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Abstract: This work is focused on developing an overset algorithm for the Discontinuous Galerkin
Finite Element Method (DGFEM) that is conservative as well as high order. This approach in-
volves modifying the formulation so that the overlap region between the overset grids is “cut” from
the fringe elements. The cutting process is done purely in the formulation and no remeshing is
required. This methodology is developed for both 1D and 2D DGFEM and tested for 1D linear
advection, 1D inviscid Burger’s equation, and 2D Euler equations. For all cases, the conservative
overset method significantly reduced the overset conservation error to be on par with that of a
single continuous mesh. On the other hand, traditional overset methods using pure interpolation
produced errors approximately 5-6 orders of magnitude higher. Furthermore, for 1D linear advec-
tion the convergence rate was slightly improved by using conservative overset. The main drawback
of this method is its lack of numerical stability, though this can be improved to some extent through
regularization and careful choice of the cutting location.
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1 Introduction

Overset methods are a branch of computational fluid dynamics (CFD) which solve the governing equations
over a computational domain comprised of several overlapping meshes. This class of methods is powerful
because it allows for the study of cases involving large scale, unsteady motions as well as utilizing multiple
solvers and numerical schemes within a single CFD simulation. Throughout these overset simulations, the
solution at the boundaries of these meshes, also known as the fringe elements, needs to be communicated
to neighboring meshes through interpolation. The interpolation schemes that most overset solvers routinely
use are typically limited to second-order accuracy. Furthermore, they are non-conservative and non-convex
when interpolating cell-centered data. Generally overset conservation error is not considered to be significant
but as the CFD community moves towards utilizing high order solvers, developing conservative high order
interpolation methods will be needed to maintain the order of accuracy throughout the simulation.

Several approaches to fully conservative overset methods have been reported in the literature in the past.
In general two themes are explored: (1) trim away the overlap and re-grid the cavity between the two mesh
systems [1, 2, 3, 4] and (2) cut one of the grids with the other and conservatively interpolate the solution field
onto overlapping cells [5]. In general, these approaches have been used for static overlapping meshes and
are reported to incur high computational overhead. More recently, Chandar [6] developed a finite volume
method which removed the effect of the overlap region by implementing a flux correction both iteratively
and implicitly. Kopriva et al. [7] have formulated a two-way coupling scheme that uses penalty functions to
satisfy conservation and entropy stability for the special case of linear PDEs. Numerical verification of this
method has not been performed yet however.

Another approach developed for the Discontinuous Galerkin Finite Element Method (DGFEM) by Gal-
braith [8] and extended by Crabill [9] and Duan [10] follows the abutting grid approach where a minimal
overlap is created and the fluxes at the open faces of the abutting cells are exchanged between the mesh
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systems. Note that this approach is not fully conservative because of the double counting of the overlapped
regions, i.e the region enclosed by the set of abutting faces. However, careful optimization of the abutting
face locations and solution interpolation can yield a conservation error that is of the order of discretization
error. Building upon previous work on the abutting grid approach, this work aims to develop an overset
method for the DGFEM which is conservative, amenable to high order methods, and requires no regridding.

2 Methodology

2.1 Discontinuous Galerkin Finite Element Formulation

Consider the generic advection equation shown below.

gt +Fx=0 (1)

where X denotes space, t is time, ( is the primary variable of interest, and F is some flux function that may
be a function of X and t. Note that Einstein notation is used throughout this paper.
Following the traditional finite element formulation, Equation (1) is multiplied by an arbitrary weighting
function, w, and then is integrated over the domain. Using integration by parts, we arrive at (2).
z z
[wg: wyxF]d + [wF n]d =0 (2)

where N is the normal vector, represents the domain, and represents the boundaries of the domain.
Next, the domain is split up into a number of discrete elements, described by Equation (3).
Z Z
[wg: wyFld ¢+ [WF n]d =0 (3)
Quantities with the subscript e denote elemental quantities. Next the weighting function and unknown
variables are decomposed into the products of spatially-varying shape functions and time-varying coefficients
as follows:

nskp

w(x;t) = Na(x)Wa(t) (4)
a=1
nskp

qx;t) = Na () (1) ()
a=1

where N (X) are the shape functions, nshp is the total number of shape functions on any given element, and
the superscript © denotes the time-varying coefficients. The weighting function and the unknown variable
are assumed to occupy the same space so that the same shape functions can be used for both w and . The
exact shape functions, which are generally polynomials, can be chosen based on ease of implementation.
Throughout this work, Legendre bases are used.

After substituting Equations (4) and (5) into Equation (3) and recognizing that the weighting functions
are arbitrary and that their coefficients may be factored out, we arrive at the following equation:

z z
[NaNpth:t  NaxF(Np;@)]d e+ [NaF (No; ) n]d =0 (6)

Einstein notation is used so repeated indices imply a summation. Factoring out the time derivative of

the weights, th.¢, and rearranging the terms, the final semi-discrete form of the equation can be found.

M(Na; Np)th:t = V(Na; Np; ) B(Na; Np; &; n) (7)

where each of the terms is one of the integral terms defined by
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Z
M(Na; Np) = NaNpd e (8)
7 e
V(Na; Np; tp) = Na:xF (Np; p)d ¢ (9)
Z e
B(Na; Np;tp;n) = [NaF(Np; &) nld e (10)

e

Observe that this represents a system of equations where M(Ng; Np), called the “mass matrix,” is a matrix of
size nshp  nshp whereas V(Ng; Np; ) and B(Ng; Np; tn); n), the volume and boundary terms, respectively,
are vectors of length nshp. Using the discontinuous Galerkin finite element (DGFEM) approach, this system
of equations is formulated for each element separately rather than as a large global system. Note that each
element is coupled to its neighboring elements only through the boundary terms.

In terms of the boundary fluxes, there is no requirement for the values of g to be continuous across elements
using DGFEM, as shown in Figure 1. Thus, special care must be taken with the boundary integrals, in order
to approximate the inter-element fluxes. There are a number of ways to do this but in this work, the fluxes
are accounted for using the Lax-Friedrichs flux shown in Equation 11 for the 1D case.

9 . 05(qL+gr) 0:5jcj(ar L)) (11)

where (. and gr represent the interior and exterior states of q across the element boundaries and ¢ is the
convection speed.

qn-l(xl): qn(x1) qn(xz): qn+1(xz)
\Em
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Figure 1: Schematic describing a conventional DGFEM scheme on a single mesh, with fluxes calculated at
the discontinuous boundaries and volume integrals calculated over the element (shown in striped red)

Gauss-Legendre quadrature is used in order to compute the volume integrals needed for M(Ng; Np) and
V(Na; Np; tn)). Time integration was done using the explicit third order Runge Kutta scheme.

2.2 1D Baseline Overset Method

Consider two 1D grids, called M1 and M2, where M2 is finer than M1 and is completely overlapping M1. In
order to conduct the oversetting, the solver must first generate a minimum overlap between the two grids.
Cells in both grids are blanked until the two grids only overlap at a single element at the boundaries of both
meshes, as shown in Figure 2. This will be referred to as a “minimum overlap.” These minimally overlapping
fringe elements are where information is passed between the two grids.

In DGFEM, information enters and exits an element solely through the boundary flux terms so these
terms must be modified in the fringe elements to allow for passing of information from the overlapping grid.
The first method of doing so will be referred to as the baseline overset method and is explained visually in
Figure 2. In this figure, the two overlapping fringe elements are Em1:n on mesh M1 and element Epz:1 on
mesh M2.

In order to compute the boundary integrals in Equations (10), the interior and exterior states of the
variables must be found. For the non-fringe elements, the exterior states are found at the coincident boundary
points of the adjacent elements. For fringe elements, one of the boundary nodes is not connected to any
other elements in the mesh and instead is overlapping with an element on the neighboring mesh due to the
minimum overlap (see the nodes at Xo and X;=, in Figure 2). Computing the exterior states at these fringe
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Figure 2: Schematic describing the baseline overset DG method with two meshes. Fluxes from neighboring
meshes are interpolated at the element endpoints and volume integrals are calculated over the complete
elements (shown in striped red)

boundary nodes is straightforward and just requires each fringe element to interpolate the states at these
interior points using Equation (5) and then communicate them to their counterpart on the opposite mesh.
This exchange is completed every time the residual vector is computed.

Using the baseline overset method, the volume integrals for the mass matrix and the contribution to the
residual vector by the convective terms are handled identically for both interior and fringe elements. This
leads to an overlap region (X = [Xo;X3=»] in Figure 2) that is integrated over twice, once by each fringe
element, during the timestep. This is one source of conservation error in the simulation [6]. The boundary
fluxes of the fringe elements are also not evaluated at the exact same physical location, i.e. nodes Xg and
X1=» are not coincident. This is another source of conservation error since the fluxes transferred between the
meshes will not cancel each other exactly.

2.3 1D Conservative Overset Method

The conservative overset approach is described visually in Figure 3 and its main goal is to remove the
double counting of the overlap region discussed above. This is done through “cutting” the fringe elements
so that each one only integrates over a subset of the overlap region. By doing so, the overset grids become
conceptually similar to a single, fully connected grid. Note that this cutting procedure is purely conceptual
and is all carried out through modifications to the equations. No remeshing is needed.

First, the overlap region [Xo, X1=»] is divided between the two fringe elements at some cut location, called
Xcut in Figure 3. The location of X¢yt, and therefore the proportion of how much each fringe cell is cut, is a
controllable parameter. For instance, both meshes can have half of the overlap region removed from each of
them or alternatively all of the overlapping region may be removed from just one of the fringe elements while
the other is left untouched. While any combination of cutting is valid, there are implications for numerical
stability that will be discussed in more detail below. As a rule, it is better to choose the cut location such
that the proportion of each element being cut is minimized.

Once Xcyt has been defined, both the volume and boundary terms are modified to effectively shorten
the fringe elements. The volume integrals are adjusted to only account for the non-overlapping portion of
the element. For the example shown in Figure 3, the volume integrals would only be computed for Epi:n
between X 1-p and Xyt while the volume integrals for element Epnp.1 would span from Xcye to X1. While this
can be done through direct integration of the remaining element, doing it as an additional cutting step is
simpler for more complex grids. For this reason, this approach will be the focus of this work and is described
in Equation 12.
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Figure 3: Schematic describing the conservative overset DG method with two meshes. Portions of the overlap
region are removed from each of the volume integrals and the fluxes are calculated at the point where the
overlap is split.

[M(Na; Np)  Mecut(Na; Np)lth:t = [V(Na; Np; ) Veur(Na; Np; tp)]
[B(Na; Np;th;n)  Beur(Na; No; by; n)]

where the subscript cut indicates integrals over just the cut portion of the elements. In the example shown
in Figure 3, this would correspond the region from Xcur to X1= for element Epmi:n.

Note that the shape functions corresponding to the original uncut element (N and Np) are used in the
computing the cut integral terms, i.e. the cut regions are not treated as entirely new elements with their
own bases. This is done for both ease of implementation as well as to be consistent with the DGFEM
formulation of the equations. Furthermore, in this implementation the same number of quadrature points
are used to compute both the integrals over the entire element and the integrals over the cut portion, thereby
maintaining the order of accuracy for the integration. The cutting of the boundary integral terms is identical
to simply interpolating the neighboring fluxes at the cut boundary location instead of the element endpoint
in 1D.

There are several undesirable consequences of the cutting procedure on the mass matrix. The first is that
by only integrating over a portion of the element, the orthogonality of the Legendre-based mass matrix is
broken. When integrating over a partial element, the mass matrix is fully populated instead of being purely
diagonal, as is the case normally for 1D.

The numerical stability of the scheme is also an issue. The larger the proportion of the element is
removed, the more ill conditioned the mass matrix M Mgyt becomes. This can ultimately lead to divergent
solutions. This is demonstrated in Figure 4 which shows the condition number of the analytical mass matrix
as a function of the amount of the element is cut. The condition number increases exponentially as more
and more of the element is removed and the effect worsens for higher orders of accuracy. This behavior was
observed for both Lagrange and Legendre bases.

For this reason, L2 (or Tikhonov) regularization is used to maintain stability during the mass matrix
inversion. The regularization essentially solves a similar L2 minimization problem rather than directly
inverting the mass matrix. While this is a more stable approach, it comes at the cost of additional bias (and
conservation error). This is shown in Equation (13) for the generic problem AX = b.

(12)

ATA+ T x=ATb (13)

where A is a matrix, b is the forcing vector, x is the solution, = | is the Tikhonov matrix, and is a
tunable parameter which controls the amount of regularization added. The least amount of regularization
is added in this work (= 0) in order to minimize the additional error. Furthermore, this additional step
is applied only to the elements that are cut by more than 50% in order to reduce amount of additional bias
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Figure 4: Condition number of the final mass matrix (M Mgyt) as a function of the percent of the element
removed

added to the system. However even with this additional stability, the method fails if more than approximately
90% of the element is removed. Additional regularization may be added to further stabilize the method at
higher orders however this was not pursued since adding too much bias may negate the benefits of using
the conservative overset method. As stated before, the best way to maintain stability is to choose the cut
location such that the proportion of each element being cut is minimized as much as possible.

2.4 2D Conservative Overset Method

When extending the conservative overset method to 2D, the overall goal of cutting fringe elements in order
to prevent double integration in the mesh overlap region remains the same. Cutting 2D elements involves
cutting both grids along some given “cut boundary” which is now a parametric curve. Finding a suitable
cut boundary may be a challenge in the general case, especially for anisotropic unstructured grids. In this
work, the simplest case where the cut boundary is a straight line is examined. Consider the two overlapping
meshes shown in Figure 5a. Both grids are cut along a common cut boundary, indicated by the dashed line.
Cutting each grid then becomes a process of cutting all of the individual triangles intersected by the cut
boundary.

Now consider a single unstructured triangle that needs to be cut, as shown in Figure 5b. As shown in
Equation (12), the element volume and boundary integrals over the original triangle can first be computed
as normal and then are modified afterwards to account for the cut region. So the first step is to compute the
terms over the entire element as normal. Based on the original DGFEM (Eq. (7)), the volume and boundary
integrals may be computed using a number of quadrature points seeded across the element area and edges,
respectively, as shown in Figure 6. In 2D the discontinuous fluxes across inter-element boundary edges are
resolved using an upwind-biased flux-difference-splitting approach [11].

Next the cutting procedure begins which involves computing Mcyt, Veut, and Beye and then subtracting
them from the original terms M, V, and B. In order to compute these cut terms, appropriate quadrature
points need to be seeded throughout the cut region as shown in Figure 7. As before, the same number of
quadrature points used for the full element are used in the cut element in order to maintain the order of
integration. In order to find the location of these new quadrature points, the Jacobian of the cut cell must
be found.

As with any classical finite element method, each physical triangle is mapped back to a given reference
element through the use of a Jacobian matrix, J. For a straight sided triangle, the Jacobian is constant
throughout the element and can be found based on the physical coordinates of the vertices. This allows for
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Figure 5: Diagram showing the cutting of (a) two overset triangular meshes and (b) a single unstructured
triangle

simple integration over unstructured triangles. The coordinate system in physical space will be denoted as
(X;y) and the Barycentric coordinate system of the reference triangle is denoted as (r; s), as shown in Figure
8.

Since the location of the cut boundary is known, the coordinates of the cut region can be found analytically
and a cut element Jacobian matrix Jeyt may be computed. Using the Jacobians for both the original and
cut cell, the coordinates of the cut cell quadrature points may be found relative to the original element’s
local Barycentric coordinate system. This is shown in Equation (14).

1

r =3 1 X Xo
S Ty Yo
full cut full '
_ 11 @r Xo Xo
Sdran Jour g5+ y (14)
. cut 0 cut 0 fun
er @r# ex @ '
ar @r X X
=& BB ety
ex ey full er @s cut @S cut Yo cut Yo full

where Jgyy is the Jacobian of the original uncut element, Jeyt is the cut region Jacobian, (Xo;Yo) are the
physical coordinates of the node which corresponds to (r;s) = (0;0) for either the original or cut triangle,
and (@r;@s) are the Barycentric coordinates of the quadrature points. All of these quantities are known
because they are either prescribed (as is the case for (@r;@s)) or can be computed. Once [r;S]¢yy is found
for the cut region quadrature points, they can then be used to find the shape function values and derivatives,
Na and Na.x. Afterwards it is straightforward to compute Mgyt and Veye in a similar manner as what was
done for the original triangle.

Modifying the boundary integrals is more complicated as each face must be handled individually. Consider
Figure 7b which shows the various edges involved in the cutting procedure. First, edge I-II is not cut so it
is left untouched by the cutting procedure. Edges II-III and III-I intersect the cut boundary and thus the
integral over the cut portion must be subtracted from the total boundary integral. Appropriate quadrature
points are placed along the cut portion (i.e., edges V-III and III-IV) using Equation (14) and the fluxes over
these cut edges are then integrated into Bgye. Note that the fluxes at these locations must be computed
from both the local and neighboring elements in order to compute the Riemann flux at each of the cut cell
quadrature points.
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Figure 6: Diagram showing the computation of the volume and boundary integrals using the traditional
DGFEM on a triangle
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Figure 7: Diagram showing (a) the cut region seeded with quadrature points and (b) the cut edges seeded
with quadrature points colored by whether the fluxes through that edge are removed (red) or added (blue)

Finally, additional fluxes coming into the element through the cut boundary must be accounted for.
These fluxes correspond to the fluxes from the neighboring mesh. These fluxes enter the element through
the new edge formed along line segment IV-V. Because these fluxes are being added to the system rather
than being subtracted (as was done for edges III-IV and V-III), the sign and outward facing normal must
be flipped as shown in Equation (15). For clarity, the normals, n, for edge V-III and III-IV are pointing
outwards and the normal for edge IV-V are pointing inwards as shown in Figure 7b.

z z

Beut = NaNptpnd + NaNptynd
ZV 11 I 1

Naqubnd
v VvV

(15)

The interior states (labeled g in Figure 7b) along the cut element edges are straightforward to compute
since they are just interpolated using the current triangle’s shape functions and weights. The exterior states
(labeled gr) along edges V-III and III-IV are interpolated from neighboring elements on the current mesh and
are easily found. On the other hand, the gr values along the cut boundary correspond to states associated






