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∗∗ Water Resources Research Center, University of Hawai‘i at Manōa USA.
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Abstract: The solution of partial differential equations (PDEs) on modern high performance com-
puting (HPC) platforms is essential to the continued success of groundwater flow and transport
modeling in Pacific islands where complex regional groundwater flow is governed by highly het-
erogeneous volcanic rocks and dynamic interaction between freshwater and seawater. For accurate
simulations of complex groundwater flow processes in the Hawaiian islands, the PISALE (Pacific
Island Structured-AMR with ALE) software has been developed to offer an innovative combination
of advanced mathematical techniques such as arbitrary Lagrangian-Eulerian method (ALE) and
Adaptive Mesh Refinement (AMR). The software uses parallel programming models to accelerate
the time to solution and dynamically adapt the grids using AMR. This allows for the solution of
equations that can reproduce the sharp freshwater-seawater interface in large-scale coast aquifers.
In this work, we summarize our ongoing efforts to create a publicly available sustainable branch
of the software focused on the groundwater problem. The island-scale numerical groundwater flow
modeling will play an important role in predicting the sustainable yields and potential contaminant
transport for the volcanic aquifer systems and planning groundwater resources management.

Keywords: Flow in Porous Media, Adaptive Mesh Refinement, Arbitrary Lagrangian Eulerian,
PISALE.

1 Introduction
Accurate simulation of density-driven flow and transport in coastal aquifers is crucial for evaluation of fresh
groundwater sustainability and reliable water supply design amid climate change and associated sea level
rise [1]. The numerical simulation of the density-driven flow process becomes more challenging for the
prediction of the groundwater resources in Hawaii where complex groundwater flow processes governed by
highly heterogeneous volcanic rocks and dynamic interaction between freshwater and seawater. We use the
PISALE (Pacific Island Structured-AMR with ALE) code developed by the University of Hawai‘i [2] (see
also https://pisale.bitbucket.io/). The project discussed here has developed a software toolkit aiming for
accurate and scalable simulations of groundwater flow in the Hawaiian islands. This PISALE project com-
bines advanced mathematical techniques for the solution of partial different equations (PDEs), including
parallel software tools to dynamically adapt the grids and special Lagrangian-flow methods that allow for
the solution of equations that can reproduce the sharp freshwater-seawater interface observed in seawater
monitoring locations in Hawai‘i [3]. The PISALE software is based on the techniques of Arbitrary Lagrangian
Eulerian (ALE) [4] methods with Adaptive Mesh Refinement (AMR) [5] to create a publicly available sus-
tainable branch of the software. It is well known that the flow and salinity transport should be locally mass
conservative to avoid unphysically spurious dispersion or oscillation especially when the flow is coupled with
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the transport system. The ALE-AMR method is formulated to ensure the local conservation of mass while
preserving the sharp interface between freshwater and seawater.

2 Method Description
Complex groundwater flow process in coastal aquifers considers the interaction between freshwater and sea-
water. Especially in the Pacific islands, the simulation of groundwater flow and salt transport becomes more
complex due to highly heterogeneous volcanic porous media and requires coupling the governing equations
which are the groundwater flow equation and advection-dispersion equation for the so-called density-driven
flow simulation. In this case, the hydraulic head will be dependent on the (salt) concentration, thus two-way
coupling of transient flow and transport equations are needed to simulate fresh water lens.

In this work, groundwater flow modeling part has been implemented and tested in the Eulerian frame-
work with AMR capability. The developed flow module is integrated into the advecton module already
implemented in PISALE for density-driven flow in coastal aquifers. Flow models are developed and tested
using MFEM [6], a free, lightweight, scalable C++ library for finite element methods. The Eulerian step in
flow simulation will be projected onto the Lagrangian mesh of advection through operator splitting to solve
coupled governing equations in the PISALE framework. Previously, a nodal finite element based diffusion
model was implemented into an ALE-AMR method to simulate heat conduction and radiation transport [7].
Such implementations lay the ground work for these new models.

2.1 Mathematical Model for Density-Driven Groundwater Flow
The governing equation in groundwater flow in porous media is given by the conservation law in the domain
Ω ∈ R3 with the boundary ∂Ω:

∇ · q = f in Ω (1)

where q and f are the Darcy velocity and source/sink term [L/T ], respectively. The velocity is defined as

q = −K∇h = −K (∇p+ ρ(c)g∇z) in Ω (2)

where K is hydraulic conductivity [L/T ], h is hydraulic head [L], p is pressure head [L], ρ is the fluid density
[M/L3]. For density-driven groundwater flow models, the density is generally assumed as a linear function
of salinity c:

ρ(c) = ρf +
∂ρ

∂c
(c− c0) ≈ ρf + (ρs − ρf ) c (3)

The transport of groundwater is described as:

∂c

∂t
= ∇ · (D∇c)−∇ · (vc) +R (4)

where D is the diffusivity [L/T 2], v is the velocity of groundwater [L/T ] obtained from q with the material
porosity, and R is the sink/source term.

2.2 Mixed Finite Element Method for Flow Simulation
For the flow simulation, a mixed finite element method [8, 9] is used to provide groundwater velocity,
e.g., specific discharge, to transport equation as in Equations 1 and 2. The finite element method has an
advantage in modeling complex geometries and irregular grids and the mixed finite element method provides
an accurate, continuous groundwater velocity that the tracer transport model for density-driven flow requires.
Equation 5 derives a weak formulation from Equation 2 by multiplying a test function by τ and integrating
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it over the domain Ω: ∫
Ω

(q · τ +K∇hτ) dx = 0 ∀τ ∈ Σ∫
Ω

(q · τ −Kh∇ · τ +∇ · (Khτ)) dx = 0∫
Ω

(q · τ −Kh∇ · τ) dx = −
∫
∂Ω

Khτ · n ds

(5)

where τ is vector test function and Σ is its function space. Equation 6 represents the weak formulation of
the mass conservation in Equation 1 multiplying a test function by v and integrating it over the domain on
both sides. ∫

Ω

∇ · qvdx = −
∫
Ω

fvdx ∀v ∈ V (6)

where v is test function and V is function space. Equation 7 represents the weak formulation expressed as
the general form. The variational form of a and L for the mass matrix and a right hand side vector are
defined as in Equations 8 and 9, respectively and assembled into a linear system for the solution of the
groundwater flow problem.

a((q, h), (τ, v)) = L((τ, v)) ∀(τ, v) ∈ (Σ0, V ) (7)

a((q, h), (τ, v)) =

∫
Ω

(q · τ −Kh∇ · τ +∇ · qv) dx (8)

L((τ, v)) = −
∫
ΩD

fvdx−
∫
∂Ω

Kh0τ · n ds (9)

2.3 Arbitrary Lagrangian-Eulerian Method with Adaptive Mesh Refinement
for Tracer Transport

The velocity of groundwater is calculated from the previously explained groundwater model and fed to the
transport model to update the salinity c over time. In turn, the salinity c(t) computed from the transport
model changes the head distribution and groundwater velocity. In this work, we assume dispersion coefficients
to be zero indicating that the sharp interface exists between freshwater and seawater often observed in a
regional aquifer in Hawaii [3]. Furthermore, the velocity is decoupled to the flow equation, thus does not
change over the time, i.e., conservative tracer simulation:

∂c

∂t
+∇ · (vc) = 0 (10)

This advection-dominant configuration is intended to illustrate the effectiveness and efficiency of our proposed
PISALE framework.

In general, the numerical simulation of transport with discontinuities is computationally challenging due
to numerical difficulties in preserving sharp boundary conditions and associated fine space/time mesh dis-
cretization in the widely used Eulerian framework. To address these issues in a computationally efficient
manner, mixed Eulerian and Lagrangian methods [10, 11] have been proposed with the method of character-
istics (MOC) and particle tracking when solving the contaminant transport in groundwater flow. However,
various boundary conditions for realistic groundwater transport simulations may not be implemented suitably
in MOC and particle tracking may require a number of memory-intensive particle transport simulations to
ensure the local mass conservation. The ALE-AMR approach implemented in PISALE can offer a systematic
treatment for accurate advection-dominated simulations in a computationally scalable manner. The ALE
formulation takes advantage of the Lagrangian and Eulerian descriptions in solving the advection problems
without additional artificial dispersion to reduce spurious oscillations. For more accurate solution without
extensive computation an adaptive mesh is introduced within the context of the ALE formulation. The
Adaptive Mesh Refinement(AMR) framework SAMRAI [5] is used to automate mesh relaxation and adap-
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tation in a highly parallel fashion optimized for High Performance Computing (HPC) platforms. SAMRAI
is included in PISALE as an underlying library. Coupled density-driven flow examples will be demonstrated
elsewhere.

3 Examples
Examples for one way coupling of flow and transport simulations, e.g., velocity computed from groundwater
flow simulation fed to salt tracer transport simulation, are illustrated here. The 2D square domains with
two different hydraulic conductivity fields are tested to update pressure and velocity fields followed by the
conservative transport simulation. The numerical simulations were performed on a computational node with
48 Intel Xeon 6240R 2.4GHz cores in the University of Hawaii HPC cluster Mana.

3.1 Groundwater flow model simulation
For the accurate continuous groundwater velocity simulation, the mixed finite element method through the
MFEM library is used to simulate both the hydraulic head and velocity field. Figure ?? represents the
domain Ω = (0, 1000m)

2 of the groundwater flow model which consists of a 50 by 50 triangular mesh grid.
The left and right boundaries are set to 10 m and 0 m of hydraulic heads, respectively and the upper and
lower boundaries have a constant head decreasing from 10 m to 0 m linearly.

To illustrate, we generate isotropic homogeneous and heterogeneous hydraulic conductivity (K) fields as
shown in Figures 1 (b) and 2 for the groundwater flow model coefficients, i.e., hydraulic conductivity K in
Equation 2. The heterogeneous K field is generated from a log-normal distribution with a variance of 0.01
with an anisotropy ratio of 4 to 1 assigned to the spatial correlation during the random field generation.

Figures 1 (b) and 2 (b) represent the hydraulic head distribution from homogeneous and heterogeneous
hydraulic conductivity fields respectively. The contour maps for both cases depict equipotential lines of
hydraulic heads varying from 10 to 0 m at 2 m intervals. The quiver plots depict the groundwater velocity as
arrow sizes and directions. In the homogeneous case, the hydraulic head changes linearly in which contour
lines appear in a straight line and the velocity field is uniform. Figure 2 (b) shows the results affected by the
heterogeneous hydraulic conductivity field (Figure 2 (a)) in which the equipotential lines of the head follow
meandering lines and the velocity vector varies depending on the hydraulic conductivity and the gradient of
hydraulic head.
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Figure 1: (a) model domain and Finite Element mesh used in the flow simulation (b) simulated hydraulic
head and flow velocity of the Homogeneous Test Case
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Figure 2: Hydraulic head and flow velocity of the Heterogeneous Test Case

3.2 Conservative Tracer Transport Simulation
With the velocity fields computed from the flow simulation, our PISALE framework is used to simulate
the conservative tracer (i.e., salt) transport. This simulation assumes that convective seawater intrusion in
the 1000 m by 1000 m square model domain. The red and blue areas represent seawater and freshwater,
respectively. Figure 3 shows the convective tracer transport with the homogeneous K field. The initial
concentration distribution of tracer is set to a sine function at x = 400m as shown in the Figure 3 (left).
It is illustrated that the tracer moved to x = 470m and 540 m without change in the tracer distribution,
it takes 5.75 years and 11.5 years respectively. Figure 4 represents the convective tracer transport with the
heterogeneous K field. The initial distribution of the tracer starts from the uniform at x = 200m as shown in
the 4 (left). The tracer moves to x = 350m and 500 m (Figure 4 center and right, respectively), it takes 12.6
year to travel 150 m on average. The uniform distribution of the trace has been changed as it is transported.
The changes are propagated due to the heterogeneous K and corresponding velocity fields. For both cases,
PISALE successfully adapt the mesh following the flow velocity field and preserve the freshwater-seawater
interface.

Figure 3: Conservative tracer transport with homogeneous K field at t = 0 yr (left), 5.75 yrs (center) and
11.5 yrs (right)
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Figure 4: Conservative tracer transport with heterogeneous K field at t = 0 yr (left), 12.6 yrs (center) and
25.2 yrs (right)

4 Concluding Remarks
In this work, we present our ongoing efforts in density-driven flow simulation in Pacific island aquifers. The
groundwater flow equation is solved using the mixed finite element method and the saltwater transport
is simulated using an ALE with AMR methodology. As an ongoing project, we will couple the flow and
transport codes with an operator splitting method within the full PISALE codebase. The accuracy and
computational scalability will be tested for island-scale 3D freshwater-seawater interaction applications.
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