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Abstract: This paper contains improvements in computing steady-state adjoint-
based sensitivities using inexact linearizations of fixed-point iterations used to solve
the nonlinear problem. This method guarantees convergence of the adjoint solution,
provided that the solution of the nonlinear primal problem is fully converged. The
method is enhanced by introducing an adjoint iteration tolerance and a nonlinear
constraint tolerance to allow for cheaper and more robust sensitivity computation as
well as cheaper design algorithms. Investigations in the adjoint iteration tolerance
show it is possible to get better convergence and less expensive adjoint solvers by
selectively skipping iterations with the "piggy-back" approach and that these can be
used effectively as parts of design cycles especially when coupled with the nonlinear
constraint controller which further decreases design cost.
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1 Introduction
In aerodynamic shape optimization, gradient based approaches are used to solve the minimization problem:

min
D

L(u(D), D), s.t. R(u(D), D) = 0, (1)

where L is the objective function (such as lift or drag), R is the residual operator (the error in the discretized
form of the governing equations), u is the conservative variable vector, and D is the design variable vector.
Gradient based methods are prefered because this allows for far fewer function evaluations when compared to
global methods, such as genetic algorithms; this is necessary when the function evaluations are as expensive
as they are for many CFD simulations. The optimization toolboxes used for these purposes (SNopt[1, 2],
DAKOTA[3], etc.) are indifferent to the source of the gradient and this has allowed researchers to provide
sensitivities through a selection of commonly used methods: finite-difference (real or complex-step), tangent,
or adjoint methods. The last two methods [4] are more accurate than the traditional finite-difference method
(providing they are properly implemented) and are developed through conditions on convergence to generate
mathematical equations to solve for the sensitivities. As the adjoint method has been more widely adopted,
research has been conducted into more intricate formulations that would allow for cheaper designs or more
robust adjoint computation.
The classic approach is that of partial differential equation (PDE) constrained optimization –also known as
the nested approach – in which the PDE is solved at each iteration and the sensitivities about the converged
state are used to change the design variables to generate a new design. The sensitivity equation is

dL

dD
=
∂L

∂D
+
∂L

∂u

du

dD
, (2)
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where an expression for du
dD is required for the sensitivity to be computed. Since the nested approach proceeds

off the assumption that R = 0: [
∂R

∂u

]
du

dD
+
∂R

∂D
= 0. (3)

Substituting equation for du
dD into the sensitivity equation yields

dL

dD
=
∂L

∂D
− ∂L

∂u

[
∂R

∂u

]−1
∂R

∂D
, (4)

One can then define an adjoint variable Λ according to the equation below[
∂R

∂u

]T
Λ = −

[
∂L

∂u

]T
, (5)

which scales with the number of objective functions rather than the number of design variables.
The other approach to the optimization problem is often referred to as the one-shot approach [5], in which
the PDE, the adjoint system and the design problem are solved in tandem:

uk+1 = N(uk, D),

Λk+1 = B(uk,Λk, D),

Dk+1 = Dk + F (uk,Λk, Dk).

(6)

Where N(uk, D) is a fixed-point iteration meant to drive R(uk, D) to 0, B is an operator which in the
context of "piggy-back" iterations is defined to be Lu + NuΛk, and F is a preconditioner to guarantee
convergence for the coupled iterations. The one-shot adjoint method was pioneered by Ta’asan [6], and
used to develop a unified multigrid solver to the nonlinear, adjoint and design problems all at once, greatly
decreasing the cost of the design process by using an optimal solver for all problems and by not having to
converge the nonlinear and adjoint problems completely for each design cycle iteration in contrast to the
typical or "nested" approach. This method demands considerable difficulty in implementation and since a
multigrid solver is used, it can be very difficult to maintain robustness. Shi-Dong et al. [7] develop a scalable
method for the full-space optimization problem, solving the constraint, adjoint, and design problems all at
once using a Newton algorithm for all three; this is highly desirable, but does require the second derivatives
of the residual operator and the objective function and requires significant implementation efforts, as well
as preconditioners that work on all three problems. Gunther et al. [8] developed the piggy-back iterations
for the one-shot adjoint, which use the linearization of the fixed-point iteration to solve the adjoint problem.
This method leverages the Banach fixed-point theorem to prove that the adjoint problem will converge at
the same rate as the nonlinear problem; but it suffers from having to linearize the fixed-point iteration used
for the nonlinear problem, either by hand- or automatic-differentiation. As a result, much of the previous
work on these piggy-back iterations used explicit iterations of the form

N(uk, D) = uk +
∆t

vol
R(uk), (7)

where ∆t and vol were the local time step and volume respectively. The differentiation of such a fixed-point
iteration is straight-forward and work on implicit iterations of the form

N(uk, D) = uk − [Pk]
−1
R(uk), (8)

where Pk is an approximate residual Jacobian is less common due to the need to differentiate the approximate
inversion of the Pk matrix.
These guarantees on convergence are desirable but the differentiation of Newton-type solvers is very difficult
due to the difficulties of differentating the linear solver which is path-dependent (i.e. Krylov solvers) and
often not solved to machine precision. While research is underway into the best way to differentiate the
fixed-point iterations that include a linear solve [9], in the meantime this is a barrier to applications of the
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piggy-back iterations to more robust and scalable fixed-point iterations; Padway and Mavriplis showed a
possible approach to solve this problem [10].
This work is an outgrowth of the work of Padway and Mavriplis [11, 12] on the pseudo-time accurate adjoint,
also referred to as the black-box adjoint [13]. These works looked at calculating the adjoint sensitivities by
linearizing the full iterative history of the nonlinear solver to get reliable adjoint sensitivities even when
the constraint equation could not be solved. The work of Padway and Mavriplis [12] looked specifically
at the behavior of inexact quasi-Newton algorithms and possible approximations that could be made to
allow for differentiation of the linear solver algorithm, and they found (through numerical experiment) that
by converging the nonlinear problem the error in the sensitivities due to these approximations vanished.
Later work by Padway and Mavriplis [14] proved why this was the case and showed that in general for
fixed-point iterations that could be viewed as an operator acting on the residual that, providing the residual
was appropriately linearized, the error in the sensitivities would vanish as the nonlinear problem converges.
Subsequent work of Padway and Mavriplis [10] proved similar behavior for the piggy-back iterations, they
showed desirable convergence behaviors in both mathematical proof and numerical experiment, in that the
error due to such approximations decreases at the same rate as the solution of the PDE itself. They used
these inexact linearizations in design problems for non-linear problems with stalling convergence. This work
will show the application of the piggy-back iterations to convergent iterations only in order to decrease
the computational expense of such techniques and more throughly evaluate their behavior with non-linear
controllers on the adjoint iterations and the design process itself.

2 Background and In-House Solver

2.1 Governing Equations
This work uses an in-house flow solver to solve the steady-state Euler equations on unstructured meshes.
The steady-state compressible Euler equations (which may also be referred to as the analysis problem) can
be written as follows.

∇ · F (u(D)) = 0 (9)

Which can also be written as:
R(u(D), D) = 0 (10)

where u is the conservative variable vector, D is the design variable vector, and F (u) is the conservative
variable flux.

2.2 Spatial Discretization
The residual about the closed control volume is given as:

R =

∫
dB

[F (u(D))] · n(x(D)),dB =

nedge∑
i=1

F⊥ei (u(D), nei(x(D)))Bei(x(D)) (11)

This equation gives the operator in the requirement for the adjoint and tangent systems, namely that
R = 0. In the discretized form of the residual operator, x denotes the vector of mesh points, F is the
numerical flux across the element boundary, B is the element boundary, and n is the edge normal on the
element boundary. The solver used in this work is a steady-state finite-volume cell-centered Euler solver with
second-order spatial accuracy implemented for triangular elements. Second-order accuracy is implemented
through weighted least squares gradient reconstruction [15]. The work presents results in which Van Leer’s
inviscid flux vector splitting as the euler flux. In order to slope limit the solution reconstruction near shock
discontinuties, a modified Venkatakrishnan limiter is used; Venkatakrishnan’s limiter[16] is modified in a few
important ways as detailed in previous works[12].
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2.3 Steady-State Solver
The solver technology for this code uses either explicit time stepping through pseudo time using a forward
Euler time discretization, or a low storage five-stage Runge-Kutta scheme, or a quasi-Newton method.
The quasi-Newton method is implemented using pseudo-transient continuation (PTC) with a BDF1 pseudo
temporal discretization scheme. For Newton’s method the time-stepping procedure is written as:

uk = uk−1 + ∆u (12)

where ∆u is computed by solving the following system of linear equations.

[P ] ∆u = −R(u) (13)

One can substitute the expression for ∆u into the time-stepping equation (12) to obtain the final form of
this equation.

uk+1 = uk − [Pk]
−1
R (14)

Here [Pk] is a first-order spatially accurate Jacobian augmented with a diagonal term to ensure that it is
diagonally dominant, shown in equation (15).

[Pk] =

[
∂R

∂uk

]
1

+
vol

∆tCFL
(15)

Where vol is the area of the cell and CFL is a coefficient used to scale the time-step for explicit problems
to satisfy the CFL (Courant-Friedrichs-Lewy) condtion, or to increase the time-step in implicit iterations
to improve robustness and convergence of Newton-type solvers. Please note the subscript on the Jacobian
above denotes that it is the Jacobian of the first-order spatially accurate residual operator; in this work
the subscripts of 1 and 2 will denote first and second order spatially accurate Jacobians respectively. The
equation for the local explicit time step limit ∆t is given as:

∆ti =
ri√

(u2 + v2) + c
(16)

where ri is the circumference of the inscribed circle for mesh cell i, u and v are the horizontal and vertical
velocity components respectively, and c is the speed of sound in the triangular element.
Furthermore, the CFL is scaled either with a simple ramping coefficient (β) and cap criterion:

CFL = min(β · CFL,CFLmax) (17)

or with a linesearch and CFL controller [17, 18], which seeks to minimize the L2 norm of the pseudo-temporal
residual, defined as below.

Rt(u+ α∆u) =
vol

∆t
α∆un +R(u+ α∆un) (18)

When the pseudo-temporal residual decreases, this is considered to be a satisfactory value for α and the CFL
is changed accordingly. The pseudocode explains the actual process for the linesearch and CFL controller.
The parameters itermax, c, αl1 , αl2 , β1, and β2 are all user defined input values, defaulted to 30, .9, .1,
.75, .1, and 1.5 respectively. One benefit of this combined line-search and CFL controller is that there is
no need to differentiate it, and one can simply store the values of CFL and α and use these fixed values in
the forward and reverse linearizations and still obtain machine-level correspondence when comparing those
sensitivity values to those of the complex-step differentiated solution process. This is possible because for
small enough perturbations that the CFL controller does not take another path, the combined CFL controller
and line-search is a piece-wise constant function with a zero derivative.
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Algorithm 1 CFL controller
1: procedure Line Search and CFL Controller
2: rt0 = ‖Rt(u+ ∆u)‖2
3: rs0 = ‖R(u)‖2
4: rs1 = ‖R(u+ ∆u)‖2
5: if rs0 < rs1 then
6: for k = 1, ..., itermax do
7: α = cα
8: rt1 = ‖Rt(u+ α∆u)‖2
9: if rt1 < rt0) then exit

10: if α < αl1 then
11: α = 0
12: CFL = β1CFL
13: else if αl1 < α < αl2 then
14: CFL = CFL
15: else if α < αl2 then
16: CFL = min(β2CFL,CFLmax)

This line-search controller is augmented with a relizability check. This realizability check keeps the change
in density, energy and pressure below a user defined maximum change depending on the freestream values
and above a minimum threshold. Since pressure is a nonlinear function of the conservative variables, this
is done using a linearization of the pressure with respect to the conservative variables, combined with a
fixed-iteration back-tracking line search. The minimum update between the three thresholds is then applied
to the cell as a whole and stored.
In order to solve the linear system a point-implicit Jacobi or point-implicit Gauss-Seidel solver is used. This
is done by lagging the off-diagonal components, with the right hand side being the linear residual of the
original system. In this work the residual is the second-order accurate spatial residual operator, and [Pk−1]
is based off the first-order accurate residual operator outlined in equation (15). Equation (13) is then solved
iteratively as:

[D] ∆(∆u)l = −R(u)− [Pk−1] ∆ul (19)

where the matrix [D] is the element block diagonal entry in the Jacobian matrix.

∆ul+1 = ∆ul + ω(∆(∆u))l (20)

These linear solvers can also be applied as smoothers either to a BiCGStab or a GMRES linear solver. The
flexible GMRES linear solver is the more commonly used one in this Newton-Krylov nonlinear solver, and
the algorithm below shows its implementation, where the operator M−1 is the preconditioning matrix using
the block Jacobi or block Gauss-Seidel relaxation schemes outlined above. The FGMRES solver outlined in
algorithm (2)[19] is implemented to solve the stiff steady-state tangent and adjoint systems as well.

2.4 A Review of Tangent and Adjoint Systems
2.4.1 Tangent Formulation

For an aerodynamic optimization problem, consider an objective functional L(u(D), x(D)), for example lift
or drag, where u is the conservative variable vector, and x is the vector of mesh nodal coordinates and
specifically xs is the geometry coordinate vector and xv is the volume mesh point coordinate vector. In
order to obtain an expression for the sensitivities take the derivative of the objective functional [20]:

dL

dD
=
∂L

∂x

∂x

∂D
+
∂L

∂u

du

dD
(21)
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Algorithm 2 Flexible Restarted GMRES
1: procedure Flexible GMRES
2: for k = 1, ..., ncycles do
3: r0 = b−Ax0, β = ‖r0‖ , v1 = r0/β
4: for j = 1, ...,m do
5: zj = M−1vj
6: vj+1 = Azj
7: for i = 1, ..., j do
8: hi,j = (vj+1, vi)
9: vj+1 = vj+1 − hi,jvi

10: hj+1,j = ‖vj+1‖ , vj+1 = vj+1/hj+1,j

11: Define Zm = [z1, ..., zm] , H̄m = [hi,j ]1<i<j+1,1<j<m

12: Solve least squares problem for ym
13: x0 = x0 + Zmym

For the above expression ∂L
∂x and ∂L

∂u can be directly obtained by differentiating the corresponding subroutines
in the code. ∂x

∂D is calculated by solving the spring analogy mesh deformation equation:

[K]
dxv
dDi

=
dxs
dDi

(22)

and one can calculate dxs

dDj
through differentiating the shape design variables. For the global inverse distance

weighted method[21] surface changes in the geometry can be smoothly and explicitly propogated onto the
volume mesh, and for these the mesh sensitivities are computed directly as a function of the surface coordinate
sensitivities:

dxvi
dDj

=

∑
wik(~rik)

dxsk

dDj∑
wik(~rik)

(23)

It is not possible to obtain du
dD through linearization of the subroutines in the code without linearizing the

entire analysis solution process, as will be covered in later sections. In order to solve for this term one uses
the constraint that for a fully converged flow R(u(D), x(D)) = 0. By taking the derivative of the residual
operator one can obtain the equation below.[

∂R

∂x

]
dx

dD
+

[
∂R

∂u

]
2

du

dD
= 0 (24)

The tangent system is obtained by isolating the sensitivity of the residual to the design variables.[
∂R

∂u

]
2

du

dD
= −

[
∂R

∂x

]
dx

dD
(25)

This linear system is then solved, using hand differentiated subroutines to provide the left hand matrix[
∂R
∂u

]
2
, the right hand side

[
∂R
∂x

]
dx
dD (which scales with the design variables), and obtain du

dD . It is then
possible to substitute du

dD into equation (21) to obtain the final sensitivities.

2.4.2 Discrete Adjoint Formulation

The adjoint formulation begins with the same sensitivity equation:

dL

dD
=
∂L

∂x

dx

dD
+
∂L

∂u

du

dD
(26)
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Using the condition R(u(D), D) = 0, return to equation (25) and pre-multiply both sides of the equation by
the inverse Jacobian matrix to obtain:

du

dD
= −

[
∂R

∂u

]−1

2

[
∂R

∂x

]
dx

dD
(27)

Substituting the above expression into the sensitivity equation yields:

dL

dD
=
∂L

∂x

dx

dD
− ∂L

∂u

[
∂R

∂u

]−1

2

[
∂R

∂x

]
dx

dD
(28)

One can then define an adjoint variable Λ such that:

ΛT = −∂L
∂u

[
∂R

∂u

]−1

2

(29)

which gives an equation for the adjoint variable:[
∂R

∂u

]T
2

Λ = −
[
∂L

∂u

]T
(30)

This linear system can be solved to obtain the sensitivities for the objective function as follows:

dL

dD
=

[
∂L

∂x
+ ΛT ∂R

∂x

]
dx

dD
(31)

For further use of adjoint one can then define a mesh adjoint variable Λx:

[K]
T
Λx =

[
∂L

∂x

]T
+

[
∂R

∂x

]T
Λ (32)

and the final expression for sensitivity is given as:

dL

dD
= Λx

T dxs
dD

(33)

The adjoint system is of interest because it results in an equation for the sensitivities that does not scale
with the number of design variables.

3 Development of the Inexactly Linearized Piggy-Back Iterations
This section shows the piggy-back iterations that are similar to those used for the one shot adjoint. Note
that this is a coupling of only the constraint and adjoint problem, it does not include the design problem.
This begins from the understanding as in the steady state adjoint that the goal is for the residual to be
equal to 0, and this is the stationary point of the fixed-point iteration. Beginning from a general fixed-point
iteration defined as:

uk+1(D) = N(uk(D), D) = uk(D) +H(uk(D), D) (34)

where:
H(uk(D), D) = A(uk, D)R(uk(D), D) (35)

and A(uk, D) is based on the choice of fixed-point iteration. Using the constraint that for a stationary point
(u∗) of the fixed-point iteration G(u∗(D), D) − u∗(D) = 0, allows for a similar proof to that of the steady
state adjoint shown previously. One must begin from the objective function (L) augmented by a Lagrangian
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vector (the adjoint variable vector) multiplying the constraint as shown below.

J(u∗(D), D) = L(u∗(D), D) + ΛT (N(u∗(D), D)− u∗) (36)

In order to find an optimal design the KKT conditions must be satisfied:

N(u∗(D), D)− u∗ = 0 State equation
∂L(u∗(D),D)

∂u + ΛT ∂(N(u∗(D),D)−u∗)
∂u = 0 Adjoint equation

∂L(u∗(D),D)
∂D + ΛT ∂(N(u∗(D),D))

∂D = 0 Design equation

(37)

The adjoint and sensitivity equations can be evolved through iteration-space as shown below

Λk+1T =
∂L(u(D), D)

∂u
+ ΛkT

(
∂N(uk(D), D)

∂u

)
dL(u(D), D)

dD
=
∂L(u(D), D)

∂D
+ ΛkT

(
∂N(uk(D), D)

∂D

) (38)

and use the definition of the fixed-point iteration allows for the expansion of the above expressions.

Λk+1T =
∂L(u(D), D)

∂u
+ ΛkT

(
∂uk +A(uk(D), D)R(uk(D), D)

∂u

)
dL(u(D), D)

dD
=
∂L(u(D), D)

∂D
+ ΛkT

(
∂A(uk(D), D)R(uk(D), D)

∂D

) (39)

This returns the equations below:

Λk+1T =
∂L(u(D), D)

∂u
+ ΛkT

(
∂A(uk(D), D)R(uk(D), D)

∂u

)
+ ΛkT

dL(u(D), D)

dD
=
∂L(u(D), D)

∂D
+ ΛkT

(
∂A(uk(D), D)R(uk(D), D)

∂D

) (40)

and after expanding the derivatives, and dropping the dependencies in the notation returns the below equa-
tion.

Λk+1T =
∂L

∂u
+ ΛkT

(
∂A

∂u
R(uk, D) +A(uk, D)

∂R

∂u

)
+ ΛkT

dL

dD
=
∂L

∂D
+ ΛkT

(
∂A

∂D
R(uk(D), D) +A(uk, D)

∂R

∂D

) (41)

Previous work [10] showed that for correct linearization of the residual operator the error converges with the
non-linear problem’s convergence. This showed three error terms for the errors at each nonlinear iteration
in the piggy-back iterations of the adjoint, the linearization of the nonlinear iteration with respect to the
state variable and the linearization with respect to the design variables, denoted by εkΛ, ε

k
u, ε

k
D respectively.

By this definition one can then obtain this expression for the error where through grouping the terms in the
parenthesis into the operator B where B = ∂N

∂u and by Cauchy-Schwarz inequality it is clear that:∥∥∥∥εkTΛ

(
∂A

∂u
R(uk, D) +A(uk, D)

∂R

∂u
+ I

)∥∥∥∥ < ‖B‖ ∥∥εkΛ∥∥ (42)

B is the derivative of the contractive fixed-point iteration, therefore ‖B‖ < 1. As a result, the error in
adjoint sensitivities expressed by εΛ decreases as the residual decreases and the contractivity of the fixed-
point iteration progresses through the primal solution process. The triangle inequality is used to show the
pseudo-temporal evolution of the error as governed by the equation below.∥∥εk+1

Λ

∥∥ < ‖B‖ ∥∥εkΛ∥∥+
∥∥∥Λ̃kT εku

∥∥∥ ‖R‖ (43)
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By the contractivity of the fixed-point iteration that R goes to 0, and therefore the error in the adjoint, εkΛ,
goes to 0. The equation for the error in the sensitivities reproduced below shows that the error has one term
multiplied by the residual and another multiplied by the error in the adjoint. The first goes to machine zero
by definition of satisfaction of the fixed-point iteration, the second by the proof outlined above.

dL

dD
− d̃L

dD
= Λ̃kT εkDR(uk, D) + εkTΛ

(
∂A

∂D
R(uk, D) +A(uk, D)

∂R

∂D

)
(44)

Therefore inexact linearizations of the fixed-point do not prevent accurate adjoint sensitivity computations at
convergence of the nonlinear problem and should the nonlinear problem not be solved to machine precision the
error depends on the level of convergence of the nonlinear problem. These conclusions had been demonstrated
for the pseudo-time accurate formulation of the adjoint system [14], and then confirmed to be correct for the
piggy-back approach [10]. Importantly for this work, the rate of convergence of the error mimics the rate of
convergence of the non-linear problem, something that will be used in this work.

3.1 Newton-Chord Approximate Linearization
This methods begins by referring back to equation (14) as the fixed-point iteration that must be linearized
as part of the piggy-back iterations. If it is rewritten it as follows:

uk+1 = N(u) = uk − [Pk]
−1
R (45)

it can then be substituted as the fixed-point iteration definition into the piggyback iterations.

Λk+1T =
∂L

∂u
+ ΛkT

(
∂uk + [Pk]

−1
R

∂uk

)
dL

dD
=
∂L

∂D
+ ΛkT

(
∂uk + [Pk]

−1
R

∂D

) (46)

For clarity, it is helpful transpose the first equation and eliminate ∂u
∂D as it is 0:

Λk+1 =

(
∂uk + [Pk]

−1
R

∂uk

)T
Λk +

∂L

∂u

T

dL

dD
=
∂L

∂D
+ ΛkT

(
∂ [Pk]

−1
R

∂D

) (47)

by expanding the derivatives one can obtain better insight to the appropriate way to calculate this lineariza-
tion.

Λk+1 =

(
I − [Pk]

−1

[
∂R(uk)

∂uk

]
2

− ∂ [Pk]
−1

∂uk
R(uk)

)T
Λk +

∂L

∂u

T

dL

dD
=
∂L

∂D
− ΛkT

(
[Pk]

−1 ∂R(uk)

∂D
+
∂ [Pk]

−1

∂D
R(uk)

) (48)

It is then clear that this equation requires the derivative of the preconditioner matrix, which is not trivial to
compute. This section proceeds as though the preconditioner is fixed, making this the exact linearization of a
Newton-Chord method, and an inexact linearization of an inexact-quasi-Newton solver. This will be referred
to as the Newton-Chord linearization (NC). Note this corresponds to the backward-Euler Lagrange-based
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formulation found in the literature [13].

Λk+1 =

(
I − [Pk]

−1

[
∂R(uk)

∂uk

]
2

)T
Λk +

∂L

∂u

T

dL

dD
=
∂L

∂D
− ΛkT

(
[Pk]

−1 ∂R(uk)

∂D

) (49)

It appears that one would have to solve for as many linear systems as design variables at each nonlinear
iteration, which is clearly undesirable, but if the equations are rewritten in a delta formulation and define a
secondary adjoint variable the following is obtained.

[Pk]
T

Ψk = −Λk

∆Λk =

[
∂R(uk)

∂uk

]T
2

Ψk +
∂L

∂u

T

dL

dD
=
∂L

∂D
+ ΨkT ∂R(uk)

∂D

(50)

As a result of this rearrangement of the terms it is clear that there are as many linear system solver calls
in the adjoint method as in the primal problem. It is important to note that this linearization is only exact
for Newton-Chord solvers that solve the linear system using a relaxation scheme and that the same number
of linear iterations must be done in the primal and adjoint problems and that the adjoint relaxation scheme
must be the exact dual of the relaxation scheme used in the primal problem.

3.2 Inexact-quasi-Newton Approximate Linearization
This linearization begins from equation (48) and is an attempt to linearize the approximate inversion of the
left hand matrix. One can refer to the expression for the analytic derivative of a matrix inverse shown below
for a matrix K.

dK−1

dx
= −K−1 dK

dx
K−1 (51)

Substituting this into equation (48) returns the below expression:

Λk+1 =

(
I − [Pk]

−1

[
∂R(uk)

∂uk

]
2

+ [Pk]
−1 d [Pk]

duk
[Pk]

−1
R(uk)

)T
Λk +

∂L

∂u

T

dL

dD
=
∂L

∂D
− ΛkT

(
[Pk]

−1 ∂R(uk)

∂D
+ [Pk]

−1 d [Pk]

dD
[Pk]

−1
R(uk)

) (52)

At first it would seem that there are four linear system solve per design variable per nonlinear iteration,
but making judicious use of previously computed quantities and storing previously computed quantities
allows one to to deal with this increased expense. First, one can use the fixed-point iteration definition that
∆u = [Pk]

−1
R(uk) to simplify the above equation.

Λk+1 =

(
I − [Pk]

−1

[
∂R(uk)

∂uk

]
2

+ [Pk]
−1 d [Pk]

duk
∆u

)T
Λk +

∂L

∂u

T

dL

dD
=
∂L

∂D
− ΛkT

(
[Pk]

−1 ∂R(uk)

∂D
+ [Pk]

−1 d [Pk]

dD
∆u

) (53)
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Then, as in the Newton-Chord linearization one define a secondary adjoint variable and use a delta form of
the problem.

[Pk]
T

Ψk = −Λk

∆Λk =

([
∂R(uk)

∂uk

]
2

− d [Pk]

duk
∆u

)T
Ψk +

∂L

∂u

T

dL

dD
=
∂L

∂D
+ ΨkT

(
∂R(uk)

∂D
− d [Pk]

dD
∆u

) (54)

As a result of this rearranging of the terms it is clear – once again – that there are as many linear system
solver calls in the adjoint method as in the primal problem. It is important to note that this linearization
is only exact for exact solution of the linear system at each nonlinear step, but has no requirement on the
primal, forward, and reverse linear solvers.

3.3 Adjoint Iteration and Nonlinear Constraint Controllers
This section contains two controller schemes, the first an adjoint iteration controller to control whether
the adjoint update is calculated, and the second a nonlinear constraint controller to select the tolerance
of the PDE constraint. A simple implementation of the adjoint iteration controller would entail using the
convergence of the adjoint and the nonlinear problems. Since the expressions for the adjoint and sensitivity
show convergence behavior similar to that of the fixed point iteration of the nonlinear problem, it is useful
look to the convergence of the fixed-point iteration as being a quantity by which to guide the adjoint solver.
Specificially one can define a skipping threshold (ηΛ) and tolerance (τadj) and say that iterations with a
contractivity (c) less than η and a nonlinear residual greater than the τadj will not be used to compute
the adjoint. The motivation in developing and using an adaptive ηΛ based off the nonlinear residual is
that due to the approximations made in the derivation of the approximate linearizations of the piggy-back
iterations, contractivity of the nonlinear residual is a less accurate guide to the contractivity of the adjoint
iteration early in the solution process when the residual is large. As such it is desireable to use only the
highly contractive iterations (low values of c) to hedge against the larger error in the linearization in the less
converged iterations. Note that in the rest of this paper, the fixed skipping threshold method is denoted by
ηΛ = a (where a = ηbase) and the adaptive method is ηΛ = f(‖R(u)‖).

Algorithm 3 Adjoint Iteration Controller
1: procedure Adjoint iteration controllers
2: user inputs ηmax, ηbase, τadj , τu
3: adjeval = .false.
4: ρi−1 = R(ui−1)
5: ρi = R(ui)
6: c = ρi

ρi−1

7: if opt = 1 then
8: ηΛ = ηbase
9: else if opt = 2 then

10: ηΛ = ηbase + (ηmax − ηbase)(log( ρiτu )− 1.0)

11: if (c < ηΛ .or. ρi < τadj) then adjeval = .true.

In order to have a useful adjoint computation method one needs to obtain reasonable results when the
linearization of the fixed point iteration has not fully converged the adjoint problem. Previous work [10] has
dealt with this to a limited extent, here it is used in the context of inexactly constrained adjoint algorithms
[22]. The methods in Algorithm 4 set the tolerance of the nonlinear problem depending on the gradient
at a design point, and the change in the gradient and the converged solution between subsequent updates.
Note that this has the inherent effect of also adaptively tuning the adjoint as in previous work by Brown
and Nadarajah [23], and the the adjoint problem will converge similarly to the primal – with some lag [24].
Similarly to the previous section where two options of selecting the skipping threshold were presented, here
too are two methods of selecting the nonlinear tolerance presented.
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Algorithm 4 Nonlinear Constraint Controller
1: procedure Selection of nonlinear tolerance
2: user inputs η, p, τmax
3: S0 = 0.0
4: if opt = 1 then
5: τu = min(τmax, η ‖G‖p))
6: else if opt = 2 then
7: Sk = max(Sk−1,

∆G
∆w )

8: τu = η ‖G‖p /Sk

Note that in the work by Brown and Nadarajah, the steepest descent method is used to ensure that the only
thing impacting convergence of the optimization problem was the gradient at that design iteration, whereas
in this work SNopt’s quasi-Newton solver was used, which uses gradient values at previous iterations to
calculate an approximate Hessian. The outcome of this is that some of the heuristics they came up with
regarding the tuning of certain parameters (η, p, τmax) may not be optimal for the design cases presented in
the next section. Additionally it is possible that there are better algorithms for nonlinear constraint control
for quasi-Newton algorithms than the ones that were obtained by applying the steepest descent controllers
to the quasi-Newton optimizer.

4 Verification and Investigation
The case of a NACA0012 airfoil (shown in Figure 1) in Mach = .7 and α = 2.0o compressible inviscid
flow is used for verification and the investigation of the behavior of the nonlinear iterative controllers. The
sensitivities, expense (measured by time taken to solve the adjoint problem), and the number of nonlinear
iterations (out of 300) skipped for the adjoint solution methods are compared in Table 1. It is clear that the
choice to skip certain iterations is not harmful to the accuracy of the final sensitivities and decreases the cost
with both inexact linearizations becoming more economical than the steady-state adjoint solution method.
The value of .96 was chosen as that was approximately the average contractivity of the iterative process.

Figure 1: Computational mesh for NACA0012 airfoil

By examining the convergence behavior in the adjoint and comparing it to the convergence of the primal, it is
possible to confirm the theoretical convergence rates and see how the selective iterations function depending
on the choice of threshold and tolerance. Figure 4 shows the expected behavior, in that iterations that do
not converge the primal problems are skipped. Additionally the adjoint converges similarly to the primal
problem, finishing with a similar level of convergence in the adjoint problem as that of the normalized residual
from the primal problem.
It is enlightening to compare the adjoint convergence plots –grouped by approximate linearization – to one
another as in Figure 3. It is clear that the adaptive η iterations which skip the most iterations also converge
the adjoint the best (by a small margin), this can be attributed to neglected the nonconvergent iterations
which waste compute time and often increase the adjoint residual.
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Design Variable 1 Design Variable 2 nskip

Complex -0.4507974688123841 0.4465241035044418 N/A
NC(ηΛ =∞) -0.4507974689173912 0.4465241035369428 0
NC(ηΛ = .96) -0.4507974689173086 0.4465241035368919 17
NC(ηΛ = f(‖R(u)‖)) -0.4507974689172020 0.4465241035368239 49
IQN(ηΛ =∞) -0.4507974689177968 0.446524103570890 0
IQN(ηΛ = .96) -0.4507974689176973 0.4465241035370540 17
IQN(ηΛ = f(‖R(u)‖)) -0.4507974689176271 0.4465241035369982 49
Steady State -0.4507974689156679 0.4465241035362271 N/A

Table 1: Comparison of sensitivities computed by various methods .

(a) NC(ηΛ = ∞) (b) NC(ηΛ = .96) (c) NC(ηΛ = f(‖R(u)‖))

(d) IQN(ηΛ = ∞) (e) IQN(ηΛ = .96) (f) IQN(ηΛ = f(‖R(u)‖))

Figure 2: Adjoint computation convergence for given ηΛ and τΛ

Having seen the desired behavior with the reasonable parameters in Figure , it is then useful to evaluate the
behavior over a range of ηΛ and τΛ. Figure shows the accuracy as a function of these two parameters. It shows
that when using the constant η algorithm a large portion of the domain shows low numbers of iterations
skipped, this happens when the threshold is below the average contractivity of the solution process and
leads to a more expensive method than the adaptive η method, however when one skips too many iterations
the accuracy of the gradients. Wise choices in ηΛ and τΛ lead to a moderate number of iterations skipped
without any degradation in accuracy. This region can be found by looking at 4 in conjuction with 5.
Additionally the totality of the results shows that the choice of inexact linearization does not matter much
to the adjoint convergence for these piggy-back iterations, which is in accordance with both intuition and
previous work [10].

5 Design cycle results
The case presented in this section is a NACA0012 airfoil shown in Figure (1) with asymmetric design variables
in Mach = .8 and α = 1.25o flow. The baseline geometry shows good convergence behavior so this seemed
to be a suitable choice of test case. The objective function here is a composite objective function of lift and
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(a) NC full history (b) NC zoomed

(c) IQN full history (d) IQN zoomed

Figure 3: Adjoint computation comparison for given ηΛ and τΛ

drag. Where we select p and ηopt as 1.2 and 1e−2 respectively. We choose taumax to guarantee convergence
of 3 orders in the primal problem.

L = ωL(CL − CLT
)2 + ωD(CD − CDT

)2 (55)

The targets for lift and drag are denoted by CLT
, and CDT

respectively. The target lift coefficient is set
to 1.0 and the target drag is set to .0223 which is the baseline value. The weights are set to 1e − 2 and
100 respectively, weighting the drag so heavily was done to ensure constraint of the optimization. We can
compare the optimization behavior for the steady state adjoint to that of the approximate linearizations with
varying iteration controllers to get a sense as to how the design cycle is impacted by the adjoint iteration
controllers for each nonlinear controller.
The design comparison shown in Figure 10 show that the optimizer acheives the objective by slimming the
airfoil and introducing a slight bend in the back to make a flap. Only one final design is shown because the
different adjoint iteration and nonlinear constraint controllers return very similar shapes and optimal points,
showing that the inexact linearization algorithms are effective. In fact it appears that while the inexact
linearizations without adjoint iteration controllers show ill behaved optimality behavior when compared to
the steady-state optimizations, this problem is solved by the inclusion of the adjoint iteration controllers;
in fact these adjoint iteration controllers make the adjoint computation through inexact linearization better
behaved than the steady state method when measured by optimality with Figure 8 showing a final steady-
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(a) NC(ηΛ = c) (b) NC(ηΛ = f(‖R(u)‖)

(c) IQN(ηΛ = c) (d) IQN(ηΛ = f(‖R(u)‖)

Figure 4: Parametric study of adjoint iterations skipped

state adjoint design with a slightly higher objective function when it terminates due to numerical difficulty.
This is an encouraging result, as it indicates that we gain noticeable benefits despite making our adjoint
system less expensive to solve. As an example the final design variables in the case that reaches optimality
(using ηΛ = c) and the one with functionally infinite optimality are nearly identical as shown in Table 2, with
the sensitivity comparison being shown in Table 3 which shows that the sensitivities on the upper surface (the
first four design variables) are notably larger for the "diverged" optimization hence the lack of convergence
in the optimality problem. This result does show the need for more robust theory for the inexact constraints
as applied to quasi-Newton solvers as well as possible modifications for bound constrained problems.

6 Conclusions
This work contains the development and experimentation of two methods of adaptive iterative control on
piggy-back iterations of the one-shot adjoint. These two methods are introduced and then verified by com-
parison (in terms of time to solution and accuracy) to the complex-step finite-difference sensitivities and the
steady-state adjoint computed ones. This is followed by a comparison (along the previous criteria) through
a parametric study to show the behavior of these iterations for varied ηΛ and τΛ for both adaptive iterative
controls and approximate linearizations. This showed that it is possible to skip many iterations before see-
ing noticeable degradation in gradient accuracy, allowing for accurate adjoint computation with the same
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(a) NC(ηΛ = c) (b) NC(ηΛ = f(‖R(u)‖)

(c) IQN(ηΛ = c) (d) IQN(ηΛ = f(‖R(u)‖)

Figure 5: Parametric study of adjoint accuracy measured by the log10 of the norm of the difference

memory footprint as the primal problem. Finally it was shown that these methods can be combined with
adaptive constraint tolerance method to get less expensive and more successful design cycles. This is an en-
couraging result which motivates development of further theory and inexact constraint controllers for bound
constrained quasi-Newton optimization algorithms. Furthermore, the utility of these adjoint systems for
unconverged primal states in the intermediate design cycles encourages further use the inexact linearizations
and adaptive iterative controls to the one-shot method for optimization, also known as simulation analysis
and design.
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(a) Baseline Mach (b) Optimized Mach

(c) Baseline Pressure Coefficient (d) Optimized Pressure Coefficient

Figure 10: Comparison of baseline and final design

Converged Diverged
Design Variable 1 -5.7241083073080E-03 -5.7260097131611E-03
Design Variable 2 -9.2672623516420E-03 -9.2444716268683E-03
Design Variable 3 -4.6663841085040E-04 -4.8372530029862E-04
Design Variable 4 1.6279355919850E-02 1.6271010797993E-02
Design Variable 5 -1.0000000000000E-02 -9.9999999996993E-03
Design Variable 6 -1.0000000000000E-02 -9.9999999996993E-03
Design Variable 7 -1.0000000000000E-02 -1.0000000000000E-02
Design Variable 8 -1.0000000000000E-02 -1.0000000000000E-02

Table 2: Comparison of design variables for design cycles with converged and diverged optimality .
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Converged Diverged
Design Variable 1 -1.078741346249856E-009 3.916765831407515E-004
Design Variable 2 -1.310834427115104E-010 6.641176189499734E-004
Design Variable 3 -1.551630247897950E-010 -2.289093542261270E-004
Design Variable 4 5.786487955461439E-011 -1.545606830304025E-003
Design Variable 5 0.379856367365289 0.379834642187345
Design Variable 6 0.444008637643953 0.444056093139126
Design Variable 7 0.489461963395485 0.489534638041718
Design Variable 8 0.632743674851339 0.632855810802217

Table 3: Comparison of sensitivities for design cycles with converged and diverged optimality .
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