
Eleventh International Conference on        
Computational Fluid Dynamics (ICCFD11), 
Maui, HI, USA, July 11-15, 2022 
 

ICCFD11-1404 

 

Laminar and Turbulent Behavior Captured by A 3-D Kinetic-

Based Discrete Dynamic System 
 

Xiaoyu Zhang1, J. M. McDonough2, and Huidan, Yu1*
 

Corresponding author: whyu@iupui.edu 
 

1 Department of Mechanical and Energy Engineering, Indiana University-Purdue 

University, Indianapolis (IUPUI), IN 46202, USA. 

2 Departments of Mechanical Engineering and Mathematics, University of Kentucky, 
Lexington KY 40506, USA. 

 
 

Abstract: We have derived a 3-D kinetic-based discrete dynamic system (DDS) from the 

lattice Boltzmann equation (LBE) for incompressible flows through a Galerkin procedure. 

Expressed by a poor-man lattice Boltzmann equation (PMLBE), it involves five bifurcation 

parameters including relaxation time from the LBE, splitting factor of large and sub-grid 

motion scales, and wavevector components from the Fourier space. Numerical experiments 

have shown that the DDS can capture laminar behaviors of periodic, subharmonic, n-period, 

and quasi-periodic and turbulent behaviors of noisy periodic with harmonic, noisy 

subharmonic, noisy quasi-periodic, and broadband power spectra. In this work, we 

investigated the effects of bifurcation parameters on the capturing of the laminar and 

turbulent flows in terms of the convergence of time series and the pattern of power spectra. 

We have found that the 2nd order and 3rd order PMLBEs are both able to capture laminar 

and turbulent flow behaviors but the 2nd order DDS performs better with lower computation 

cost and more flow behaviors captured. With the specified ranges of the bifurcation 

parameters, we have identified two optimal bifurcation parameter sets for laminar and 

turbulent behaviors. Beyond this work, we are exploring the regime maps for a deeper 

understanding of the contributions of the bifurcation parameters to the capturing of laminar 

and turbulent behaviors. Surrogate models (to replace the PMLBE) are being developed 

using deep learning techniques to overcome the overwhelming computation cost for the 

regime maps. Meanwhile, the DDS is being employed in the large eddy simulation of 

turbulent pulsatile flows to provide dynamic sub-grid scale information.  
 

Keywords:    Discrete Dynamical System, Computational Fluid Dynamics, Lattice 

Boltzmann Method, Surrogate Model, Turbulence Modeling. 

 

1 Introduction 
Discrete dynamical systems (DDSs) have long been of interest since the seminal paper by 

May[1]. Being very simple from a mathematical standpoint, a DDS can capture complicated 
turbulent-like behaviors in different dynamic systems[2, 3]. With a deterministic mathematical 

“rule” describing the time evolution of a state variable y in a discrete-time dynamical system, 

a logistic map, e.g.  yn+1= βyn (1−yn), determines the time evolution of a dynamic variable (yn) 
at discrete time (tn) with the choices of the initial state (y0) and the bifurcation parameter (β), 

leading to the generation of a time series[4]. Such DDSs are easily computed algebraic 
formulas not requiring supercomputers for their evaluation but capable of capturing the 

dynamic properties in different natural systems including weather forecasting[5], the motion 



of billiard balls[6], climate modeling[7-10], fluid dynamics[11-15], MHD turbulence[16, 17], 
and many others[18-20].  

      The “poor man’s Navier-Stokes (PMNS) equation”[21], is an established DDS derived 
from the incompressible Navier-Stokes (N-S) equations. With very inexpensive evaluation, the 

PMNS equation provides deterministic maps that are chaotic and unpredictable in their detailed 

properties, but whose statistical properties are reproducible, just as what a turbulent flow 
behaves. The PMNS equation is capable of producing local time series at least in qualitative 

agreement with laboratory measurements and/or direct numerical simulation (DNS)[22, 23]. 
Hence, it has contributed to high-fidelity sub-grid scale (SGS) models for large-eddy 

simulation (LES), leading to an ability to simulate interactions of turbulence with other 

physical phenomena in the inertial subrange scales. The PMNS-based DDSs[14, 15] have often 
been employed for turbulence modeling[24-28]. However, there are deficiencies in the DDS 

derived from N-S equations that are limited to small Knudsen numbers. Deficiencies in 
turbulence simulation using N-S solvers have been associated with rather complicated 

modeling and highly expensive computation.  

      Kinetic-based lattice Boltzmann method (LBM)[29, 30] has been an alternative to 
computational fluid dynamic (CFD). It is derived from the Boltzmann equation[31, 32] and 

microscopic fluid physics is simplified to retain only the key elements (the local conservation 
laws and related symmetries) needed to guarantee accurate macroscopic behavior. Thus, the 

LBM is sometimes termed mesoscale CFD. The most attractive advantages of the LBM for the 

current research are (1) the simplicity of modeling and implementation for complex flows 
including turbulence [33-36] and (2) the suitability of employing the newly emerged GPU 

(Graphics Processing Unit) technology[37-39]—massively parallel architectures consisting of 
thousands of small and efficient cores designed for handling multiple tasks simultaneously. 

Recently, we have derived a first-ever 3-D kinetic-based DDS [40], i.e., “poor man’s lattice 

Boltzmann equation (PMLBE)”, and performed numerical experiments to demonstrate its 
capability to capture both laminar and turbulent flow behaviors. In this work, we further 

investigated the PMLBE in terms of the effects of the power terms and the bifurcation 
parameters on the capturing of the laminar and turbulent flows from the convergence of time 

series and the pattern of power spectra. 

 

2     Problem Statement 
The detailed derivation of the 3-D kinetic-based DDS, i.e., the PMLBE, and its numerical 
experiments are found in our previous work[40]. For the purpose of completion and 

comprehension of this paper, here we briefly express the major equations. Then, we state the 

problem of this work.  
Formulation of LBM  In the LBM, fluid particles are sitting at discrete grid nodes. During a 

time evolution, fluid particles collide at the nodes and then stream to the prescribed finite 

neighboring nodes along with their velocity directions. We use D3Q19 lattice model (𝑖 =
0, … ,18). The lattice Boltzmann equation (LBE) reads 

𝑓𝑖(𝑥 + �⃗�𝑖𝛿𝑡) − 𝑓𝑖(𝑥, 𝑡) = −
1

𝜏
[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)],                                                               (1)                                            

where 𝑓𝑖(𝑥, 𝑡)  and 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) are the particle distribution function and equilibrium particle 

distribution function, respectively, with molecular velocity �⃗�𝑖  along the ith direction at the 

location 𝑥 and time t,  𝛿𝑥 and 𝛿𝑡 are the lattice width and time interval, respectively, and τ is 

the relaxation time due to particle collisions. The equilibrium particle distribution function is 

expressed as  

𝑓𝑖
𝑒𝑞(𝑥, 𝑡) = 𝜔𝑖 { +

3𝑒𝑖∙�⃗⃗⃗�

𝑐2
+
9(𝑒𝑖∙�⃗⃗⃗�)

2

2𝑐4
−
3�⃗⃗⃗�∙�⃗⃗⃗�

2𝑐2
},                                                                         (2) 



where 𝜔𝑖  is the weighting factor with 𝜔0 = 1/3 , 𝜔1,…,6 = 1/18 , and 𝜔7,…,18 = 1/36  for 

D3Q19 lattice model,  𝑐 = 𝛿𝑥/𝛿𝑡   with 𝛿𝑥  and 𝛿𝑡  the lattice width and time interval, 

respectively. The density 𝜌 and density moment  �⃗⃗⃗�(= 𝜌�⃗⃗�) are obtained from the following 

formulas: 

 ≡ ∑ 𝑓𝑖 ≡ ∑ 𝑓𝑖
𝑒𝑞18

𝑖=0
18
𝑖=0  ,                                                                                                        (3) 

�⃗⃗⃗� ≡ ∑ �⃗�𝑖𝑓𝑖 ≡ ∑ �⃗�𝑖𝑓𝑖
𝑒𝑞18

𝑖=0
18
𝑖=0  .                                                                                                 (4) 

Equation (1), together with Eqs. (2)(4), are the governing equations that we use to derive the 

PMLE for the 3-D kinetic-based DDS. 

Decomposition of large scale and SGS To decompose the motion scales, we first separate the 

𝑓𝑖  into large scale and SGS denoted by ~ and *, respectively, 

𝑓𝑖(𝑥, 𝑡) = 𝑓𝑖(𝑥, 𝑡) + 𝑓𝑖
∗(𝑥, 𝑡).                                                                                                  (5) 

When substituting the decomposed 𝑓𝑖  into the governing equation, the only term that has not 

been decomposed is the equilibrium particle distribution function 𝑓𝑖
𝑒𝑞(𝑥, 𝑡). To accomplish the 

decomposition of 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) in Eq. (2), we first separate density and momentum in the same 

way as for 𝑓𝑖 : 
 = �̃� + 𝜌∗ = ∑ 𝑓𝑖

18
𝑖=0 + ∑ 𝑓𝑖

∗18
𝑖=0 ,                                                                                            (6) 

�⃗⃗⃗� = �̃⃗⃗⃗� + �⃗⃗⃗�∗ = ∑ �⃗�𝑖𝑓𝑖
18
𝑖=0 +∑ �⃗�𝑖𝑓𝑖

∗18
𝑖=0 .                                                                                  (7) 

Substituting Eq. (6) and (7) into Eqs. (1) and (2) results in: 

𝑓𝑖(𝑥 + �⃗�𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) + 𝑓𝑖
∗(𝑥 + �⃗�𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = (1 −

1

𝜏
) [𝑓𝑖(𝑥, 𝑡) + 𝑓𝑖

∗(𝑥, 𝑡)] +
𝜔𝑖

𝜏
{�̃� + 𝜌∗ +

3𝑒𝑖∙(�⃗⃗⃗�
̃
+�⃗⃗⃗�∗)

𝑐2
+
9[𝑒𝑖∙(�⃗⃗⃗�

̃
+�⃗⃗⃗�∗)]

2

2�̃�𝑐4
(1 −

𝜌∗

�̃�
) −

3(�⃗⃗⃗�
̃
+�⃗⃗⃗�∗)∙(�⃗⃗⃗�

̃
+�⃗⃗⃗�∗)

2�̃�𝑐2
(1 −

𝜌∗

�̃�
)}.                      (8) 

Noticing |
𝜌∗

�̃�
| < 1, we have introduced  

1

1+�̃�/𝜌∗
≈ 1 −

𝜌∗

�̃�
. 

      Equation (8) contains three types of terms: pure large scale with ~, pure SGS scale with *, 

and the mixture of both. For the mixed-scale terms, we introduce a splitting factor 𝛽, and assign 

a 𝛽 portion of the mixed terms to the large scale, and the remaining (1−𝛽) portion to SGS. 

Equation (8) can then be split into the two scales as follows: 

𝑓𝑖(𝑥 + �⃗�𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝑥, 𝑡) = −
1

𝜏
𝑓𝑖(𝑥, 𝑡) +

𝜔𝑖

𝜏
{�̃� +

3𝑒𝑖∙�⃗⃗⃗�
̃

𝑐2
+

9

2�̃�𝑐4
(�⃗�𝑖 ∙ �̃⃗⃗⃗�)

2

−
3

2�̃�𝑐2
�̃⃗⃗⃗� ∙ �̃⃗⃗⃗�} +

𝛽𝜔𝑖

𝜏
{
9

2�̃�𝑐4
[2 (�⃗�𝑖 ∙ �̃⃗⃗⃗�) (�⃗�𝑖 ∙ �⃗⃗⃗�

∗) + (�⃗�𝑖 ∙ 𝜌
∗)2] −

9𝜌∗

2�̃�2𝑐4
[(�⃗�𝑖 ∙ �̃⃗⃗⃗�)

2

+ 2 (�⃗�𝑖 ∙ �̃⃗⃗⃗�) (�⃗�𝑖 ∙ �⃗⃗⃗�
∗) + (�⃗�𝑖 ∙

�⃗⃗⃗�∗)
2
] −

3

2�̃�𝑐2
(�̃⃗⃗⃗� ∙ �⃗⃗⃗�∗ + �⃗⃗⃗�∗ ∙ �⃗⃗⃗�∗) +

3𝜌∗

2�̃�2𝑐2
(�̃⃗⃗⃗� ∙ �̃⃗⃗⃗� + �̃⃗⃗⃗� ∙ �⃗⃗⃗�∗ + �⃗⃗⃗�∗ ∙ �⃗⃗⃗�∗)},                (9) 

and 

𝑓𝑖
∗(𝑥 + �⃗�𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖

∗(𝑥, 𝑡) = −
1

𝜏
𝑓𝑖
∗(𝑥, 𝑡) +

𝜔𝑖

𝜏
{𝜌∗ +

3𝑒𝑖∙�⃗⃗⃗�
∗

𝑐2
} +

(1−𝛽)𝜔𝑖

𝜏
{
9

2�̃�𝑐4
[2 (�⃗�𝑖 ∙

�̃⃗⃗⃗�) (�⃗�𝑖 ∙ �⃗⃗⃗�
∗) + (�⃗�𝑖 ∙ �⃗⃗⃗�

∗)
2
] −

9𝜌∗

2�̃�2𝑐4
[(�⃗�𝑖 ∙ �̃⃗⃗⃗�)

2

+ 2(�⃗�𝑖 ∙ �̃⃗⃗⃗�) (�⃗�𝑖 ∙ �⃗⃗⃗�
∗) + (�⃗�𝑖 ∙ �⃗⃗⃗�

∗)
2
] −

3

2�̃�𝑐2
(�̃⃗⃗⃗� ∙ �⃗⃗⃗�∗ + �⃗⃗⃗�∗ ∙ �⃗⃗⃗�∗) +

3𝜌∗

2�̃�2𝑐2
(�̃⃗⃗⃗� ∙ �̃⃗⃗⃗� + �̃⃗⃗⃗� ∙ �⃗⃗⃗�∗ + �⃗⃗⃗�∗ ∙ �⃗⃗⃗�∗)}.                                    (10) 

      Now we differentiate Eq. (10) with respect to time and obtain: 



𝑑𝑓𝑖
∗(𝑥,𝑡)

𝑑𝑡
𝛿𝑡 = −

1

𝜏
𝑓𝑖
∗(𝑥, 𝑡) +

𝜔𝑖

𝜏
{𝜌∗ +

3𝑒𝑖∙�⃗⃗⃗�
∗

𝑐2
} +

(1−𝛽)𝜔𝑖

𝜏
{

9

2�̃�𝑐4
[2 (�⃗�𝑖 ∙ �̃⃗⃗⃗�) (�⃗�𝑖 ∙ �⃗⃗⃗�

∗) + (�⃗�𝑖 ∙

�⃗⃗⃗�∗)
2
] −

9𝜌∗

2�̃�2𝑐4
[(�⃗�𝑖 ∙ �̃⃗⃗⃗�)

2

+ 2 (�⃗�𝑖 ∙ �̃⃗⃗⃗�) (�⃗�𝑖 ∙ �⃗⃗⃗�
∗) + (�⃗�𝑖 ∙ �⃗⃗⃗�

∗)
2
] −

3

2�̃�𝑐2
(�̃⃗⃗⃗� ∙ �⃗⃗⃗�∗ + �⃗⃗⃗�∗ ∙ �⃗⃗⃗�∗) +

3𝜌∗

2�̃�2𝑐2
(�̃⃗⃗⃗� ∙ �̃⃗⃗⃗� + �̃⃗⃗⃗� ∙ �⃗⃗⃗�∗ + �⃗⃗⃗�∗ ∙ �⃗⃗⃗�∗)},                                                                                  (11) 

where 𝑑/𝑑𝑡 ≡ 𝜕/𝜕𝑡 + �⃗�𝑖 ∙ ∇ is the material time derivative along the characteristic line �⃗�𝑖 . 
Construction of PMLBE we construct the Fourier expansion of the distribution function 

separated into large scale and SGS scale as follows: 

𝑓𝑖(𝑥, 𝑡) = ∑ 𝑎𝑖,�⃗⃗�(𝑡)𝜑𝑖,�⃗⃗�(𝑥)
∞
�⃗⃗�=0⃗⃗⃗

= ∑ 𝑎𝑖,�⃗⃗�(𝑡)𝜑𝑖,�⃗⃗�(𝑥)
�⃗⃗⃗�
�⃗⃗�=0⃗⃗⃗⏟            

�̃�𝑖(𝑥,𝑡)

+ ∑ 𝑎𝑖,�⃗⃗�(𝑡)𝜑𝑖,�⃗⃗�(𝑥)
∞
�⃗⃗�=�⃗⃗⃗�+𝐼⏟              

𝑓𝑖
∗(𝑥,𝑡)

,               (12) 

where �⃗⃗� is the wavevector, 𝑎�⃗⃗� and 𝜑�⃗⃗� are the Fourier coefficients and tensor product basis of 

�⃗⃗�, respectively 𝐼 is a unit vector in wave space, and  �⃗⃗⃗� represents the wavevector that separates 

large-scale and SGS distribution functions. When the functions 𝜑�⃗⃗� of our chosen subset is from 

0⃗⃗ to �⃗⃗⃗�, the linear combination of the vectors is defined as the large-scale distribution function 

𝑓𝑖 . In other words, the SGS distribution function is simply the remainder of the complete 

Fourier expansion, where the functions 𝜑�⃗⃗� of our chosen subset is from �⃗⃗⃗� to ∞. We assume 

that the tensor product basis set {𝜑�⃗⃗�} is complete in the function space L2, orthonormal, and 

divergence-free, exhibiting properties analogous to the complex exponential with respect to 

differentiation. 

      Substituting  𝑓𝑖
∗(𝑥, 𝑡) = ∑ 𝑎𝑖,�⃗⃗�(𝑡)𝜑𝑖,�⃗⃗�(𝑥)

∞
�⃗⃗�=�⃗⃗⃗�+𝐼

 into Eq. (11), recalling Eqs. (6) and (7), 

rearranging the terms, and constructing Galerkin inner products with given basis functions for 

each term result in 

𝑎𝑖,�⃗⃗�(𝑡 + 𝛿𝑡) = (1 − 𝛿𝑡�⃗�𝑖 ∙ �⃗⃗� −
1

𝜏
) 𝑎𝑖,�⃗⃗�(𝑡) +

𝜔𝑖

𝜏
[∑ 𝑎𝑗,�⃗⃗�(𝑡) +

3𝑒𝑖∙∑𝑒𝑗𝑎𝑗,�⃗⃗⃗�
(𝑡)

𝑐2
] +

9(1−𝛽)𝜔𝑖

2𝜏(∑�̃�𝑗)
2
𝑐4
{∑ 𝑓𝑗 [2(�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑓𝑗) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡)) + (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡))

2

] − [∑𝑎𝑗,�⃗⃗�(𝑡) (�⃗�𝑖 ∙

∑ �⃗�𝑗𝑓𝑗)
2
+ 2∑𝑎𝑗,�⃗⃗�(𝑡) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑓𝑗) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡)) + ∑𝑎𝑗,�⃗⃗�(𝑡) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡))

2

] −

∑ �̃�𝑗𝑐
2

3
(∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) + ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡)) +

𝑐2

3
(∑𝑎𝑗,�⃗⃗�(𝑡) ∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑓𝑗 +

∑𝑎𝑗,�⃗⃗�(𝑡) ∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) + ∑𝑎𝑗,�⃗⃗�(𝑡) ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡))},                                    (13) 

where ∑(… ) means ∑ (… )18
𝑗=0 . Equation (13) is the so-called PMLBE for the 3-D kinetic-based 

DDS.  The PMLBE contains 5 bifurcation parameters, which are relaxation time () from the 

LBE, splitting factor () for separating large and sub-grid motion scales, and wavevector 

components (𝑘1 , 𝑘2 , 𝑘3) from the Fourier space. It contains three power orders of 𝑎𝑗,�⃗⃗�(𝑡) after 

we neglect the terms higher than the 3rd order. 
Identification of laminar and turbulent behavior We search for laminar and turbulent flow 

behavior through the time series and the pattern of power spectral density (PSD). With the 
specified bifurcation parameters and initial conditions, the time series for the Fourier 

coefficients 𝑎𝑗,�⃗⃗� are generated by performing time evolution via Eq. (13). Then the PSD can be 

calculated from the time series. The software package ‘pwelch’ in MATLAB is used to 
estimate PSDs. In ‘pwelch’, we select the Hanning window; the number of input data points is 

213, and the number of overlapped samples is 212. The DDS is classified as divergence if its 

time series does not converge. When a time series is convergent, we calculate PSD from the 
time series. In our previous work [40], we have demonstrated that the PMLBE can capture 

laminar behaviors of periodic, subharmonic, n-period, and quasi-periodic, and turbulent 



behaviors of noisy periodic with harmonic, noisy subharmonic, noisy quasi-periodic, and 
broadband power spectra. The laminar and turbulent power spectra were determined by the 

number and pattern of peaks in a PSD. We predefined the splitting factor 𝛽 (= 0.7 ) from 

experience. By varying the bifurcation parameters over the ranges of 0.5 < 𝜏 < 1  and  

0.01 < 𝑘𝑎 < 1 with 𝑎 = 1,2,3 , we have studied more than 30 thousand combinations of 

bifurcation parameters to get results for that work.  

      In this work, we further study how the PMLBE and the selection of the bifurcation 
parameters affect the DDS to capture laminar and turbulent behavior. Understanding the 

PMLBE and the selection of bifurcation parameters is important to successfully apply the DDS 

into an LES of pulsatile turbulence. Based on the experience from the previous work [40], we 
only use the number of peaks, N=1000, on the PSD to distinguish the two behaviors.   

 

3     Results 

In this section, we present our numerical experiments on how power orders in the PMLBE and 
the five bifurcation parameters affect the capturing of the laminar and turbulent behavior. To 

set up the computation of this 3-D kinetic DDS, we select the range of 𝜏 as 0.6 ≤ 𝜏 ≤ 1.2, the 

range of 𝑘𝑎  (𝑎 = 1,2,3) as 0 ≤ 𝑘𝑎 ≤ 1, and the range of splitting factor as 0.5 ≤  ≤ 0.8. For 

each bifurcation parameter, we uniformly divide the range into 10 points. Thus,  we have a 
total of 100,000 combination sets of the five bifurcation parameters. In the LBM, we often 

select 𝛿𝑥 = 𝛿𝑡 = 1, meaning the particles stream one lattice unit per time step, thus, c=1 in Eq. 

(2). The initial value of the SGS information 𝑎𝑗,�⃗⃗� and large-scale information 𝑓𝑖  are given as 

follows. By assigning velocity components and density, the initial condition of 𝑓𝑖  
(𝑖 = 0, … ,18) can be calculated from the equilibrium Eq. (2), under the assumption that the 

DDS is in equilibrium initially. For the SGS, the initial conditions used in the following 

numerical experiments are �⃗⃗�∗ = (0.1445, 0.1014, 0.1758) and 𝑟∗=0.1. For the large scale, the 

initial conditions are �̃⃗⃗� = (1.758, 1.445, 1.014) and �̃�=1.0. Basically, the number of particles 

and the velocity for large scale are set to be 10 times larger than the SGS variables.  

     The PMLBE contains three power orders of the dynamic variable: 𝑎𝑗,�⃗⃗�(𝑡), 𝑎𝑗,�⃗⃗�
2 (𝑡), and 

𝑎
𝑗,�⃗⃗�
3 (𝑡). As the LBM is no more than the 2nd order accuracy in space and 1st order accuracy in 

time, we want to explore up to what order of power is needed in PMLBE. In terms of the 
computation cost, the fewer terms, the faster computation. If we neglect only the 3rd order terms 

and both the 2nd and 3rd order terms, Eq. (13) becomes 

𝑎𝑖,�⃗⃗�(𝑡 + 𝛿𝑡) = (1 − 𝛿𝑡�⃗�𝑖 ∙ �⃗⃗� −
1

𝜏
) 𝑎𝑖,�⃗⃗�(𝑡) +

𝜔𝑖

𝜏
[∑ 𝑎𝑗,�⃗⃗�(𝑡) +

3𝑒𝑖∙∑𝑒𝑗𝑎𝑗,�⃗⃗⃗�
(𝑡)

𝑐2
] +

9(1−𝛽)𝜔𝑖

2𝜏(∑�̃�𝑗)
2
𝑐4
{∑ 𝑓𝑗 [2(�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑓𝑗) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡)) + (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡))

2

] − [∑𝑎𝑗,�⃗⃗�(𝑡) (�⃗�𝑖 ∙

∑ �⃗�𝑗𝑓𝑗)
2
+ 2∑𝑎𝑗,�⃗⃗�(𝑡) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑓𝑗) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡))] −

∑ �̃�𝑗𝑐
2

3
(∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) +

∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡)) +
𝑐2

3
(∑𝑎𝑗,�⃗⃗�(𝑡) ∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑓𝑗 + ∑𝑎𝑗,�⃗⃗�(𝑡) ∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡))},  (14) 

and 

𝑎𝑖,�⃗⃗�(𝑡 + 𝛿𝑡) = (1 − 𝛿𝑡�⃗�𝑖 ∙ �⃗⃗� −
1

𝜏
) 𝑎𝑖,�⃗⃗�(𝑡) +

𝜔𝑖

𝜏
[∑ 𝑎𝑗,�⃗⃗�(𝑡) +

3𝑒𝑖∙∑𝑒𝑗𝑎𝑗,�⃗⃗⃗�
(𝑡)

𝑐2
] +

9(1−𝛽)𝜔𝑖

2𝜏(∑�̃�𝑗)
2
𝑐4
[2∑𝑓𝑗 (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑓𝑗)(�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡)) − ∑𝑎𝑗,�⃗⃗�(𝑡) (�⃗�𝑖 ∙ ∑ �⃗�𝑗𝑓𝑗)

2
−
∑�̃�𝑗𝑐

2

3
∑ �⃗�𝑗𝑓𝑗 ∙

∑ �⃗�𝑗𝑎𝑗,�⃗⃗�(𝑡) +
𝑐2

3
∑𝑎𝑗,�⃗⃗�(𝑡) ∑ �⃗�𝑗𝑓𝑗 ∙ ∑ �⃗�𝑗𝑓𝑗],                                                                            (15) 

respectively. 



      Within the specified ranges of the 
bifurcation parameters, Eq. (15) captures 

neither laminar nor turbulent behavior as 
no time series is convergent. This is 

because the DDS only contains the 1st 

order 𝑎𝑖,�⃗⃗�(𝑡) , which is too simple to 

capture flow dynamics. Whereas both Eqs. 

(13) and (14) can capture laminar and turbulent behaviors. Among the total 100,000 bifurcation 

parameter points, Eqs. (13) and (14) capture 4373 and 7472 laminar behaviors and 127 and 365 
turbulent behaviors, respectively. The corresponding percentages are listed in Table 1. 

Considering Eq. (14) is more computationally efficient than Eq. (13) as it has fewer terms, we 
will focus on Eq. (14) for the remaining study.  We now sort the laminar and turbulent 

behaviors in terms of , , and  𝑘𝑎 (𝑎 = 1,2,3)   and calculate the percentage out of the 

corresponding number of laminar or turbulent behaviors one by one. The percentage 

distributions are shown in Table 2. For each bifurcation parameter, there exists a maximum 

percentage. For laminar behavior, =0.73, =1.0, 𝑘1 = 0.33, 𝑘2 = 0.22,and 𝑘3 = 0.22 forms 

the optimal combination of bifurcation parameters. Whereas the optimal combination for 

turbulent behavior is =0.6, =1.0, 𝑘1 = 0.11 , 𝑘2 = 0.22 ,and 𝑘3 = 0.11 . In general, the 

wavevector components should correspond to the same value as they are isotropic. The 

differences, 0.33 vs. 0.22 in laminar behavior and 0.11 vs. 0.22 in turbulent behavior might be 
due to the sparse point distribution in the range. 

L
am

in
ar

 b
eh

av
io

r 

 0.50 0.53 0.57 0.60 0.63 0.67 0.70 0.73 0.77 0.80 

% 0.28 1.32 3.80 7.57 11.18 14.01 15.85 16.51 15.71 13.76 

 0.6 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 

% 0.21 0.94 2.68 6.88 12.43 15.46 16.13 15.91 14.82 14.55 

𝑘1 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0 

% 6.71 13.72 18.48 19.61 18.00 13.61 7.68 2.15 0.04 0.00 

𝑘2 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0 

% 11.75 16.07 20.21 20.16 16.37 10.80 4.35 0.29 0.00 0.00 

𝑘3 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0 

% 17.12 21.77 23.61 19.49 12.55 4.87 0.59 0.00 0.00 0.00 

T
u
rb

u
le

n
t 

B
eh

av
io

r 

 0.50 0.53 0.57 0.60 0.63 0.67 0.70 0.73 0.77 0.80 

% 0.82 9.32 17.53 20.00 19.45 12.33 9.32 4.11 5.75 1.37 

 0.6 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 

% 0.27 2.19 3.84 5.21 8.49 15.34 16.16 13.42 20.55 14.52 

𝑘1 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0 

% 8.77 22.19 21.37 21.10 13.15 9.59 3.56 0.27 0.00 0.00 

𝑘2 0.00 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0 

% 11.51 22.47 23.56 16.16 13.70 9.04 2.74 0.82 0.00 0.00 

𝑘3 0.00 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0 

% 19.45 27.67 24.38 15.34 9.59 3.56 0.00 0.00 0.00 0.00 

Table 2 Effects of bifurcation parameters on the capturing of laminar and turbulent behavior from Eq. (14). 

 

3     Conclusions and Future Work 
 
We have investigated how the power order terms and the bifurcation parameters in the PMLBE 

affect the capturing of laminar and turbulent behaviors. It is found that the 1st order PMLBE is 

divergent and thus not capable to capture either laminar or turbulent behaviors as it is too 
simple (linear). The 2nd order and 3rd order PMLBEs are both able to capture flow behaviors 

but the 2nd order DDS performs better with lower computation cost and more flow behaviors 
captured. Form the sorting of flow behavior capturing for each bifurcation parameter, we have 

identified two optimal bifurcation parameter sets: =0.73, =1.0, 𝑘1 = 0.33, 𝑘2 = 0.22,and 

                 Behavior 

DDS  

Laminar Turbulent 

Eq. (13) 4.37% 0.13% 

Eq. (14) 7.47% 0.37% 

Table 1 Comparison of the capability to capture laminar 

and turbulent behavior between the 3rd order DDS (Eq. 

13) and 2nd order DDS (Eq. 14)   



𝑘3 = 0.22  for laminar behavior and =0.6, =1.0, 𝑘1 = 0.11, 𝑘2 = 0.22,and 𝑘3 = 0.11 for 

turbulent behavior, which will be useful for the specification of the bifurcation parameters 

when we introduce the DDS into our LES modeling of pulsatile flows.  The immediate future 
work is to produce regime maps to further explore the effects of the PMLBE and the bifurcation 

parameters on the capturing of the specific patterns of laminar behaviors including periodic, 
subharmonic, n-period, and quasi-periodic, and turbulent behaviors of noisy periodic with 

harmonic, noisy subharmonic, noisy quasi-periodic, and broadband power spectra. It requires 

much finer points (close to continuous) in the range of each bifurcation thus the computation 
will be extremely high. To overcome this bottleneck, we are developing surrogate models 

using deep learning techniques. Trained by finite quality points from PMLBE, the surrogate 
models will capture the same laminar and turbulent behaviors with significantly reduced 

computation time. Meanwhile, the 3-D kinetic–based DDS will be applied in our LES 

modeling of pulsatile flows in near future. 
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