



2.2 Solver algorithm

To converge the semi-discrete form (Eq. 2) to a steady solution, we define the residual in each cell, R;,
as the time-derivative term and drive it to zero:
Wiy S Faa, - S BAd; =0 (12)
dt % - d f - c f .

R =

The baseline nonlinear solver algorithm we use in this work is the approximate Newton—Krylov (ANK)
method with pseudo-transient continuation implemented in ADflow [23]. The solver is primarily designed
for robustness and speed at transonic flow conditions. The solution update at each iteration of the ANK
solver, AQ(™, is obtained by solving the linear system

C\(n oRrR\™
(T 1)( )Jr <6Q>

where R is the residual vector, Q™) is the state vector, and T is the time-step matrix. T is a diagonal
matrix, where the diagonal terms for each cell are the time step, At;, that results in the desired global CFL
number. The global CFL number is initially small and is increased as the solution converges. A complete
description of the ANK algorithm is given by Yildirim et al. [23].

AQ™ = —R(Q™), (13)

2.3 Accuracy and cost comparisons

We compare the methods presented in this paper to the baseline solver in terms of accuracy and cost.
Unless stated otherwise, all solutions are converged to a total residual of 10719 relative to the freestream
residual. To provide a hardware-independent measure of cost, we report total CPU times in TauBench work
units [24]. We run all computations on NASA’s Aitken supercomputer using Cascade Lake nodes, where one
work unit is equal to 3.9078 processor seconds. We determine this by running TauBench ten times with the
command mpiexec -np 1 ./TauBench -n 250000 -s 10 and computing the average run time.

3 Scaling Artificial Dissipation to Improve Accuracy at Low
Mach Numbers

Artificial dissipation is essential for nonlinear convergence but can be detrimental for accuracy. The
JST scalar dissipation scheme is generally more dissipative than second-order upwind schemes [25]. Central
schemes that are less dissipative than scalar dissipation include matrix dissipation [25] and the convective-
upstream-split-pressure scheme [26]. However, all of these central and upwind schemes are primarily designed
for transonic flows and run into accuracy issues at low Mach numbers because of improperly scaled artificial
dissipation [6]. One common approach to scale the dissipation is to multiply the flux Jacobian by a local
preconditioning matrix. For JST, this modifies the spectral radius and consequently the dissipation. We
discuss using a local preconditioning matrix to accelerate convergence in Sec. 4. To improve low-speed
accuracy, we opt to directly modify the spectral radius. We discuss some advantages of this approach over
preconditioning matrices later in this section.

In the low Mach number limit, the advective contribution to the spectral radius (Eq. 8) is O(1), whereas
the acoustic contribution is O(1/M) [27]. Rieper [28] showed that artificial dissipation must be independent
of Mach number for accuracy in the incompressible limit. To scale the artificial dissipation for low Mach
numbers, we introduce the acoustic scaling factor ¢ in the isotropic spectral radius:

A =T i + ¢l (14)

Using this formulation, we can select values for { that reduce or eliminate the dependence of artificial
dissipation on the Mach number.

To study the effect of ¢ on accuracy, we consider a NACA 0012 airfoil at a Reynolds number of 10%, 3
deg angle of attack, and Mach numbers from 0.01 to 0.4. We use an O-mesh with 296 cells around the airfoil



and 128 cells in the offwall direction, for a total of 37888 cells (Fig. 1). The initial offwall spacing is 1076
chord lengths, and the farfield is 100 chord lengths away from the airfoil.
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Figure 1: NACA 0012 O-mesh with 296 x 128 cells

To evaluate accuracy at different values of {, we compare the RANS results with predictions using
XFOIL [29], a 2D panel method coupled with an integral boundary layer model. We use 300 panels for
the inviscid discretization in the XFOIL analyses. Increasing the number of panels to 360 gives the same
coefficient values to 4 significant digits. To match the fully turbulent RANS simulations, we force transition
at the 0.3% chord location. This is the smallest positive value we could use for the trip location without
encountering numerical difficulties.

Fig. 2a compares the drag for the baseline (( = 1), no acoustic contribution (¢ = 0), and scaling the
acoustic contribution by the freestream Mach number (( = My). With no scaling, drag diverges as the
Mach number is reduced. The drag overprediction at low Mach numbers for the baseline is caused by a
nonphysical suction peak on the trailing edge surface (Fig. 3). These nonphysical pressure fluctuations are
a direct result of improperly scaled dissipation, as shown by Guillard and Viozat [30]. Chen et al. [31] also
found similar trailing edge pressure spikes for low-speed inviscid flow. Scaling the acoustic contribution
removes the trailing edge artifact and results in more accurate drag values. In addition, the change in drag
flattens out as the Mach number is reduced. We find that scaling by the freestream Mach number yields the
most accurate drag predictions compared to XFOIL.

The baseline errors in lift at low Mach numbers are not as large as for drag (Fig. 2b), but the lift still
diverges as the Mach number approaches zero. Reducing artificial dissipation avoids divergence. The value
of ¢ is not critical for lift prediction because the differences are primarily caused by discretization errors. We
run a mesh refinement study at Mach 0.1 to demonstrate this. In addition to the 296 x 128 mesh, we use a
592 x 256 mesh and a 148 x 64 mesh for the study. Figure 4 shows the drag and lift for these three meshes,
as well as the Richardson extrapolation [32; 33] using the two finest meshes. The Richardson extrapolation
provides an estimate of the values we would obtain on an infinitely fine mesh. The extrapolated drag values
depend on (. The extrapolated drag for ¢ = 1 is 7.5% higher than the drag for ¢ = 0 and 5% higher than
¢ = M. This means that properly scaling the dissipation is important for drag prediction even for fine
meshes. On the other hand, the extrapolated lift values are within 0.5% of each other. The differences in
lift with ¢ are large only for the 148 x 64 mesh. However, such a coarse mesh is outside the asymptotic
range [33] in terms of mesh size and should not be used in general. The mesh refinement study also shows
that drag for ¢ < 1 is less sensitive to mesh size than baseline. As a result, scaling the artificial dissipation
can indirectly speed up analyses by allowing for coarser meshes at the same accuracy as the baseline.

One advantage of scaling with ¢ over prior approaches is that it is easy to implement. Adding the
scaling factor is a minimal extension to the JST scalar dissipation formulation. Another advantage is that
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Figure 2: Scaling artificial dissipation improves accuracy

(a) C=1 (b) ¢ = 107"

Figure 3: Reducing artificial dissipation removes the spurious pressure spikes at the trailing edge (Mach
0.01)
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Figure 4: Mesh refinement at Mach 0.1

the artificial dissipation can be varied continuously. Figure 5 shows that reducing ¢ beyond 103 for Mach
0.01 incurs large penalties in cost. Depending on the case and solver, ¢ lower than a certain value may not
converge at all. Because ( is a continuous parameter, the user can decide what value results in the desired
combination of robustness, cost, and accuracy. This is similar to deciding the appropriate mesh size for a
given problem.
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Figure 5: Reducing ¢ eventually leads to an increase in cost (Mach 0.01)

In these results, we have only considered using the same value for ¢ in all cells. Alternatively, we could
use local values for (. For example, instead of the freestream Mach number, we could use the local Mach
number in each cell. We find that this results in similar accuracy and convergence to using a global value
of ¢ = 0. This is because the local Mach number near the airfoil is close to zero, and the cells closest to
the airfoil dictate the overall behavior of the solver. However, local values may be more applicable for cases
where a freestream value is not defined. The proposed scaling approach with either global or local ( is easy
to implement and improves the accuracy of compressible solvers at low Mach numbers.



4 Accelerating Convergence at Low Mach Numbers with
Characteristic Time-Stepping

In addition to lower accuracy, compressible flow solvers face slower convergence at low Mach numbers.
For the NACA 0012 case from Sec. 3 with the 296 x 128 mesh and ¢ = 1, the solution for Mach 0.01 is three
times slower than Mach 0.4 (Fig. 6). The slower convergence is the result of the difference in magnitude
between the advective and acoustic wave speeds. For explicit solvers, this results in a more restrictive upper
bound on the time step. For Newton-based solvers, this is reflected in the stiffness of the linear system that
is solved at each nonlinear iteration.

10°-
‘ —— Mach 0.4
10-24 Mach 0.1
| Mach 0.01
Relative 1071 \
convergence
10764 \
N
10781
10-10

0 50 100 150 200 250
Work units

Figure 6: Cost increases as Mach number decreases (NACA 0012)

The baseline ANK solver defaults are tuned for compressible flow. However, we use settings that are
beneficial for low Mach number flows for all cases with freestream Mach numbers of 0.4 or lower in this
paper. The main changes are using more linear solver iterations and a more accurate preconditioner for the
linear system. For higher Mach numbers and flows with shocks, solving the linear system more tightly is not
as beneficial for improving nonlinear convergence.

To further accelerate convergence at low Mach numbers, we take a local preconditioning or characteristic
time-stepping (CTS) approach. This approach involves modifying the time-stepping terms to equalize the
advective and acoustic wave speeds. We refer to this approach as characteristic time-stepping to emphasize
that we are not modifying the artificial dissipation using the same preconditioner. To apply CTS to the
ANK solver, we multiply the time-step matrix by the preconditioning matrix P. The linear system with the
ANK step (Eq. 13) requires the inverse of the time-step matrix, so it is more convenient to work directly
with the inverse of the preconditioner, P~!:

OR\™ \ pm) ()
%) |aan = -rQ™), (15)

(Pflel) (n) + (

We make one change to adapt the preconditioner for use with pseudo-transient continuation. When the
CFL number is low, the linear system is not stiff and the baseline solver regularly outperforms CTS. To take
advantage of this, we use a blended preconditioner based on the CFL number:

_ CFL _ CFL
Pblelnd = <CFLmaX> P ! + <1 - CFLmax) 1. (16)

With this blending, the solver initially acts like the baseline and reaches the fully preconditioned method
when the CFL number reaches its maximum value.
P~!is a block diagonal matrix. Each diagonal block corresponds to one cell, and we denote the pre-



conditioner for cell i as Pfl. Several different preconditioning matrices can be used in this formulation.

We consider the Turkel preconditioner [5], denoted here as Pr, and the van Leer-Lee-Roe (VLR) precondi-
tioner [9], denoted as Pyrg.

4.1 Turkel preconditioner
It is convenient to write the Turkel preconditioner in terms of the Euler symmetrizing variables,
Q = [p/(pc),u,v,w,p—c2p]T. (17)

With these variables, the preconditioner for cell i is

1
e 0000
2 10 00
Pri=|4% 01 0 o, (18)
S5 00 10
0 00 0 1

where we use Mt instead of the usual symbol S to avoid confusion with the 8 introduced for the VLR
preconditioner in Sec. 4.2. As in prior work, we define M+ as a truncated form of the local Mach number:

MZ = min (1, max(M? ¢M2)). (19)

For ¢ > 0, this definition of M?% prevents the matrix from becoming ill-conditioned in cells where the local
Mach number is nearly zero. The ill-conditioning is mainly an issue at stagnation points. We find that
¢ = 10~* provides the best performance while avoiding convergence issues. Larger values of ¢ do not show
speedup compared to the baseline, whereas smaller values fail to resolve the stagnation point issue.

We also prevent M3 from being greater than 1 and define « as

a=1- M3 (20)

to eliminate preconditioning for locally supersonic flow. For M > 1, M% = 1 and o = 0, which is equivalent to
no preconditioning. For subsonic Mach numbers, a quickly approaches 1, which results in better conditioning
than o = 0. Typically, the preconditioner with o« = 0 is used for its improved robustness despite not providing
the optimal conditioning in the low Mach number limit. The difference in robustness has been attributed
to @ = 1 having lower artificial dissipation than « = 0 [6]. However, we do not use the same scaling for the
dissipation as we do for the time step, so we avoid this robustness issue.

Finally, we transform the matrix to conservatives variables through

Pri=SPris, (21)
where S is the transformation matrix from symmetrizing to conservative variables:
0 0 0
p 0 0 -
0 p O
0 0 »p

2
_cp(MT—l—ﬁ) pu pu pw  —5



4.2 van Leer-Lee-Roe (VLR) preconditioner

The VLR preconditioner is usually expressed in terms of the Euler symmetrizing variables and in a
flow-aligned coordinate frame:

L1 0 00

Pihi=1 0o 0o L o of. (23)
0 0 0 Lo
0 0 0 0 1]

where

5 VI-Mig, M<1 VI-Mg g, M <1 (24)
= s T = .
Mg —1,M>1 VI-1/MZ g+, M>1

We define M3 like M2 for the Turkel preconditioner but without any restrictions for supersonic flow:
M3y r = max(M?, ¢M?2). (25)

We use ¢ = 10~4, which is the same value we use with the Turkel preconditioner. We also set ¢ = 107 to
avoid dividing by zero for sonic flow. We transform the preconditioner first to Cartesian coordinates with
the rotation matrix Z and then to conservatives variables with the state transformation matrix S (Eq. 22):

P\7LlR,i = SZ]B\ER,ZZTS_1~ (26)
The rotation matrix [34] is
1 0 0 0 0
0 cosacosfl —sinf —sinacosfd O
Z =10 cosasinf cosf —sinasingd 0], (27)
0 sin «v 0 cos & 0
0 0 0 0 1
where
sinf = v sina = v

Vu2Z + 02’ Vu2 + 02 + w?’

i Vu?Z +v?

cost) = —— cosq =

Vu2 + 02’ Vi + 02 +w?’

4.3 The importance of dissipation scaling

We first apply CTS to the NACA 0012 case at Mach 0.01. For this section, we only show results with
the Turkel preconditioner. However, we see similar trends with VLR. We find that the performance strongly
depends on the choice of ¢ (Fig. 7). Using ¢ = M, results in faster convergence compared to the baseline,
whereas CTS is slower than baseline for { =1 and ¢ = 0. For ( = 1, CTS takes more than twice as long as
baseline to converge and exhibits noisy convergence below a relative residual of 10~7. Convergence with CTS
is noisier than baseline even for cases where CTS is faster. This is related to the preconditioner becoming
ill-conditioned at stagnation points. We find that the noise is worse for lower freestream Mach numbers
(Fig. 8). In addition, using larger values of ¢ reduces the noise but results in slower convergence. The
noise is largest for ( = 1 because of the nonphysical stagnation regions shown in Fig. 3a. We conclude that
applying local preconditioning to the time step is problematic when the flow solution is locally nonphysical.

10



The slowdown with CTS is less severe for ( = 0 than ¢ = 1 but still indicates that the solver is not working
as intended. As mentioned before, removing too much dissipation can be detrimental to solver robustness.
In this case, the solver still converges but performs poorly.

100 -
— (=1
10-21 —— ( =1 Turkel
¢=0
4 —— (¢ =0 Turkel
Relative 1077 ¢ =102
convergence
) ¢ = 1072 Turkel
10—0<
1078<
10710 i

0 100 200 300 400 500 600
Work units

Figure 7: CTS reduces cost for ¢ = 1072 (NACA 0012 at Mach 0.01)
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Figure 8: CTS convergence is noisier at lower Mach numbers (NACA 0012, ( = M, Turkel)

We can look at linear convergence to see how CTS achieves speedup for ( = M. The linear system for
each ANK step is solved using the generalized minimum residual (GMRES) method [35]. The target linear
residual is 0.05. We also set the maximum number of GMRES iterations to 100. If the iteration limit is
reached before the linear residual target is met, the solver will continue with the partially converged step.
We use the linear residual as an indicator of the linear system stiffness. For ( = M, CTS reduces the linear
residuals such that they are all less than 0.1 (Fig. 9a). This results in faster nonlinear convergence. However,
the same is not true for ¢ = 0 (Fig. 9b). Despite reducing the linear residuals, nonlinear convergence is not
improved with CTS. As a result, we use ( = M, for all baseline and CTS cases with freestream Mach
numbers of 0.4 or lower in Sec. 4.4 and Sec. 4.5.

11
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Figure 9: CTS improves linear convergence but this does not guarantee improved nonlinear convergence
(NACA 0012 at Mach 0.01)

4.4 NACA 0012 Mach number sweep

We now compare Turkel and VLR preconditioning with the baseline for a range of Mach numbers. Both
preconditioners converge faster than baseline for all Mach numbers we tried between 0.01 to 0.4 (Fig. 10a).
The largest speedups are for Mach 0.1 and lower, where Turkel is 41%-64% faster than baseline. VLR is
consistently faster than Turkel and achieves 49%-71% speedup compared to baseline in this regime. There
is also a large speedup for Mach 0.4, but we do not expect to see the same speedup if the baseline solver is
tuned for compressible flow.

We also compare CTS and baseline for Mach numbers between 0.6 to 1.4. We use ( = 1 for these
cases because we are no longer in the low Mach number regime. We also tune the solver for compressible
flow. These higher Mach number cases converge faster if we switch to a Newton—Krylov (NK) solver after
converging to a relative residual of 10~ with ANK. The NK solver has no time-step matrix and solves the
flow and turbulence equations simultaneously. The lack of the time-step matrix means that CTS has no
effect. However, this switch ensures a fair cost comparison in which the baseline solver is not restricted to less
effective methods. The performance of Turkel and VLR is similar to the baseline at higher Mach numbers
(Fig. 10b). This is the expected behavior for the Turkel preconditioner because we turn off preconditioning
for locally supersonic flow. VLR is designed to be an all-speed preconditioner but also performs similarly
to baseline for higher Mach numbers. This is because the difference in wave speeds and the resulting linear
system stiffness is not an issue for Mach numbers around 1. We could try Mach numbers much higher than
1, but this runs into other challenges. We discuss these challenges and propose a solution in Sec. 5.

4.5 Delta wing

There are also low Mach number cases for which CTS does not result in any speedup. We demonstrate
this on an aspect ratio 2 delta wing at a Mach number of 0.083, Reynolds number of 5.9 x 10°, and angle
of attack of 5 deg (Fig. 11). The geometry and flow conditions are taken from experimental work by Jarrah
and Ashley [36]. We use an overset mesh with 1.9 million cells (Fig. 11a). More details on the mesh are
given by Seraj and Martins [37]. For this case, stagnation point flow is restricted to a small region near
the wing apex (Fig. 11b). Despite the low freestream Mach number, the flow field does not have enough
cells with nearly zero local Mach number to make the global linear system stiff. As a result, CTS produces
nearly identical convergence behavior as the baseline (Fig. 12). This also explains why the linear residuals
are lower than the NACA 0012 baseline case. We show only Turkel results for clarity, but VLR also gives
nearly identical results.
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Figure 10: CTS reduces cost for low Mach numbers (NACA 0012)

(a) Overset mesh with 1.9 million cells (b) Pressure contours at Mach 0.083, a = 5°

Figure 11: Delta wing geometry from Jarrah and Ashley [36]
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Figure 12: CTS is nearly identical to baseline for the delta wing
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5 Dissipation-Based Continuation for Flows with Shocks

Flows with shocks pose different challenges for solvers than the low Mach number flows we have discussed
so far. Shocks can move within the domain as the solution converges, causing large changes in cells’ states.
To improve robustness, the ANK solver employs a physicality check that limits the update step size such
that the density and energy do not change by more than 20% in any cell. One important outcome of this
approach is that the density and energy cannot become negative. Despite this added robustness, ANK can
still perform poorly or fail to converge when the step sizes become small.

We demonstrate the effect of step size on convergence using transonic and supersonic flow over a NACA
0012 airfoil. At Mach 3.0, the step sizes are severely limited compared to Mach 0.75, which slows down
convergence (Fig. 13). For the NACA 0012 cases in this section, we use the 296 x 128 mesh from Sec. 3. The
Reynolds number is 107 and the angle of attack is 3 deg, unless stated otherwise. As with the high Mach
number cases in Sec. 4.4, we use the NK solver during the final stages of convergence for all cases in this
section. We switch to the NK solver after converging to a relative residual of 10~ with ANK.

10°4 0.6
Mach 3.0
1021 0.5 Mach 0.75
10744 0.4
Relative Fraction
convergence 10-61 of steps 0.31
10784 0.2
10~104 —— Mach 3.0 0.14
Mach 0.75
107121~ . . . - oot—---——
0 20 40 60 80 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Work units Step size
(a) (b)

Figure 13: Limited step sizes slow down convergence for supersonic flows (NACA 0012)

One approach to accelerating convergence is to loosen the physicality check to accept larger changes in the
states. However, this reduces the robustness of the solver and can often lead to stalled convergence. Another
approach is to increase the second-order artificial dissipation constant, xo. This improves convergence by
reducing the spatial gradient in the states but has the disadvantage of reducing solution accuracy. To
accelerate convergence while preserving accuracy, we propose a dissipation-based continuation (DBC) method
where k9 starts high and is continuously reduced as the solution converges.

DBC was previously explored by Hicken et al. [38, 39]. The DBC approach presented here differs from
this prior work in that we do not use it as a general globalization strategy. We retain the shock sensor
(Eq. 6) for the second-order dissipation, so DBC is only applied near shocks. In addition, we use DBC in
combination with pseudo-transient continuation for globalization. A related but less automated approach is
to start the solution with a first-order scheme and switch to a second-order scheme at some point during the
solution [14, 15].

5.1 DBC formulation

We write the DBC formulation as
k5" = ko + fVKS, (28)
where H(Qn) is the dissipation constant at nonlinear iteration n, kg is the desired final dissipation constant, x$

is the initial value of the additional dissipation, and fc(n) is the continuation parameter at iteration n. We
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require that the continuation parameter starts at 1 and approaches 0 as the solution converges. We choose
to compute the continuation parameter using a generalized sigmoid function:

1
(n) — 29
v PV 2

where ¢ is the sharpness parameter, A is the midpoint parameter, and 77r(:1) is the relative convergence at

iteration n. The parameters o and A determine the shape of the sigmoid. Larger values of ¢ will result in
a steeper drop in dissipation. We call A the midpoint parameter because the additional dissipation is equal
to 0.5k at a relative residual of 107*. We use o = 3 and A\ = 3, which results in the continuation function
shown in Fig. 14. When the solution is converged, the additional dissipation is small enough to recover the
solution of the original problem. The shape parameters generally do not need to be tuned for each case.
However, the appropriate value for x§ depends on the Mach number. We find that x§ = 0.2M ., works well,
and we use this value for all cases presented here.

10°4

10-21

Continuation 1044
parameter

1076<

1078<

10710 . . . . y
10 1072 107 109 10°% 107%

Relative convergence

Figure 14: The additional dissipation decreases smoothly as the flow converges

5.2 NACA 0012

We first compare the baseline solver and DBC for the NACA 0012 case at Mach numbers from 0.75 to 3.0
at a 3 deg angle of attack (Fig. 15a). DBC is between 3% and 13% faster than baseline for Mach numbers
of 2.0 and above. Similarly, DBC is between 4% and 8% faster than baseline at Mach 2.0 and angles of
attack from 0 to 6 deg (Fig. 15b). DBC increases the number of near unit steps, which improves convergence
(Fig. 16). The converged lift and drag values with DBC match the baseline values to 8 significant digits.

5.3 Supersonic transport configuration

The advantages of DBC are more obvious when applied to a more complex case. We now consider a
supersonic transport (SST) configuration with a cranked arrow wing, T-tail, and canard (Fig. 17). We
consider flow at Mach numbers of 1.8 and 0.95, which represent realistic supersonic and transonic cruise
conditions for the next generation of SSTs [1]. Both cases have a 4 deg angle of attack. DBC converges
both cases, whereas the baseline solver does not converge either (Fig. 18). We also compare DBC to the
baseline solver with ko increased from the default value of 0.25 to the initial DBC value of 0.25 + 0.2M .
For Mach 1.8, increasing o converges faster than DBC. However, this solution is also less accurate because
of the increased dissipation near shocks. For Mach 0.95, the solver still stalls with the higher x5, albeit after
about 3 more orders of convergence.

In some cases, robustness is more valuable than faster convergence. The SST mesh used here is the
same as the one used by Seraj and Martins [40] for aerodynamic shape optimization studies. Reliably
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Figure 15: DBC offers slight speedups for the NACA 0012 case
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Figure 16: DBC improves convergence by increasing step sizes (NACA 0012 at Mach 2.5)



converging the flow at different design points is essential for a well-behaved optimization [41]. DBC offers
more robustness than the baseline solver for complex geometries at high Mach numbers, making it more
suitable for many-query scenarios such as parameter sweeps or design optimization.

Figure 17: SST overset mesh with pressure contours at Mach 1.8
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Figure 18: DBC converges the SST cases without sacrificing accuracy

6 Conclusions

Using compressible flow solvers for low Mach number flows typically results in poor accuracy and speed.
In addition, high Mach number flows can be difficult to converge reliably without increasing the amount of
dissipation in the spatial discretization. We present three contributions to address these challenges.

First, we propose a simple modification to the Jameson—Schmidt—Turkel scheme to make the artificial
dissipation appropriate for low Mach number flows. We show that scaling down the acoustic contribution of
the spectral radius improves accuracy and reduces sensitivity to mesh size. We recommend using a scaling
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factor equal to the freestream Mach number. Second, we demonstrate the effectiveness of a characteristic
time-stepping method for approximate Newton—Krylov solvers. This approach reduces the stiffness of the
linear system at low Mach numbers by modifying the time-step matrix. We show that the artificial dissipa-
tion must be scaled properly to achieve speedups with characteristic time-stepping. In addition, cases with
small regions of stagnation point flow do not benefit from characteristic time-stepping. Third, we present
a dissipation-based continuation method for flows with shocks. The continuation approach introduces ad-
ditional second-order dissipation near shocks during the initial stages of the solution and smoothly reduces
the dissipation as the solution converges. This approach is faster and more robust than the baseline solver,
particularly for more complex geometries. These contributions enable more accurate and efficient flow solvers
across low and high Mach numbers, making CFD more dependable for applications involving a wide range
of flow conditions, such as aircraft design.
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