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Abstract: This paper establishes consistency and formal second-order accuracy of 
a novel, efficient, edge-based viscous (EBV) discretization method that has been 
recently developed, implemented in a practical, unstructured-grid, finite-volume 
flow solver, and demonstrated multifold acceleration of all viscous-kernel 
computations that include evaluations of meanflow viscous fluxes, turbulence-model 
and chemistry-model diffusion terms, and the corresponding Jacobian contributions. 
The EBV method uses simplicial grids, computes viscous fluxes and diffusion terms 
in an efficient loop over edges, and features a compact discretization stencil based 
on the nearest neighbors. The second-order accuracy of the EBV solutions is shown 
by truncation error analysis and by the method of manufactured solutions. 
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1     Introduction 

Edge-based and cell-based methods are widely used within unstructured-grid, node-centered, finite-
volume solvers for discretizing elliptic second-order partial differential operators that represent viscous 
effects in computational fluid dynamics (CFD) equations. In the literature, there are many examples of 
edge-based schemes for inviscid and viscous fluxes [1-6]. A typical edge-based scheme for diffusion 
requires viscosity and solution gradients at grid edges. The edge-based viscosity is averaged from the 
edge endpoints. The edge gradients are evaluated either by averaging gradients computed at the edge 
endpoints or by defining an edge-based stencil [7]. The edge gradient can be augmented with an edge-
based derivative [8] or by adding an adjustable term to damp oscillations [9]. The residual contributions 
from edge-based diffusion terms are computed in an edge loop that avoids duplicate computations 
inherent in point and cell loops. These traditional edge-based methods typically result in large 
discretization stencils that include neighbors of neighbors. Alternatively, a thin-layer gradient 
approximation can be used for approximating diffusion terms. The thin-layer approximation includes 
only edge-based derivatives, resulting in a compact stencil, but lacks consistency on general 
unstructured grids, and may degrade solution accuracy. 

A consistent and compact-stencil alternative for finite-volume discretization of diffusion terms is a 
cell-based viscous (CBV) method that is equivalent to the Galerkin finite-element approximation on 
simplicial grids. The CBV method computes diffusion fluxes in a loop over cells. At each cell, the 
solution gradient and the cell-averaged viscosity are computed using the solution and viscosity at cell 
vertices. This approach results in a compact discretization stencil that is suitable for massively parallel 
computations and conveniently supports the exact linearization. The main disadvantage of the CBV 
approach is a relatively high computational cost of the cell loop. The CBV method is the baseline 
method of FUN3D [10], a large-scale CFD code that is developed and supported at NASA Langley 
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Research Center. FUN3D solutions using the CBV method have been extensively verified and validated 
through formal analysis and practical applications [11-17]. 

The edge-based viscous (EBV) method considered in this paper combines benefits of the established 
cell- and edge-based methods. The EBV residual is efficiently computed in an edge loop, and the EBV 
discretization stencil involves only immediate neighbors. The EBV method follows the methodology 
introduced by Barth [1] and uses an edge-based implementation of the cell-based gradients on simplicial 
grids. The EBV method has been implemented for viscous kernel of Reynolds-averaged Navier-Stokes 
(RANS) equations in FUN3D. The viscous kernel includes evaluation of the viscous fluxes of the 
meanflow equations, the diffusion terms of the turbulence-model and chemistry equations, and the 
corresponding Jacobian terms. 

Initial implementation of the EBV method was assessed for the RANS solutions on a family of 
tetrahedral grids [18]. The EBV solutions closely resembled the reference solutions computed with the 
baseline CBV method. The time spent on the viscous-kernel computations was reduced by more than a 
factor of three, and the fraction of viscous-kernel computations was reduced from over 33% to 13% of 
a typical nonlinear iteration. A relative downside of that EBV implementation was a modest increase 
in memory required to store EBV coefficients at each grid edge. Later, the EBV implementation was 
optimized [19]: the EBV memory requirements have been decreased dramatically, the EBV speedup of 
the viscous-kernel computations on finer grids has been improved to a factor of six, and the fraction of 
viscous-kernel computations has been reduced to less than 2.5%. Recently, the EBV method was further 
modified and applied to simulations of complex chemically reacting flows on mixed-element grids [20]. 
On a mixed-element grid, the EBV method is implemented on a derived tetrahedral grid that is 
automatically generated by local and consistent division on nontetrahedral cells into tetrahedra. This 
EBV implementation produces an important additional benefit over the baseline CBV method: the 
viscous-flux discretization stencil is significantly reduced, resulting in smaller Jacobian, noticeable 
memory saving, and acceleration of the linear solver of FUN3D.  

Although EBV RANS solutions have been verified for several benchmark flows [18-20], a formal 
analysis of the EBV discretization has been lacking. This paper focuses on systematically establishing 
consistency and formal second-order accuracy of EBV solutions for scalar diffusion and laminar 
Navier-Stokes equations. The EBV solutions and truncation- and discretization-error analyses reported 
in this paper are compared with the corresponding CBV solutions and analyses. The CBV method has 
rigorous estimates of second-order accuracy on simplicial grids due to its relation to the family of finite-
element Galerkin methods and provides high-quality references.    

In this paper, the truncation error analysis is conducted on regular simplicial grids by Taylor 
expansion and by assessing grid convergence of discrete residuals computed for the continuous PDE 
solution restricted to specific grids in a family. The discretization error analysis is conducted by the 
method of manufactured solutions on regular and highly irregular simplicial grids. The analyses of the 
original EBV implementation [18, 19] for scalar diffusion equations indicate second-order accuracy. 
However, detailed analyses of the EBV implementation for the Navier-Stokes equations reveal that 
some correction terms are required for second-order accuracy. The correction terms, which are products 
of spatial derivatives of viscosity and velocity, vanish for scalar diffusion. In the modified EBV 
implementation, the correction terms have been implemented as source terms for the momentum and 
energy conservation equations. The EBV solutions in Ref. [20] have been computed with the correction 
terms. As shown in this paper, without correction terms, the accuracy deterioration is clearly observed 
in the truncation error and in the discretization error for a manufactured solution. However, only 
minimal differences are observed for EBV RANS solutions computed with and without correction terms 
for flow conditions and grids that are used in applications and verification studies. 

The material in this paper is presented in the following order. Section 2 describes the CBV and EBV 
methods for linear and nonlinear diffusion equations on simplicial grids and shows a complexity 
analysis and truncation- and discretization-error analyses in two dimensions (2D) and three dimensions 
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(3D). Section 3 analyzes the CBV and EBV methods for the laminar Navier-Stokes equations on 3D 
tetrahedral grids and indicates necessity of correction terms for consistency and second-order accuracy. 
Second-order accuracy of the EBV solutions with the corrections terms is shown. Section 4 compares 
RANS solutions with and without correction terms. Concluding remarks are provided in Section 5.  

2     Scalar linear and nonlinear diffusion 
2.1     EBV and CBV finite-volume methods  

A scalar diffusion partial differential equation (PDE) for a twice differentiable function 𝑢 is defined in 
Eq. 1. 

div(𝜇𝛁𝑢) = 𝑔																																																																														(1) 

Here, 𝜇 is a viscosity function that can be constant, spatially varying, or dependent on solution	𝑢; 𝑔 is 
a force function introduced to allow manufactured solutions. The equation is discretized in an 
unstructured-grid, node-centered framework where all functions are defined at grid points. For short 
notation, functions evaluated at a grid point use the same set of indices as the grid point itself, i.e., 
function 𝑢 evaluated at a grid point 𝒑/ is denoted as	𝑢/ = 𝑢(𝒑/).  

Figure 1 illustrates discretization on a general tetrahedron with vertices	𝒑0, 𝒑2, 𝒑3, and	𝒑6. The 
point 𝒎/,8 =

𝒑9:𝒑;
2

 is the median of the edge connecting vertices 𝒑/ and	𝒑8. The point 𝒇/8= =
𝒑9:𝒑;:𝒑>

3
 

is the centroid of the face that has vertices  𝒑/, 𝒑8, and	𝒑=. The point 𝒄0,2,3,6 =
𝒑@:𝒑A:𝒑B:𝒑C

6
 is the 

centroid of the tetrahedron. The three quadrilateral shapes shaded in Fig.  1 show the portion of the 
control-volume surface that is inside the tetrahedron; the control volume is centered at	𝒑0; 𝒅0	is the 
corresponding directed-area vector pointing outward from	𝒑0.  

 
Figure 1. Control-volume boundaries within tetrahedron. 

In the CBV method, the tetrahedron provides the following contribution to the residual at	𝒑0. 

𝑅0 = 𝑅0 + 𝜇0,2,3,6G𝛁0,2,3,6𝑢 ∙ 𝒅0I																																																							(2) 

Here, the viscosity and the solution gradient at the tetrahedron are evaluated as follows. 

𝜇0,2,3,6 =
𝜇0 + 𝜇2 + 𝜇3 + 𝜇6

4
																																																							(3) 

𝛁0,2,3,6𝑢 =
1
𝑉𝑜𝑙

P
𝑢2 + 𝑢3 + 𝑢6

3
𝒏0 +

𝑢0 + 𝑢3 + 𝑢6
3

𝒏2 +
𝑢0 + 𝑢2 + 𝑢6

3
𝒏3 +

𝑢0 + 𝑢2 + 𝑢3
3

𝒏6R		(4) 

This gradient approximation uses the Green-Gauss theorem; 𝑉𝑜𝑙 is the tetrahedron volume, 𝒏/ is the 
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outward directed-area vector of the triangular face opposite to	𝒑/,  

𝒏0 + 𝒏2 + 𝒏3 + 𝒏6 = 0																																																														(5) 

and the directed-area vector, 𝒅/, relates to the directed area of the opposite face as shown in Eq. 6.  

𝒅/ =
1
3
𝒏/																																																																																	(6) 

Introducing the edge-based difference operator  

∆/,8𝑢 ≡ 	𝑢8 − 𝑢/																																																																															(7) 

and substituting 𝒏0 = −(𝒏2 + 𝒏3 + 𝒏6) (Eq. 5) in Eq. 4, one can obtain a gradient expression in terms 
of edge-based differences. 

𝜵0,2,3,6𝑢 =
−1
3	𝑉𝑜𝑙

[G∆0,2𝑢I𝒏2 + G∆0,3𝑢I𝒏3 + G∆0,6𝑢I𝒏6\																																															(8) 

The residual contribution (Eq. 2) is reformulated in Eq. 9. 

𝑅0 = 𝑅0 −
𝜇0,2,3,6
9	𝑉𝑜𝑙

_(𝒏2 ∙ 𝒏0)∆0,2𝑢 + (𝒏3 ∙ 𝒏0)∆0,3𝑢 + (𝒏6 ∙ 𝒏0)∆0,6𝑢`																						(9) 

Eq. 9 is a version of the CBV method. The terms in the square brackets are edge-based terms. The only 
solution-dependent cell-based term is viscosity. The EBV method modifies Eq. 9 as in Eq. 10. 

𝑅0 = 𝑅0 −
1

9	𝑉𝑜𝑙
_𝜇0,2(𝒏2 ∙ 𝒏0)∆0,2𝑢 + 𝜇0,3(𝒏3 ∙ 𝒏0)∆0,3𝑢 + 𝜇0,6(𝒏6 ∙ 𝒏0)∆0,6𝑢`																						(10) 

Coefficients 𝜇/,8 are defined in Eq. 11. 

𝜇/,8 =
𝜇/ + 𝜇8
2

																																																																																		(11) 

The EBV method for a scalar diffusion equation combines all grid metrics into a single coefficient 
at each edge. At the edge _𝒑/, 𝒑8`, the EBV coefficient is computed as in Eq. 12. 

𝑐/,8 =bP
1

9	𝑉𝑜𝑙
G𝒏/ ∙ 𝒏8IR

c{c}

																																																																					(12) 

Here, summation is over all tetrahedra that share	_𝒑/, 𝒑8`. The EBV coefficient can be precomputed for 
static and rigidly moving grids. The contributions to residuals at 𝒑/ and 𝒑8 from _𝒑/, 𝒑8` are computed 
in Eq. 13. 

𝑅/ = 𝑅/ − 𝜇/,8𝑐/,8∆/,8𝑢,											𝑅8 = 𝑅8 + 𝜇/,8𝑐/,8∆/,8𝑢																																																				(13) 

2.2     Complexity of EBV and CBV methods  
To estimate the speedup of the EBV method over the CBV method for a 3D diffusion equation (Eq. 1) 
on tetrahedral grids, one can compare the number of basic computing operations (additions and 
multiplications) required for evaluating CBV and EBV residuals. For simplicity, the analysis does not 
distinguish between multiplications and divisions, between additions and subtractions, and between 
operations with integer and floating-point numbers and ignores the cost of memory access and sign 
change.  

Ignoring the boundary effects, the number of grid points and the number of cells in a hexahedral 
grid are asymptotically the same. A tetrahedral grid can be derived by dividing each hexahedron into 
six tetrahedra. If all hexahedra are divided in the same consistent way, each grid point in the tetrahedral 
grid has exactly 14 edges attached; each edge is counted for two grid points. Thus, a tetrahedral grid 
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has approximately six tetrahedra and seven edges per grid point. 
At each tetrahedron, the CBV method accesses the solution, viscosity, and the spatial coordinates 

of the four vertices. The vertices are locally preordered to uniquely determine the orientation of the 
tetrahedron. Storage of local vertex indexes (four integers per cell, 24 integers per grid point) is the 
memory used by the CBV method; all grid metrics required for residual updates are computed as 
needed. The EBV method accesses solution and viscosity at the two endpoints of an edge. All required 
grid metrics are precomputed and represented by one EBV coefficient at each edge. Storing one EBV 
coefficient per edge translates into storing seven floating-point numbers per grid point.  

At a tetrahedron, the CBV implementation follows Eq. 9. The following three steps are performed: 
(1) compute solution related quantities, namely, the cell-averaged viscosity and six edge-based solution 
differences; (2) compute grid metrics, namely, directed area vectors for the four faces, the cell volume, 
and six inner products of the directed area vectors; and (3) update residuals at the four vertices. To 
minimize the operation count, multiplications by common coefficients are delayed, and their collective 
action is accounted for at the final step. 

The cell-averaged viscosity (Eq. 3) requires three additions; the division by four is delayed. Six 
edge-based solution differences require six additions. Overall, the first step requires nine additions and 
no multiplications. 

An edge vector from 𝒑/ to 𝒑= is denoted as	𝒓/,=. 

𝒑/ = (𝑥/, 𝑦/, 𝑧/)j, 𝑖 = 1, 2, 3, 4;									𝒓/,= = G𝑟/,=n, 𝑟/,=o, 𝑟/,=pI
j
= 	 (𝑥= − 𝑥/, 𝑦= − 𝑦/, 𝑧= − 𝑧/)j			(14) 

The superscript T denotes transposition to indicate vertical vectors. A face directed-area vector,	𝒏/ =
G𝑛/n, 𝑛/o, 𝑛/pI

j
, is computed as a vector product of two edge vectors.  

𝒏2 =
1
2
G𝒓0,6 × 𝒓0,3I, 𝒏3 =

1
2
G𝒓0,2 × 𝒓0,6I, 𝒏6 =

1
2
G𝒓0,3 × 𝒓0,2I																			(15) 

There are six edge vectors in a tetrahedron, but only 𝒓0,2, 𝒓0,3, and 𝒓0,6 are needed for computing 𝒏2,𝒏3, 
and	𝒏6. Computation of these edge vectors requires nine additions. The vector-product evaluation 
requires six multiplications and five additions; division by two is delayed. Computing 𝒏0 =
−(𝒏2 + 𝒏3 + 𝒏6) requires six additions. The operation count for computing the four directed-area 
vectors is 18 multiplications and 20 additions.  

The Eq. 8 gradient is exact for linear functions. One can compute the cell volume as in Eq. 16.  

𝑉𝑜𝑙 = −
1
3
G𝑟0,2n𝑛2n + 𝑟0,3n𝑛3n + 𝑟0,6n𝑛6nI, 𝑟0,2n = 𝑥2 − 𝑥0, 𝑟0,3n = 𝑥3 − 𝑥0, 𝑟0,6n = 𝑥6 − 𝑥0		(16) 

This volume evaluation requires three multiplications and two additions; division by three is delayed.  
Computing an inner product of two vectors requires three multiplications and two additions. Six 

inner products,	G𝒏/ ∙ 𝒏8I, are needed to compute residual contributions at the four vertices. The overall 
operation count for the grid metrics is 39 multiplications and 34 additions. 

In the final step, two multiplications are used to modify the cell-averaged viscosity, which is divided 
by volume and by 48; the latter factor represents the collective action of all delayed multiplications. 
The expression in the square brackets of Eq. 9 is evaluated, multiplied by the modified cell-based 
viscosity, and added to the residual at	𝒑0, totaling four multiplication and three additions. Accounting 
for updates at four nodes, the overall operation count for the final step is 18 multiplications and 14 
additions. Table 1 summarizes the CBV operation count. The total CBV operation count for the 3D 
diffusion residual is 57 multiplications and 53 additions per tetrahedron or 342 multiplications and 318 
additions per grid point. 
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Table 1. CBV operation count for residual contributions from tetrahedron. 

 Multiplications Additions 
Solution quantities 0 9 
Directed area vectors 18 20 
Cell volume 3 2 
Inner products 18 12 
Residual update 18 14 
Total per cell 57 53 
Total per grid point 342 318 

At each edge, the EBV method performs the following two steps: (1) compute solution related 
quantities, namely, the edge difference of the solution and the edge-averaged viscosity, and (2) update 
residuals at the edge endpoints. The solution edge difference requires one addition. The edge-averaged 
viscosity (Eq. 11) requires one addition. The precomputed EBV coefficient accounts for division by 
two. The residual update at the edge endpoints (Eq. 13) requires two multiplications and two additions. 
The total EBV count is two multiplications and four additions per edge or 14 multiplications and 28 
additions per grid point. Table 2 summarizes the EBV operation count. Given that multiplications are 
more costly than additions, the EBV method for a scalar 3D diffusion equation is estimated to be at 
least 20 times faster than the CBV method.  

Table 2. EBV operation count for residual contributions from edge. 
 Multiplications Additions 
Edge-based quantities 0 2 
Residual update 2 2 
Total per edge 2 4 
Total per grid point 14 28 

 
Although not shown in this paper, a similar complexity analysis conducted for the Navier-Stokes 

equations [19] predicts that the EBV operation count is at least five times lower than the CBV operation 
count (140 multiplications and 217 additions for the EBV method vs. 792 multiplications and 924 
additions for the CBV method). The EBV memory consumption for the Navier-Stokes equations is 
estimated as six EBV coefficients per interior edge, which translates into 42 floating-point numbers per 
grid point.   

In general, the benefits of precomputing grid metrics for unit computations, such as the CBV 
computations at a tetrahedron or the EBV computations at an edge, depend on the solution input and 
output for the unit computations. Certain grid metrics should be precomputed and certain operations 
should be performed for computing the contribution from a solution input to an output. Formally, the 
EBV method at an edge has four solution inputs (solution and viscosity at two endpoints) and two 
outputs (endpoint residuals). One might expect that 8 EBV coefficients are required for each edge; such 
storage requirements would render the EBV method impractical. However, Eq. 13 reveals that the EBV 
method requires only a single solution input, namely, the product of the edge-averaged viscosity and 
the solution edge difference, and the two EBV outputs are symmetric, i.e., differ only by sign. These 
unique EBV properties result in dramatic reduction in the operation count and a modest memory 
consumption.    

It appears that precomputing grid metrics for the CBV method is not beneficial. The CBV method 
at a tetrahedron has relatively many solution inputs (solution and viscosity at four vertices) and 
contributes to relatively many outputs (residuals at four vertices). For these reasons, storing grid metrics 
would require a large additional memory and would result in a modest reduction in the operation count. 
For example, considering contributions to the four residuals at cell vertices as in Eq. 9, there are six 
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independent solution inputs, namely, the products of the cell-averaged viscosity and six edge-based 

solution differences. One can choose to precompute grid metrics	
G𝒏9∙𝒏;I
3s	tuv

; these metrics account for the 
factor four from the denominator of Eq. 3. In this scenario, six coefficients are stored per cell, and 16 
multiplications and 18 additions are needed to compute the residual updates at the four vertices. The 
total additional storage of this CBV implementation is 36 floating-point numbers per grid point, and 
the total operation count is 96 multiplications and 108 additions per grid point. 

2.3     Truncation and Discretization Errors 
The main accuracy measure for a discrete PDE solution is the discretization error. On a given grid, the 
discretization error function is defined as the difference between the zero-residual discrete solution 
computed on the grid and the continuous PDE solution restricted to the grid. Another commonly used 
accuracy measure is the truncation error. The truncation error characterizes the local accuracy of PDE 
approximation. The truncation error can be defined as the leading term of the Taylor expansion of a 
discrete residual expression (to approximate the target PDE, a discrete flux-balance residual should be 
divided by control volume) or as a norm of the discrete residuals evaluated for the continuous solution 
restricted to the grid. Truncation error analysis on regular grids can accurately predict the convergence 
order of discretization errors. A grid is considered regular if it can be smoothly mapped on a periodic 
grid that has identical discretization stencils at the interior grid points. Regular grids include, but are 
not limited to, grids derived from Cartesian ones, triangular grids obtained by diagonal splitting with a 
periodic pattern, smoothly stretched grids, skewed grids, smooth curvilinear grids, etc. Grids that cannot 
be smoothly mapped to a periodic grid are called irregular grids. Note that on irregular (e.g., 
unstructured) grids, truncation error analysis underestimates convergence of discretization errors [15].  

2.3.1     Truncation Error Analysis in 2D  

In the 2D truncation-error analysis, a regular anisotropic stencil on a triangular grid uses seven grid 
points listed in Table 3; ℎn and ℎo are mesh sizes in the 𝑥- and 𝑦-directions, respectively. The stencil 
is illustrated in Fig.  2. The shaded area designates the control volume around	𝒑x. The corresponding 
six triangles are listed in Eq. 17.  

{𝑇0, 𝑇2,⋯ , 𝑇s	} = {[𝒑x,𝒑0, 𝒑2], [𝒑x, 𝒑2, 𝒑3], [𝒑x, 𝒑3, 𝒑6], [𝒑x, 𝒑6, 𝒑}], [𝒑x, 𝒑}, 𝒑s], [𝒑x, 𝒑s, 𝒑0]}				(17)     

Table 3. Grid points of regular anisotropic 2D triangular grid. 
 𝒑x 𝒑0 𝒑2 𝒑3 𝒑6 𝒑} 𝒑s 

𝑥 0 −ℎn 0 ℎn ℎn 0 −ℎn 
𝑦 0 −ℎo −ℎo 0 ℎo ℎo 0 

 
Figure 2. Regular anisotropic 2D triangular grid stencil. 
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The CBV and EBV discretization schemes on this stencil are defined in Eqs. 18 and 19, respectively. 

1
𝑉𝑜𝑙

b𝑅~�t,c9	

s

/�0

=
G𝜇x,0,2 + 𝜇x,2,3I∆x,2𝑢 + G𝜇x,6,} + 𝜇x,},sI∆x,}𝑢

2ℎo2
																																																											 

+
G𝜇x,2,3 + 𝜇x,3,6I∆x,3𝑢 + G𝜇x,},s + 𝜇x,s,0I∆x,s𝑢

2ℎn2
																																																	(18) 

1
𝑉𝑜𝑙

b𝑅��t,c9	

s

/�0

=
𝜇x,2∆x,2𝑢 + 𝜇x,}∆x,}𝑢

ℎo2
+
𝜇x,3∆x,3𝑢 + 𝜇x,s∆x,s𝑢

ℎn2
																																														(19) 

Here, 𝑉𝑜𝑙 = ℎnℎo, 𝑅~�t,c9	and 𝑅��t,c9	are contributions to the CBV and EBV residuals at 𝒑x from the 
triangle	𝑇/,  

𝜇x,/,8 =
𝜇x + 𝜇/ + 𝜇8

3
, 𝜇x/ =

𝜇x + 𝜇/
2

																																																												(20) 

are cell- and edge-averaged viscosity coefficients, and ∆/8𝑢 is the edge-based solution difference 
defined in Eq. 7. Eqs. 18 and 19 offer an interpretation of the EBV coefficient at an edge as an 
approximation to the CBV coefficients averaged over all cells that share the edge. The following Taylor 
series are used in computing truncation errors. 

∆x,2𝑢 = 𝑢2 − 𝑢x ≈ −ℎo𝑢o +
1
2
ℎo2𝑢oo −

1
6
ℎo3𝑢ooo +

1
24
ℎo6𝑢oooo 

∆x,3𝑢 = 𝑢3 − 𝑢x ≈ ℎn𝑢n +
1
2
ℎn2𝑢nn +

1
6
ℎn3𝑢nnn +

1
24
ℎn6𝑢nnnn  

∆x,}𝑢 = 𝑢} − 𝑢x ≈ ℎo𝑢o +
1
2
ℎo2𝑢oo +

1
6
ℎo3𝑢ooo +

1
24
ℎo6𝑢oooo 

∆x,s𝑢 = 𝑢s − 𝑢x ≈ −ℎn𝑢n +
1
2
ℎn2𝑢nn −

1
6
ℎn3𝑢nnn +

1
24
ℎn6𝑢nnnn  

𝜇x,2 =
𝜇x + 𝜇2

2
≈ 𝜇x −

1
2
ℎo𝜇o +

1
4
ℎo2𝜇oo −

1
12
ℎo3𝜇ooo 

𝜇x,3 =
𝜇x + 𝜇3

2
≈ 𝜇x +

1
2
ℎn𝜇n +

1
4
ℎn2𝜇nn +

1
12
ℎn3𝜇nnn  

𝜇x,} =
𝜇x + 𝜇}

2
≈ 𝜇x +

1
2
ℎo𝜇o +

1
4
ℎo2𝜇oo +

1
12
ℎo3𝜇ooo 

𝜇x,s =
𝜇x + 𝜇s

2
≈ 𝜇x −

1
2
ℎn𝜇n +

1
4
ℎn2𝜇nn −

1
12
ℎn3𝜇nnn  

𝜇x,0,2 + 𝜇x,2,3 =
2𝜇x + 𝜇0 + 2𝜇2 + 𝜇3

3
≈ 2𝜇x − ℎo𝜇o + �

1
3
ℎn2𝜇nn +

1
3
ℎnℎo𝜇no +

1
2
ℎo2𝜇oo� 

−�
1
6
ℎn2ℎo𝜇nno +

1
6
ℎnℎo2𝜇noo +

1
6
ℎo3𝜇ooo�																																			 

𝜇x,6,} + 𝜇x,},s =
2𝜇x + 𝜇6 + 2𝜇} + 𝜇s

3
≈ 2𝜇x + ℎo𝜇o + �

1
3
ℎn2𝜇nn +

1
3
ℎnℎo𝜇no +

1
2
ℎo2𝜇oo� 

+�
1
6
ℎn2ℎo𝜇nno +

1
6
ℎnℎo2𝜇noo +

1
6
ℎo3𝜇ooo�																																			 

𝜇x,2,3 + 𝜇x,3,6 =
2𝜇x + 𝜇2 + 2𝜇3 + 𝜇6

3
≈ 2𝜇x + ℎn𝜇n + �

1
2
ℎn2𝜇nn +

1
3
ℎnℎo𝜇no +

1
3
ℎo2𝜇oo� 

+�
1
6
ℎn3𝜇nnn +

1
6
ℎn2ℎo𝜇nno +

1
6
ℎnℎo2𝜇noo�																																			 

𝜇x,},s + 𝜇x,s,0 =
2𝜇x + 𝜇} + 2𝜇s + 𝜇0

3
≈ 2𝜇x − ℎn𝜇n + �

1
2
ℎn2𝜇nn +

1
3
ℎnℎo𝜇no +

1
3
ℎo2𝜇oo� 

−�
1
6
ℎn3𝜇nnn +

1
6
ℎn2ℎo𝜇nno +

1
6
ℎnℎo2𝜇noo�																																			 
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The accumulated truncation errors are represented as follows. 

1
𝑉𝑜𝑙

b𝑅~�t,c9	

s

/�0

≈ 𝜇o𝑢o + 𝜇n𝑢n + 𝜇xG𝑢oo + 𝑢nnI +
1
12
𝜇xGℎo2𝑢oooo + ℎn2𝑢nnnnI																												(21) 

	+
1
6
Gℎo2𝜇o𝑢ooo + ℎn2𝜇n𝑢nnnI + �

1
6
ℎn2𝜇nn +

1
6
ℎnℎo𝜇no +

1
4
ℎo2𝜇oo� 𝑢oo																								 

+�
1
4
ℎn2𝜇nn +

1
6
ℎnℎo𝜇no +

1
6
ℎo2𝜇oo�𝑢nn																																																																															 

+�
1
6
ℎn2𝜇nno +

1
6
ℎnℎo𝜇noo +

1
6
ℎo2𝜇ooo� 𝑢o																																																																										 

+�
1
6
ℎn2𝜇nnn +

1
6
ℎnℎo𝜇nno +

1
6
ℎo2𝜇noo� 𝑢n + 𝑂(ℎ6)																																																									 

1
𝑉𝑜𝑙

b𝑅��t,c9	

s

/�0

≈ 𝜇o𝑢o + 𝜇n𝑢n + 𝜇xG𝑢oo + 𝑢nnI +
𝜇x
12
Gℎo2𝑢oooo + ℎn2𝑢nnnnI +

1
6
ℎo2𝜇o𝑢ooo				(22) 

+
1
6
ℎn2𝜇n𝑢nnn +

1
4
ℎo2𝜇oo𝑢oo +

1
4
ℎn2𝜇nn𝑢nn +

1
6
ℎo2𝜇ooo𝑢o +

1
6
ℎn2𝜇nnn𝑢n + 𝑂(ℎ6)			 

The CBV and EBV truncation errors indicate consistent, second-order accurate discretization methods.  

2.3.2     Truncation Error Analysis in 3D   

A regular isotropic tetrahedral-grid stencil used in the 3D truncation-error analysis has mesh size ℎ and 
contains 14 grid points 𝒑/ listed in Table 4. A set of 24 tetrahedra forms a closed polyhedron around 𝒑x 
and determines the edges between grid points. Each tetrahedron is uniquely defined by its four vertices.   

Table 4. Grid points of regular isotropic 3D tetrahedral grid. 
 𝒑x 𝒑0 𝒑2 𝒑3 𝒑6 𝒑} 𝒑s 𝒑� 𝒑� 𝒑� 𝒑0x 𝒑00 𝒑02 𝒑03 𝒑06 

𝑥 0 0 0 −ℎ −ℎ 0 0 −ℎ −ℎ 0 0 ℎ ℎ ℎ ℎ 
𝑦 0 0 −ℎ 0 0 −ℎ 0 ℎ ℎ ℎ ℎ −ℎ 0 −ℎ 0 
𝑧 0 −ℎ 0 −ℎ 0 −ℎ ℎ −ℎ 0 −ℎ 0 0 0 ℎ ℎ 

{𝑇0, 𝑇2,⋯ , 𝑇26	} = {[𝒑x, 𝒑3, 𝒑0, 𝒑2], [𝒑x, 𝒑3, 𝒑2, 𝒑6], [𝒑x, 𝒑2, 𝒑}, 𝒑6], [𝒑x, 𝒑}, 𝒑s, 𝒑6],																				 
	[𝒑x, 𝒑6, 𝒑�, 𝒑3], [𝒑x, 𝒑6, 𝒑�, 𝒑�], [𝒑x, 𝒑�, 𝒑�, 𝒑0], [𝒑x, 𝒑�, 𝒑�, 𝒑0x],																		 
[𝒑x, 𝒑�, 𝒑0, 𝒑3], [𝒑x, 𝒑�, 𝒑0x, 𝒑�], [𝒑x, 𝒑0x, 𝒑�, 𝒑s], [𝒑x, 𝒑6, 𝒑s, 𝒑�],							(23) 
[𝒑x, 𝒑0, 𝒑00, 𝒑2], [𝒑x, 𝒑00, 𝒑0, 𝒑02], [𝒑x, 𝒑2, 𝒑03, 𝒑}], [𝒑x, 𝒑s, 𝒑}, 𝒑03],											 
[𝒑x, 𝒑03, 𝒑00, 𝒑02], [𝒑x, 𝒑06, 𝒑03, 𝒑02], [𝒑x, 𝒑03, 𝒑2, 𝒑00], [𝒑x, 𝒑06, 𝒑s, 𝒑03],		 
[𝒑x, 𝒑02, 𝒑0, 𝒑�], [𝒑x, 𝒑02, 𝒑�, 𝒑0x], [𝒑x, 𝒑0x, 𝒑s, 𝒑06], [𝒑x, 𝒑02, 𝒑0x, 𝒑06]}					 

The CBV and EBV discretization schemes on this stencil are defined as follows. 

1
𝑉𝑜𝑙

b𝑅~�t,c9	

26

/�0

=
G𝜇x,0,2,3 + 𝜇x,0,�,� + 𝜇x,0,3,� + 𝜇x,0,2,00 + 𝜇x,0,00,02 + 𝜇x,0,�,02I

6ℎ2
∆x,0𝑢																			(24) 

+
G𝜇x,0,2,3 + 𝜇x,2,3,6 + 𝜇x,2,6,} + 𝜇x,0,2,00 + 𝜇x,2,},03 + 𝜇x,2,00,03I

6ℎ2
∆x,2𝑢																												 

+
G𝜇x,2,3,6 + 𝜇x,2,6,} + 𝜇x,6,},s + 𝜇x,3,6,� + 𝜇x,6,�,� + 𝜇x,6,s,�I

6ℎ2
∆x,6𝑢																																			 

+
G𝜇x,6,},s + 𝜇x,s,�,0x + 𝜇x,6,s,� + 𝜇x,},s,03 + 𝜇x,s,03,06 + 𝜇x,s,0x,06I

6ℎ2
∆x,s𝑢																							 

+
G𝜇x,�,�,0x + 𝜇x,�,�,0x + 𝜇x,s,�,0x + 𝜇x,�,0x,02 + 𝜇x,s,0x,06 + 𝜇x,0x,02,06I

6ℎ2
∆x,0x𝑢													 

+
G𝜇x,0,00,02 + 𝜇x,00,02,03 + 𝜇x,02,03,06 + 𝜇x,0,�,02 + 𝜇x,�,0x,02 + 𝜇x,0x,02,06I

6ℎ2
∆x,02𝑢					 
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1
𝑉𝑜𝑙

b𝑅��t,c9	

26

/�0

= 𝜇x,0
∆x,0𝑢
ℎ2

+ 𝜇x,2
∆x,2𝑢
ℎ2

+ 𝜇x,6
∆x,6𝑢
ℎ2

+ 𝜇x,s
∆x,s𝑢
ℎ2

+ 𝜇x,0x
∆x,0x𝑢
ℎ2

																								(25) 

+𝜇x,02
∆x,02𝑢
ℎ2

																																																																																																																													 

Evaluating the truncation errors at each tetrahedron, adding up contributions from all tetrahedra, and 
dividing by the control volume (𝑉𝑜𝑙 = ℎ3) results in the following accumulated truncation errors. 

1
𝑉𝑜𝑙

b𝑅~�t,c9	

26

/�0

≈ div(𝜇𝛁𝑢) + ℎ2 [𝑇�� + 𝑇�� + 𝑇�� + 𝑇��� + 𝑇��� + 𝑇��� + 𝑇3 + 𝑇6\ + 𝑂(ℎ
6)			(26) 

1
𝑉𝑜𝑙

b𝑅��t,c9	

26

/�0

≈ div(𝜇𝛁𝑢) + ℎ2(𝑇0� + 𝑇2� + 𝑇3� + 𝑇6�) + 𝑂(ℎ6)																																																												(27) 

𝑇�� =
𝑢n
6
G𝜇nnn − 𝜇nno + 𝜇nnp + 𝜇noo − 𝜇nop + 𝜇nppI	 

𝑇�� =
𝑢o
6
G𝜇nno − 𝜇noo + 𝜇nop + 𝜇ooo − 𝜇oop + 𝜇oppI 

𝑇�� =
𝑢p
6
G𝜇nnp − 𝜇nop + 𝜇npp + 𝜇oop − 𝜇opp + 𝜇pppI 

𝑇��� =
𝑢nn
6
�−𝜇no − 𝜇op + 𝜇np + 𝜇oo + 𝜇pp +

3
2
𝜇nn� 

𝑇��� =
𝑢oo
6
�−𝜇no − 𝜇op + 𝜇np + 𝜇pp + 𝜇nn +

3
2
𝜇oo� 

𝑇��� =
𝑢pp
6
�−𝜇no − 𝜇op + 𝜇np + 𝜇oo + 𝜇nn +

3
2
𝜇pp� 

𝑇3 = 𝑇3� =
1
6
G𝜇n𝑢nnn + 𝜇o𝑢ooo + 𝜇p𝑢pppI, 𝑇6 = 𝑇6� =

1
12
𝜇xG𝑢nnnn + 𝑢oooo + 𝑢ppppI 

𝑇0� =
1
6
G𝑢n𝜇nnn + 𝑢o𝜇ooo + 𝑢p𝜇pppI, 𝑇2� =

1
4
G𝑢nn𝜇nn + 𝑢oo𝜇oo + 𝑢pp𝜇ppI 

The leading terms of the CBV and EBV truncation errors indicate second-order accuracy. Although not 
shown, 2D and 3D truncation-error analyses have also been conducted on regular skewed grids and 
confirmed second-order accuracy of the CBV and EBV methods for diffusion equations.  

2.3     Discretization error analysis in 3D 
The analysis of CBV and EBV discretization errors is conducted using the method of manufactured 
solutions. In all tests in this section, two PDEs are considered, both of them can be described by Eq. 1. 
A linear PDE corresponds to 𝜇 = 1 and a nonlinear PDE corresponds to	𝜇 = 1 + 𝑢2. The same 
manufactured solution is used for the linear and nonlinear equations resulting in different force 
functions	𝑔. Strong Dirichlet boundary conditions are used; discrete solutions at boundary nodes are 
specified from the manufactured solution.  

The discretization error function is computed as the pointwise difference between the zero-residual 
discrete solution on a given grid and the manufactured solution evaluated at grid points. For the linear 
equation, the CBV and EBV solutions are expected to be identical. The discretization error convergence 
is assessed on families of uniformly refined grids for an isotropic cube. Two grid families are generated: 
a family of four regular tetrahedral grids and a family of irregular grids derived by a random 
perturbation of grid points of the corresponding regular grids. The 𝐿0-norm of the discretization error 
function is plotted versus the effective mesh size, which is computed as the 𝐿0-norm of the cubic roots 
of the control volumes. The 𝐿0-norm of a discrete function 𝜑/ is defined as in Eq. 28. 
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‖𝜑‖�@ =
1
𝑁
b|𝜑/|
�

/�0

																																																																				(28) 

𝑁 is the number of grid points. 
For the unit cube (𝑥, 𝑦, 𝑧) ∈ [0, 1] × [0, 1] × [0, 1], the manufactured solution is defined in Eq. 29. 

𝑢 = sin(2.2	𝑥 + 2.4	𝑦 + 1.4	𝑧)																																																				(29) 

The regular grids are uniform tetrahedral grids with 8, 16, 32, and 64 grid points in each dimension. 
Each interior grid point has exactly 24 tetrahedra that share the point and 14 edge neighbors. The 
irregular grids are derived from the regular grids by perturbing coordinates of the interior grid points as 
shown in Eq. 30. 

�
𝑥
𝑦
𝑧
� = �

𝑥
𝑦
𝑧
� + 0.6 �

𝜌0ℎ
𝜌2ℎ
𝜌3ℎ

�																																																															(30) 

Here, ℎ is the regular-grid mesh size and 𝜌0, 𝜌2, and 𝜌3 are random real numbers between -1 and 1. The 
boundary grid points are perturbed within the corresponding boundary planes, so the shape of the 
computational domain is preserved. The degrees of freedom and the grid connectivity remain the same. 
The grid perturbation is done sequentially, point by point. Volumes of perturbed tetrahedra are checked 
after each point perturbation. If the perturbation produces a tetrahedron with a negative volume, the 
perturbation of this specific grid point is cancelled. The coarsest regular grid, contours of the 
manufactured solution, and convergence of the discretization errors on the regular grids are shown in 
Fig.  3. Figure 4 shows the corresponding data for irregular grids. All discretization errors converge 
with second order. As expected, the EBV and CBV solutions for the linear PDE are identical.  The 
magnitude of the EBV error for the nonlinear PDE is slightly lower than the magnitude of the CBV 
error.  

 
a. Coarse grid          b.   Manufactured solution     c. Discretization error convergence 

Figure 3. Regular isotropic tetrahedral grids. 
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a. Coarse grid          b.   Manufactured solution     c. Discretization error convergence 

Figure 4. Irregular isotropic tetrahedral grids. 

3     Laminar Navier-Stokes equations 
The three-dimensional compressible unsteady Navier-Stokes equations are given by [21]. 

𝜕�𝑸 + 𝜕n𝑭 + 𝜕o𝑮 + 𝜕p𝑯 = 𝟎																																																													(31) 

In a nondimensional form, the vectors 𝑭, 𝑮, and 𝑯	are defined in Eq. 32. 

𝑭 =

⎝

⎜
⎛

𝜌𝑢
𝜌𝑢𝑢 + 𝑝 − 𝜏nn	
𝜌𝑢𝑣 − 𝜏no	
𝜌𝑢𝑤 − 𝜏np	

(𝐸 + 𝑝)𝑢 − G𝑢𝜏nn + 𝑣𝜏no + 𝑤𝜏npI + 𝑞n⎠

⎟
⎞

 

𝑮 =

⎝

⎜
⎛

𝜌𝑣
𝜌𝑢𝑣 − 𝜏no	

𝜌𝑣𝑣 + 𝑝 − 𝜏oo	
𝜌𝑣𝑤 − 𝜏op

(𝐸 + 𝑝)𝑣 − G𝑢𝜏no + 𝑣𝜏oo + 𝑤𝜏opI + 𝑞o⎠

⎟
⎞
																																						(32) 

𝑯 =

⎝

⎜
⎛

𝜌𝑤
𝜌𝑢𝑤 − 𝜏np
𝜌𝑣𝑤 − 𝜏op

𝜌𝑤𝑤 + 𝑝 − 𝜏pp
(𝐸 + 𝑝)𝑤 − G𝑢𝜏np + 𝑣𝜏op + 𝑤𝜏ppI + 𝑞p⎠

⎟
⎞

 

Here, 𝑝 is the static pressure, 𝒖 = (𝑢, 𝑣, 𝑤	)j is the velocity vector,	𝒒 = G𝑞n, 𝑞o, 𝑞pI
j

 is the local heat 
flux vector, and 𝑸 ≡ (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝐸)j is the vector of conserved variables that includes the density	𝜌, 
the momentum	𝜌𝒖 = (𝜌𝑢, 𝜌𝑣, 𝜌𝑤	)j, and the total energy per unit volume	𝐸. For a perfect gas, 
equations are closed using the following relations: 

𝑝 = (𝛾 − 1) ³𝐸 −
𝜌
2
(𝑢2 + 𝑣2 + 𝑤2)´ , T = 𝑎2 = 𝛾

𝑝
𝜌
																																				(33)	

where T is a nondimensional temperature,  𝑎 is the speed of sound and 𝛾 = 1.4 is the ratio of specific 
heats.  

The viscous fluxes in the Navier-Stokes equations include the shear stress tensor and the heat flux 
vector as defined in Eq. 34. 

𝜏nn =
2
3
𝑀¸¹º

𝑅𝑒
𝜇G2𝜕n𝑢 − 𝜕o𝑣 − 𝜕p𝑤I		 

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6
-3.5

-3

-2.5

-2

-1.5

-1
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𝜏oo =
2
3
𝑀¸¹º

𝑅𝑒
𝜇G2𝜕o𝑣 − 𝜕n𝑢 − 𝜕p𝑤I		 

𝜏pp =
2
3
𝑀¸¹º

𝑅𝑒
𝜇G2𝜕p𝑤 − 𝜕n𝑢 − 𝜕o𝑣I																																																				(34) 

𝜏on = 𝜏no =
𝑀¸¹º

𝑅𝑒
𝜇G𝜕n𝑣 + 𝜕o𝑢I 

𝜏pn = 𝜏np =
𝑀¸¹º

𝑅𝑒
𝜇(𝜕n𝑤 + 𝜕p𝑢) 

𝜏po = 𝜏op =
𝑀¸¹º

𝑅𝑒
𝜇G𝜕p𝑣 + 𝜕o𝑤I 

𝑞n =
𝑀¸¹º

𝑅𝑒(𝛾 − 1)
𝜇
𝑃𝑟
𝜕n𝑇		 

𝑞o =
𝑀¸¹º

𝑅𝑒(𝛾 − 1)
𝜇
𝑃𝑟
𝜕o𝑇		 

𝑞p =
𝑀¸¹º

𝑅𝑒(𝛾 − 1)
𝜇
𝑃𝑟
𝜕p𝑇 

Here, 𝜇 is the dynamic laminar viscosity computed by Sutherland’s law [22], 𝑀¸¹º  is the reference 
Mach number, 𝑅𝑒 is the Reynolds number, and 𝑃𝑟 is the Prandtl number. In Sutherland's law, the 
nondimensional local dynamic viscosity, 𝜇, relates to the local nondimensional temperature, 	𝑇, through 
the following formula 

𝜇 = 	𝜇¸¹º𝑇
3
2 �
1 + 𝑆∗

𝑇 + 𝑆∗
�,										𝑆∗ =

𝑆
𝑇 ¹º

																																																		(35) 

where	𝑆 = 198.6	°R, and the reference dimensional viscosity, 	𝜇¸¹º, is assumed at the reference 
dimensional temperature 𝑇 ¹º . 

3.1     EBV and CBV finite-volume methods  

For the tetrahedron in Fig. 1, the gradients can be computed in an edge-based form as in Eq. 8. Applying 
the edge-based gradients, 𝛁À = G𝜕nÀ, 𝜕oÀ, 𝜕pÀI, to the shear stress terms of the Navier-Stokes equations 
(Eq. 34) results in the following contribution from the cell to the CBV momentum conservation residual 
evaluated at 𝒑0.  

𝑹~�t,Â0 = 𝑹~�t,Â0 +
𝜇

9	𝑉𝑜𝑙
Ã𝑴2,0∆2,0𝒖 +𝑴3,0∆3,0𝒖 +𝑴6,0∆6,0𝒖Å																																		(36) 

where ∆8,/𝒖 = G∆8,/𝑢, ∆8,/𝑣, ∆8,/𝑤I
j
, ∆8,/𝑢 = 𝑢8 − 𝑢/, ∆8,/𝑣 = 𝑣8 − 𝑣/, ∆8,/𝑤 = 𝑤8 − 𝑤/, and 

𝑴8,/ = PG𝒏8 ∙ 𝒏/I𝑰 −
2
3
𝒏/𝒏8j + 𝒏8𝒏/jR 																																																						(37) 

is a 3 × 3 matrix of edge-based grid-metric coefficients associated with the edge _𝒑8, 𝒑/`, 𝑰 is the 3 × 3 
identity matrix, G𝒏8 ∙ 𝒏/I	and 𝒏/𝒏8j are the scalar and tensor products of vectors 𝒏/ and 𝒏8, respectively.  

The EBV method modifies Eq. 36 as 

𝑹��t,Â0 = 𝑹��t,Â0 + Ç
𝜇2,0
9	𝑉𝑜𝑙

𝑴2,0∆2,0𝒖 +
𝜇3,0
9	𝑉𝑜𝑙

𝑴3,0∆3,0𝒖 +
𝜇6,0
9	𝑉𝑜𝑙

𝑴6,0∆6,0𝒖È									(38) 

where 𝜇8,/ represents the edge-based average of the viscosity coefficients defined at 𝒑/ and 𝒑8. The 
contribution from the edge [𝒑0, 𝒑2] to the EBV momentum residual at 𝒑0 is represented in Eq. 39. 

𝑹��t,Â0 = 𝑹��t,Â0 + 𝜇2,0𝑬2,0∆2,0𝒖																																																					(39) 
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The EBV matrix of coefficients,	𝑬2,0 = ∑ 𝑴A,@
�	tuv

, where summation is over all tetrahedra that share the 
edge [𝒑0, 𝒑2]. Similarly, the contribution from the edge [𝒑0, 𝒑2] to the EBV momentum residual at 𝒑2 
is represented in Eq. 40. 

𝑹��t,Â2 = 𝑹��t,Â2 + 𝜇0,2𝑬0,2∆0,2𝒖																																																					(40) 

The CBV method for the energy-residual update at 𝒑0 is formulated in Eq. 41. 

𝑅~�t,¹0 = 𝑅~�t,¹0 +
𝜇

9	𝑉𝑜𝑙
𝒖ËcÃ𝑴2,0∆2,0𝒖 +𝑴3,0∆3,0𝒖			 +𝑴6,0∆6,0𝒖Å																																	(41) 

−
𝜇

9	𝑃𝑟𝑉𝑜𝑙(𝛾 − 1)
Ã(𝒏2 ∙ 𝒏0)∆2,0𝑇 + (𝒏3 ∙ 𝒏0)∆3,0𝑇 + (𝒏6 ∙ 𝒏0)∆6,0𝑇Å								 

Here, 𝒖Ë is the velocity vector averaged over the cell. The EBV formulation for the contributions to the 
energy residual at 𝒑0 from the edge [𝒑0, 𝒑2] is represented as follows. 

𝑅��t,¹0 = 𝑅��t,¹0 + 𝜇2,0𝑬2,0𝒖Ë2,0c ∆2,0𝒖 −
1

(𝛾 − 1)
𝜇2,0
𝑃𝑟

³b
(𝒏2 ∙ 𝒏0)
9	𝑉𝑜𝑙

´∆2,0𝑇,			𝒖Ë2,0 =
𝒖2 + 𝒖0

2
		(42) 

The EBV matrix 𝑬2,0 in Eq. 42 is the same as in the momentum equations (Eq. 37), and summation is 
again over all tetrahedra that share the edge	[𝒑0, 𝒑2].  

There is a rigorous proof [19] that, for any interior edge fully surrounded by tetrahedra, the EBV 
matrix collected over all tetrahedra that surround and share the edge is symmetric, 𝑬/,8 = 𝑬8,/. Thus, 
there are only six independent coefficients corresponding to the diagonal and upper triangular part of 
the EBV matrix. For boundary edges that are not fully surrounded by tetrahedra, the EBV 
matrices	corresponding to the two edge endpoints of the edge  _𝒑/, 𝒑8` are transpose of each other, 
𝑬/,8 = 𝑬8,/c . Thus, only one EBV matrix (nine EBV coefficients) needs to be stored for boundary edges. 

Finally, the trace (the sum of diagonal elements) of	𝑴8,/ (Eq. 37) can be expressed as follows. 

𝑡𝑟G𝑴8,/I = 3G𝒏8 ∙ 𝒏/I −
2
3
G𝒏8 ∙ 𝒏/I + G𝒏8 ∙ 𝒏/I =

10
3
G𝒏8 ∙ 𝒏/I																										(43) 

Thus, the heat-flux EBV coefficient is proportional to	𝑡𝑟G𝑬8,/I and requires no additional storage. In 
summary, six EBV coefficients per edge are needed to compute the EBV meanflow residual 
contributions from edges fully surrounded by tetrahedra, and nine EBV coefficients per edge are needed 
to compute the contributions from boundary edges.  

3.2     EBV correction terms  
The Taylor expansion for CBV and EBV viscous fluxes has been computed on a 3D regular-grid stencil 
described in Table 4 using triangles listed in Eq. 23. The specific formulas are not shown because of its 
complexity. As expected the leading terms of the Taylor expansion computed for the CBV discretization 
(Eqs. 36 and 41) are second-order terms. In the view of the truncation-error analysis for the EBV 
diffusion discretization described in Section 2.3.2, similar results were expected for the EBV 
discretization of the Navier-Stokes viscous fluxes. However, although there are no first-order terms, the 
Taylor expansion of the EBV discretization of Eqs. 39 and 42 shows the following zeroth-order error 
terms.  

𝑥 −momentum ∶ 	
5
6
_𝜕n𝜇	𝜕o𝑣 − 𝜕o𝜇	𝜕n𝑣 + 𝜕n𝜇	𝜕p𝑤 − 𝜕p𝜇	𝜕n𝑤`,																																																							(44) 

𝑦 −𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∶ 	
5
6 _𝜕𝑦𝜇	𝜕𝑥𝑢 − 𝜕𝑥𝜇	𝜕𝑦𝑢+ 𝜕𝑦𝜇	𝜕𝑧𝑤− 𝜕𝑧𝜇	𝜕𝑦𝑤`,																																																									(45) 

𝑧 − momentum ∶ 	
5
6
_𝜕p𝜇	𝜕n𝑢 − 𝜕n𝜇	𝜕p𝑢 + 𝜕p𝜇	𝜕o𝑣 − 𝜕o𝜇	𝜕p𝑣`,																																																										(46) 
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energy ∶ 	
5
6
Ã2𝜇	_G𝜕n𝑢	𝜕o𝑣 + 𝜕n𝑢	𝜕p𝑤 + 𝜕o𝑣	𝜕p𝑤I − G𝜕o𝑢	𝜕n𝑣 + 𝜕p𝑢	𝜕n𝑤 + 𝜕p𝑣	𝜕o𝑤I`								 

+𝜕n𝜇	_𝑢G𝜕o𝑣 + 𝜕p𝑤I − 𝑣	𝜕o𝑢 − 𝑤	𝜕p𝑢`																																																																								 
+𝜕o𝜇	[𝑣(𝜕n𝑢 + 𝜕p𝑤) − 𝑢	𝜕n𝑣 − 𝑤	𝜕p𝑣]																																																																									 
+𝜕p𝜇	_𝑤G𝜕p𝑤 + 𝜕o𝑣I − 𝑢	𝜕n𝑤 − 𝑣	𝜕o𝑣`Å.																																																												(47) 

To recover consistency and second-order accuracy the operators compensating Eqs. 44-47 have been 
implemented as correction source terms in the corresponding residual equations. The spatial derivatives 
of the viscosity and vorticity are computed at grid points using a least-squares method based on the 
nearest-neighbor stencils.  

3.3     Method of manufactured solutions 
The method of manufactured solution has been implemented in FUN3D and is used here to assess the 
order of accuracy for the CBV and EBV methods.  The manufactured solution for the Navier-Stokes 
equations takes the following form. 

𝒘 = 𝒄𝟎 + 𝒄𝒔expG𝒄𝒙𝑥 +	𝒄𝒚𝑦 +	𝒄𝒛𝑧	I																																																							(48) 

Here, 𝒘 = (𝜌, 𝒖, 𝑝) is differentiable solution vector,	𝒄𝟎,	𝒄𝒔,	𝒄𝒙,	𝒄𝒚 and 𝒄𝒛 are vectors of selected 
parameters. The specific parameters chosen for this study are the following. 

𝒄𝟎 =

⎣
⎢
⎢
⎢
⎡
2.0
1.0
−3.0
2.0
1.0 ⎦

⎥
⎥
⎥
⎤
, 𝒄𝐬 =

⎣
⎢
⎢
⎢
⎡
1.0
1.0
0.0
1.0
2.0⎦
⎥
⎥
⎥
⎤
, 𝒄𝐱 =

⎣
⎢
⎢
⎢
⎡
1.0
2.0
2.0
−1.0
2.0 ⎦

⎥
⎥
⎥
⎤
, 𝒄𝐲 =

⎣
⎢
⎢
⎢
⎡
2.0
−1.0
3.0
−2.0
−2.0⎦

⎥
⎥
⎥
⎤
, 𝒄𝐬 =

⎣
⎢
⎢
⎢
⎡
1.5
−1.5
2.5
−1.5
−1.0⎦

⎥
⎥
⎥
⎤
						(49) 

This manufactured solution is the exact solution to the following nonhomogeneous steady-state PDE. 

𝑑𝑭(𝒘)
𝑑𝑥

+	
𝑑𝑮(𝒘)
𝑑𝑦

+	
𝑑𝑯(𝒘)
𝑑𝑧

= 𝒇																																																															(50) 

Here, 𝑭, 𝑮, and 𝑯	are defined in Eq. 32 and 𝒇	is the vector known analytically. 
The truncation error is estimated as the residual of discretized Eq. 50 evaluated for the manufactured 

solution restricted to 3D stencil of grid points. Small regular tetrahedral grids of 11 × 11 × 11 grid 
points are generated on a sequence of shrinking isotropic cubes. The initial cube has the edge length of 
one. The edge of each next smaller cube is half of the edge of the previous bigger cube, implying that 
the characteristic mesh size is also reduced by factor two. Figure 5 illustrates the grids on the two largest 
cubes. The central point in all cubes is	𝒑𝒄 = (0.5, 0.5, 0.5), which is surrounded by 24 tetrahedra and 
has 14 edge-connected neighbors forming the stencil. The discrete solutions on each grid are injected 
from the manufactured solution. Discrete residuals of the conservation laws are computed at 𝒑𝒄 as flux 
balance divided by the median-dual control volume constructed around	𝒑𝒄. The reference Mach number 
is 0.3, the Reynolds number per unit length is one. Inviscid fluxes of the residuals use least-squares 
solution gradients computed at the grid points, a second-order solution reconstruction to the edge 
median, and Roe’s Riemann solver. The same inviscid fluxes are used with the CBV and EBV methods.  
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Figure 5. Regular tetrahedral grids for truncation-error analysis. 

Figure 6 shows grid convergence of residuals computed with the CBV method (denoted as _CBV) 
and two EBV methods, with (_EBV) and without (_EBV_no_corr) correction. Lines indicating first- 
and second-order slopes are shown for reference. The magnitudes of the x-momentum (R2) and energy 
(R5) conservation residuals are shown versus the characteristic mesh size that is computed as cubic root 
of the control volume. The truncation errors of the CBV method and the corrected EBV method are 
second order and overplotted on all grids. The truncation error of the EBV method without correction 
is similar to the other truncation errors on the coarser grids, but clearly deteriorates on fine grids. 

 
Figure 6. Truncation errors for x-momentum and energy conservation equations. 

The same manufactured solution (Eqs. 48, 49) and flow conditions are used to assess grid 
convergence of the discretization error. For discretization error analysis, a family of five uniformly 
refined nested regular grids is generated on the unit isotropic cube. The coarsest grid in the family has 
11 × 11 × 11 grid points; the finest grid has  161 × 161 × 161 grid points. Irregular grids are derived 
by 3D random perturbation of the points of the corresponding regular grids. The boundary points are 
not allowed to move from the original boundary planes. Discrete solutions at all boundary points are 
overspecified from the manufactured solution. Representative regular and irregular grids are shown in 
Fig. 7; grids are colored with contours of the 𝑥-velocity component. 
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a. Regular grid                                                     b. Irregular grid 

Figure 7. Regular and irregular grids for discretization-error analysis. 
Figure 8 shows grid convergence of the root-mean-square (RMS) and L-infinity (maximum) norms 

of the discretization error on the regular grids. Discretization errors for the CBV and corrected EBV 
solutions converge with second order and close to each other in both the norms. Discretization errors 
for solutions of the EBV method with no corrections deteriorate to the zeroth order.  

Figure 9 shows discretization errors of the CBV and corrected EBV solutions on irregular grids. All 
discretizations errors converge with second order in both the RMS and L-infinity norms. On the same 
grids, the magnitude of the CBV discretizations error is somewhat smaller than the magnitude of the 
discretization error of solutions computed with the corrected EBV method. The main conclusion is that 
adding correction terms to the EBV discretization fully recovers second-order accuracy.  

 
𝑎.		RMS norm                                                      b. 𝐿è norm 

Figure 8. Discretization errors on regular grids. 
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𝑎.		RMS norm                                                       b. 𝐿è norm 

Figure 9. Discretization errors for the irregular mesh. 

4     RANS solutions 
Previous simulations of a subsonic separated flow around a hemisphere-cylinder configuration reported 
in Refs. [18, 19] have been repeated to systematically assess the effect of the EBV correction terms on 
RANS solutions. The family of the nested tetrahedral grids uses the same T1-T3 grids and adds a finer 
grid (T0). The grid statistics and the number of CPU cores are shown in Table 1.  

Table 1. Family of tetrahedral grids for hemisphere cylinder. 
Grid Points Cells Edges CPU cores 
T0 71,368,353 424,673,280 497,217,184 400 
T1 8,995,153 53,084,160 62,373,200 320 
T2 1,143,081 6,635,520 7,852,072 40 
T3 147,637 829,440 995,444 5 

 Figure 10 shows the volume and surface meshes corresponding to the T3 grid, where red color 
indicates the cylinder surface, blue color shows the symmetry boundary, green color shows the outflow 
boundary and orange color marks the farfield boundary. Three sets of solutions are computed on each 
grid: the CBV solution, the EBV solution with correction terms, and the EBV_no_corr solution without 
correction terms. The latter set corresponds to tetrahedral-grid solutions computed previously [18, 19]. 
All solutions use the same UMUSCL 𝜅 = 0.75 discretization of inviscid fluxes and the same boundary 
conditions.  

 
Figure 10. Volume and surface mesh for benchmark flow around hemisphere cylinder. 
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 The baseline iterative solver of FUN3D is used to compute all solutions. The iterations stop when 
the RMS residual norm for all equations is below	10ê06. The CFL number is set to 100. The decoupled 
linear system is solved using 30 multicolor sweeps for the meanflow and 15 multicolor sweeps for the 
SA-neg equation. Figure 11 shows convergence of the aerodynamic coefficients (CD and CL denote 
the drag and lift coefficients) and the RMS norm of the 𝑥-momentum (R2) and SA-neg (R6) residuals 
of the CBV and EBV solutions on the T2 grid. As expected, the EBV and CBV methods show almost 
identical convergence per iteration and a close agreement between the converged aerodynamic 
coefficients. In Fig. 11a, the plots of the EBV and CBV convergence versus iterations are hardly 
distinguishable and similar to those reported in Refs. [18, 19], where the EBV method did not 
incorporate correction terms. Table 2 shows the converged aerodynamic coefficients for all four 
tetrahedral grids. The bold font highlights matching digits in the EBV and EBV_no_cor coefficients 
computed on the same grids. The difference between the lift and drag coefficients predicted from the 
same-grid EBV solutions with and without correction terms are very small.  The maximum difference 
of 0.1% is observed for the drag coefficient on the T0 grid, the difference is much less on coarser grids. 
The difference between the CBV and EBV aerodynamic coefficients is also small, less than 1%, but an 
order of magnitude greater than the difference between the EBV coefficients. The iterative convergence 
history versus wall time is shown in Fig. 11b. The EBV method takes less time per iteration than the 
CBV method and significantly reduces the time to convergence. 

    
        a. Nonlinear iterations, T2 grid                  b. Wall time, T2 grid 

Figure 11. Baseline iterations. 

Table 2. Aerodynamic coefficients. 

Grid Lift Coefficient Drag Coefficient 
CBV EBV_no_corr EBV CBV EBV_no_corr EBV 

T0 0.0853535 0.0847002 0.0847416 0.0344473 0.0341969 0.0342351 
T1 0.0848187 0.0840070 0.0840053 0.0343821 0.0340752 0.0340965 
T2 0.0838571 0.0830166 0.0830149 0.0349403 0.0346277 0.0346446 
T3 0.0845361 0.0837683 0.0838032 0.0383544 0.0380831 0.0381029 

 Table 3 shows the total iteration number and the wall time to achieve the converged solutions for 
three tetrahedral grids. The T0-grid data are not shown because solutions on the T0 grid much larger 
partitions (more grid points per CPU core) and different communication-to-computation ratio. The T0 
timing is not directly comparable with the timing of solutions on coarser grids that were computed in 
similar computing environments. The “smart” Jacobian update is activated for all simulations. The 
Jacobian update is scheduled depending on residual reductions in the previous nonlinear iterations, 
resulting in variation between iterations and time to solution. Overall, the cost of the EBV correction 
source terms is hardly noticeable, the time-per-iteration fluctuations are comparable with usual 
fluctuations in the CPU core performance, which are roughly 2%. Similar to the results reported in Refs. 
[18, 19], the EBV method achieves 10-30% speedup over the CBV method depending on the frequency 
of the Jacobian update. 
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Table 3. Time-to-solution statistics. 

Grid Iterations Wall time (sec) EBV speed-up 
CBV EBV_no_corr EBV CBV EBV_no_corr EBV No_corr With_corr 

T1 37491 37142 36913 28031 24153 23745 13.8% 15.3% 
T2 42528 42308 42188 29671 25661 25623 13.5% 13.6% 
T3 28784 28332 28337 12156 10117 10356 16.8% 14.8% 

5     Concluding remarks 
A recently developed novel, efficient, edge-based viscous (EBV) discretization method is applied and 
analyzed for scalar diffusion and viscous fluxes of the Navier-Stokes equations discretized on simplicial 
grids. The EBV method is compared with a cell-based viscous (CBV) method that is equivalent to a 
Galerkin finite-element method and represents the current state of the art. The complexity analysis for 
scalar diffusion shows that the complexity of the EBV method is at least 20 times lower than the 
complexity of the CBV method. The truncation-error analysis for linear and nonlinear diffusion 
equations indicates second-order accuracy of the EBV method in the two dimensions (2D) and in the 
three dimensions (3D). The method of manufactured solutions confirms second-order accuracy of EBV 
solutions on regular and irregular grids. 

Truncation-error analysis of the EBV method for the Navier-Stokes equations indicates that some 
correction terms are needed to ensure second-order accuracy for the momentum and energy 
conservation equations. The correction terms are combinations of products of spatial derivatives of 
viscosity and velocity which vanish for scalar diffusion. The EBV correction terms have been 
implemented as source terms accompanying the EBV discretization of the viscous fluxes in the 
corresponding conservation equations. Truncation-error analysis and discretization-error analysis 
conducted by the method of manufactured solutions confirm second-order accuracy of the EBV 
discretizations with correction terms and the corresponding solutions. Although, without correction 
terms, accuracy clearly deteriorates in the EBV truncation errors and the EBV discretization errors for 
a manufactured solution, only minimal differences are observed for the EBV Reynolds-averaged 
Navier-Stokes solutions computed with and without correction terms for flow conditions and grids that 
are used in practical applications and verification studies. 
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