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Abstract: This work is focused on developing an overset algorithm for the Discontinuous Galerkin
Finite Element Method (DGFEM) that is conservative as well as high order. This approach in-
volves modifying the formulation so that the overlap region between the overset grids is “cut” from
the fringe elements. The cutting process is done purely in the formulation and no remeshing is
required. This methodology is developed for both 1D and 2D DGFEM and tested for 1D linear
advection, 1D inviscid Burger’s equation, and 2D Euler equations. For all cases, the conservative
overset method significantly reduced the overset conservation error to be on par with that of a
single continuous mesh. On the other hand, traditional overset methods using pure interpolation
produced errors approximately 5-6 orders of magnitude higher. Furthermore, for 1D linear advec-
tion the convergence rate was slightly improved by using conservative overset. The main drawback
of this method is its lack of numerical stability, though this can be improved to some extent through
regularization and careful choice of the cutting location.
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1 Introduction
Overset methods are a branch of computational fluid dynamics (CFD) which solve the governing equations
over a computational domain comprised of several overlapping meshes. This class of methods is powerful
because it allows for the study of cases involving large scale, unsteady motions as well as utilizing multiple
solvers and numerical schemes within a single CFD simulation. Throughout these overset simulations, the
solution at the boundaries of these meshes, also known as the fringe elements, needs to be communicated
to neighboring meshes through interpolation. The interpolation schemes that most overset solvers routinely
use are typically limited to second-order accuracy. Furthermore, they are non-conservative and non-convex
when interpolating cell-centered data. Generally overset conservation error is not considered to be significant
but as the CFD community moves towards utilizing high order solvers, developing conservative high order
interpolation methods will be needed to maintain the order of accuracy throughout the simulation.

Several approaches to fully conservative overset methods have been reported in the literature in the past.
In general two themes are explored: (1) trim away the overlap and re-grid the cavity between the two mesh
systems [1, 2, 3, 4] and (2) cut one of the grids with the other and conservatively interpolate the solution field
onto overlapping cells [5]. In general, these approaches have been used for static overlapping meshes and
are reported to incur high computational overhead. More recently, Chandar [6] developed a finite volume
method which removed the effect of the overlap region by implementing a flux correction both iteratively
and implicitly. Kopriva et al. [7] have formulated a two-way coupling scheme that uses penalty functions to
satisfy conservation and entropy stability for the special case of linear PDEs. Numerical verification of this
method has not been performed yet however.

Another approach developed for the Discontinuous Galerkin Finite Element Method (DGFEM) by Gal-
braith [8] and extended by Crabill [9] and Duan [10] follows the abutting grid approach where a minimal
overlap is created and the fluxes at the open faces of the abutting cells are exchanged between the mesh
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systems. Note that this approach is not fully conservative because of the double counting of the overlapped
regions, i.e the region enclosed by the set of abutting faces. However, careful optimization of the abutting
face locations and solution interpolation can yield a conservation error that is of the order of discretization
error. Building upon previous work on the abutting grid approach, this work aims to develop an overset
method for the DGFEM which is conservative, amenable to high order methods, and requires no regridding.

2 Methodology

2.1 Discontinuous Galerkin Finite Element Formulation
Consider the generic advection equation shown below.

q,t + F,x = 0 (1)

where x denotes space, t is time, q is the primary variable of interest, and F is some flux function that may
be a function of x and t. Note that Einstein notation is used throughout this paper.

Following the traditional finite element formulation, Equation (1) is multiplied by an arbitrary weighting
function, w, and then is integrated over the domain. Using integration by parts, we arrive at (2).∫

Ω

[wq,t − w,xF ] dΩ+

∫
Γ

[wF · n] dΓ = 0 (2)

where n is the normal vector, Ω represents the domain, and Γ represents the boundaries of the domain.
Next, the domain is split up into a number of discrete elements, described by Equation (3).∫

Ωe

[wq,t − w,xF ] dΩe +

∫
Γe

[wF · n] dΓe = 0 (3)

Quantities with the subscript e denote elemental quantities. Next the weighting function and unknown
variables are decomposed into the products of spatially-varying shape functions and time-varying coefficients
as follows:

w(x, t) =

nshp∑
a=1

Na(x)ŵa(t) (4)

q(x, t) =

nshp∑
a=1

Na(x)q̂a(t) (5)

where N(x) are the shape functions, nshp is the total number of shape functions on any given element, and
the superscript (̂·) denotes the time-varying coefficients. The weighting function and the unknown variable
are assumed to occupy the same space so that the same shape functions can be used for both w and q. The
exact shape functions, which are generally polynomials, can be chosen based on ease of implementation.
Throughout this work, Legendre bases are used.

After substituting Equations (4) and (5) into Equation (3) and recognizing that the weighting functions
are arbitrary and that their coefficients may be factored out, we arrive at the following equation:∫

Ωe

[NaNbq̂b,t −Na,xF (Nb, q̂b)] dΩe +

∫
Γe

[NaF (Nb, q̂b) · n] dΓe = 0 (6)

Einstein notation is used so repeated indices imply a summation. Factoring out the time derivative of
the weights, q̂b,t, and rearranging the terms, the final semi-discrete form of the equation can be found.

M(Na, Nb)q̂b,t = V(Na, Nb, q̂b)− B(Na, Nb, q̂b,n) (7)

where each of the terms is one of the integral terms defined by
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M(Na, Nb) =

∫
Ωe

NaNbdΩe (8)

V(Na, Nb, q̂b) =

∫
Ωe

Na,xF (Nb, q̂b)dΩe (9)

B(Na, Nb, q̂b,n) =

∫
Γe

[NaF (Nb, q̂b) · n] dΓe (10)

Observe that this represents a system of equations where M(Na, Nb), called the “mass matrix,” is a matrix of
size nshp× nshp whereas V(Na, Nb, q̂b) and B(Na, Nb, q̂b,n), the volume and boundary terms, respectively,
are vectors of length nshp. Using the discontinuous Galerkin finite element (DGFEM) approach, this system
of equations is formulated for each element separately rather than as a large global system. Note that each
element is coupled to its neighboring elements only through the boundary terms.

In terms of the boundary fluxes, there is no requirement for the values of q to be continuous across elements
using DGFEM, as shown in Figure 1. Thus, special care must be taken with the boundary integrals, in order
to approximate the inter-element fluxes. There are a number of ways to do this but in this work, the fluxes
are accounted for using the Lax-Friedrichs flux shown in Equation 11 for the 1D case.

q|Γe ≈ 0.5(qL + qR)− 0.5|c|(qR − qL)) (11)

where qL and qR represent the interior and exterior states of q across the element boundaries and c is the
convection speed.

qn(x2) qn+1(x2)

En‐1 Enx0 x1 x2

qn‐1(x1) qn(x1)

En+1 x3

Figure 1: Schematic describing a conventional DGFEM scheme on a single mesh, with fluxes calculated at
the discontinuous boundaries and volume integrals calculated over the element (shown in striped red)

Gauss-Legendre quadrature is used in order to compute the volume integrals needed for M(Na, Nb) and
V(Na, Nb, q̂b). Time integration was done using the explicit third order Runge Kutta scheme.

2.2 1D Baseline Overset Method
Consider two 1D grids, called M1 and M2, where M2 is finer than M1 and is completely overlapping M1. In
order to conduct the oversetting, the solver must first generate a minimum overlap between the two grids.
Cells in both grids are blanked until the two grids only overlap at a single element at the boundaries of both
meshes, as shown in Figure 2. This will be referred to as a “minimum overlap.” These minimally overlapping
fringe elements are where information is passed between the two grids.

In DGFEM, information enters and exits an element solely through the boundary flux terms so these
terms must be modified in the fringe elements to allow for passing of information from the overlapping grid.
The first method of doing so will be referred to as the baseline overset method and is explained visually in
Figure 2. In this figure, the two overlapping fringe elements are EM1,n on mesh M1 and element EM2,1 on
mesh M2.

In order to compute the boundary integrals in Equations (10), the interior and exterior states of the
variables must be found. For the non-fringe elements, the exterior states are found at the coincident boundary
points of the adjacent elements. For fringe elements, one of the boundary nodes is not connected to any
other elements in the mesh and instead is overlapping with an element on the neighboring mesh due to the
minimum overlap (see the nodes at x0 and x1/2 in Figure 2). Computing the exterior states at these fringe

3



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, USA July 11-15, 2022

ICCFD11-2022-1401

EM1,n

EM2,1

x‐1/2

x0 x1

qM2,1(x0)

EM2,2

x1/2

qM1,n(x0)

EM1,n‐1

qM2,1(x1/2)qM1,n(x1/2)

Figure 2: Schematic describing the baseline overset DG method with two meshes. Fluxes from neighboring
meshes are interpolated at the element endpoints and volume integrals are calculated over the complete
elements (shown in striped red)

boundary nodes is straightforward and just requires each fringe element to interpolate the states at these
interior points using Equation (5) and then communicate them to their counterpart on the opposite mesh.
This exchange is completed every time the residual vector is computed.

Using the baseline overset method, the volume integrals for the mass matrix and the contribution to the
residual vector by the convective terms are handled identically for both interior and fringe elements. This
leads to an overlap region (x = [x0, x1/2] in Figure 2) that is integrated over twice, once by each fringe
element, during the timestep. This is one source of conservation error in the simulation [6]. The boundary
fluxes of the fringe elements are also not evaluated at the exact same physical location, i.e. nodes x0 and
x1/2 are not coincident. This is another source of conservation error since the fluxes transferred between the
meshes will not cancel each other exactly.

2.3 1D Conservative Overset Method
The conservative overset approach is described visually in Figure 3 and its main goal is to remove the
double counting of the overlap region discussed above. This is done through “cutting” the fringe elements
so that each one only integrates over a subset of the overlap region. By doing so, the overset grids become
conceptually similar to a single, fully connected grid. Note that this cutting procedure is purely conceptual
and is all carried out through modifications to the equations. No remeshing is needed.

First, the overlap region [x0, x1/2] is divided between the two fringe elements at some cut location, called
xcut in Figure 3. The location of xcut, and therefore the proportion of how much each fringe cell is cut, is a
controllable parameter. For instance, both meshes can have half of the overlap region removed from each of
them or alternatively all of the overlapping region may be removed from just one of the fringe elements while
the other is left untouched. While any combination of cutting is valid, there are implications for numerical
stability that will be discussed in more detail below. As a rule, it is better to choose the cut location such
that the proportion of each element being cut is minimized.

Once xcut has been defined, both the volume and boundary terms are modified to effectively shorten
the fringe elements. The volume integrals are adjusted to only account for the non-overlapping portion of
the element. For the example shown in Figure 3, the volume integrals would only be computed for EM1,n

between x−1/2 and xcut while the volume integrals for element EM2,1 would span from xcut to x1. While this
can be done through direct integration of the remaining element, doing it as an additional cutting step is
simpler for more complex grids. For this reason, this approach will be the focus of this work and is described
in Equation 12.
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EM1,n

EM2,1

x‐1/2

x0 x1
qM2,1(xcut)

EM2,2

x1/2

qM1,n(xcut)

EM1,n‐1
xcut

Figure 3: Schematic describing the conservative overset DG method with two meshes. Portions of the overlap
region are removed from each of the volume integrals and the fluxes are calculated at the point where the
overlap is split.

[M(Na, Nb)−Mcut(Na, Nb)] q̂b,t = [V(Na, Nb, q̂b)− Vcut(Na, Nb, q̂b)]

− [B(Na, Nb, q̂b,n)− Bcut(Na, Nb, q̂b,n)]
(12)

where the subscript cut indicates integrals over just the cut portion of the elements. In the example shown
in Figure 3, this would correspond the region from xcut to x1/2 for element EM1,n.

Note that the shape functions corresponding to the original uncut element (Na and Nb) are used in the
computing the cut integral terms, i.e. the cut regions are not treated as entirely new elements with their
own bases. This is done for both ease of implementation as well as to be consistent with the DGFEM
formulation of the equations. Furthermore, in this implementation the same number of quadrature points
are used to compute both the integrals over the entire element and the integrals over the cut portion, thereby
maintaining the order of accuracy for the integration. The cutting of the boundary integral terms is identical
to simply interpolating the neighboring fluxes at the cut boundary location instead of the element endpoint
in 1D.

There are several undesirable consequences of the cutting procedure on the mass matrix. The first is that
by only integrating over a portion of the element, the orthogonality of the Legendre-based mass matrix is
broken. When integrating over a partial element, the mass matrix is fully populated instead of being purely
diagonal, as is the case normally for 1D.

The numerical stability of the scheme is also an issue. The larger the proportion of the element is
removed, the more ill conditioned the mass matrix M−Mcut becomes. This can ultimately lead to divergent
solutions. This is demonstrated in Figure 4 which shows the condition number of the analytical mass matrix
as a function of the amount of the element is cut. The condition number increases exponentially as more
and more of the element is removed and the effect worsens for higher orders of accuracy. This behavior was
observed for both Lagrange and Legendre bases.

For this reason, L2 (or Tikhonov) regularization is used to maintain stability during the mass matrix
inversion. The regularization essentially solves a similar L2 minimization problem rather than directly
inverting the mass matrix. While this is a more stable approach, it comes at the cost of additional bias (and
conservation error). This is shown in Equation (13) for the generic problem Ax = b.[

ATA+ ΓTΓ
]
x = AT b (13)

where A is a matrix, b is the forcing vector, x is the solution, Γ = λI is the Tikhonov matrix, and λ is a
tunable parameter which controls the amount of regularization added. The least amount of regularization
is added in this work (λ = 0) in order to minimize the additional error. Furthermore, this additional step
is applied only to the elements that are cut by more than 50% in order to reduce amount of additional bias
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Figure 4: Condition number of the final mass matrix (M−Mcut) as a function of the percent of the element
removed

added to the system. However even with this additional stability, the method fails if more than approximately
90% of the element is removed. Additional regularization may be added to further stabilize the method at
higher orders however this was not pursued since adding too much bias may negate the benefits of using
the conservative overset method. As stated before, the best way to maintain stability is to choose the cut
location such that the proportion of each element being cut is minimized as much as possible.

2.4 2D Conservative Overset Method
When extending the conservative overset method to 2D, the overall goal of cutting fringe elements in order
to prevent double integration in the mesh overlap region remains the same. Cutting 2D elements involves
cutting both grids along some given “cut boundary” which is now a parametric curve. Finding a suitable
cut boundary may be a challenge in the general case, especially for anisotropic unstructured grids. In this
work, the simplest case where the cut boundary is a straight line is examined. Consider the two overlapping
meshes shown in Figure 5a. Both grids are cut along a common cut boundary, indicated by the dashed line.
Cutting each grid then becomes a process of cutting all of the individual triangles intersected by the cut
boundary.

Now consider a single unstructured triangle that needs to be cut, as shown in Figure 5b. As shown in
Equation (12), the element volume and boundary integrals over the original triangle can first be computed
as normal and then are modified afterwards to account for the cut region. So the first step is to compute the
terms over the entire element as normal. Based on the original DGFEM (Eq. (7)), the volume and boundary
integrals may be computed using a number of quadrature points seeded across the element area and edges,
respectively, as shown in Figure 6. In 2D the discontinuous fluxes across inter-element boundary edges are
resolved using an upwind-biased flux-difference-splitting approach [11].

Next the cutting procedure begins which involves computing Mcut, Vcut, and Bcut and then subtracting
them from the original terms M, V, and B. In order to compute these cut terms, appropriate quadrature
points need to be seeded throughout the cut region as shown in Figure 7. As before, the same number of
quadrature points used for the full element are used in the cut element in order to maintain the order of
integration. In order to find the location of these new quadrature points, the Jacobian of the cut cell must
be found.

As with any classical finite element method, each physical triangle is mapped back to a given reference
element through the use of a Jacobian matrix, J . For a straight sided triangle, the Jacobian is constant
throughout the element and can be found based on the physical coordinates of the vertices. This allows for
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(a) Cut meshes (b) Cut triangle

Figure 5: Diagram showing the cutting of (a) two overset triangular meshes and (b) a single unstructured
triangle

simple integration over unstructured triangles. The coordinate system in physical space will be denoted as
(x, y) and the Barycentric coordinate system of the reference triangle is denoted as (r, s), as shown in Figure
8.

Since the location of the cut boundary is known, the coordinates of the cut region can be found analytically
and a cut element Jacobian matrix Jcut may be computed. Using the Jacobians for both the original and
cut cell, the coordinates of the cut cell quadrature points may be found relative to the original element’s
local Barycentric coordinate system. This is shown in Equation (14).[

r
s

]
full

= J−1
full

([
x
y

]
cut

−
[
x0

y0

]
full

)

= J−1
full

((
Jcut

[
∂r
∂s

]
cut

+

[
x0

y0

]
cut

)
−
[
x0

y0

]
full

)

=

[
∂r
∂x

∂r
∂y

∂s
∂x

∂s
∂y

]
full

(([
∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]
cut

[
∂r
∂s

]
cut

+

[
x0

y0

]
cut

)
−
[
x0

y0

]
full

) (14)

where Jfull is the Jacobian of the original uncut element, Jcut is the cut region Jacobian, (x0, y0) are the
physical coordinates of the node which corresponds to (r, s) = (0, 0) for either the original or cut triangle,
and (∂r, ∂s) are the Barycentric coordinates of the quadrature points. All of these quantities are known
because they are either prescribed (as is the case for (∂r, ∂s)) or can be computed. Once [r, s]full is found
for the cut region quadrature points, they can then be used to find the shape function values and derivatives,
Na and Na,x. Afterwards it is straightforward to compute Mcut and Vcut in a similar manner as what was
done for the original triangle.

Modifying the boundary integrals is more complicated as each face must be handled individually. Consider
Figure 7b which shows the various edges involved in the cutting procedure. First, edge I-II is not cut so it
is left untouched by the cutting procedure. Edges II-III and III-I intersect the cut boundary and thus the
integral over the cut portion must be subtracted from the total boundary integral. Appropriate quadrature
points are placed along the cut portion (i.e., edges V-III and III-IV) using Equation (14) and the fluxes over
these cut edges are then integrated into Bcut. Note that the fluxes at these locations must be computed
from both the local and neighboring elements in order to compute the Riemann flux at each of the cut cell
quadrature points.
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Figure 6: Diagram showing the computation of the volume and boundary integrals using the traditional
DGFEM on a triangle

(a) (b)

Figure 7: Diagram showing (a) the cut region seeded with quadrature points and (b) the cut edges seeded
with quadrature points colored by whether the fluxes through that edge are removed (red) or added (blue)

Finally, additional fluxes coming into the element through the cut boundary must be accounted for.
These fluxes correspond to the fluxes from the neighboring mesh. These fluxes enter the element through
the new edge formed along line segment IV-V. Because these fluxes are being added to the system rather
than being subtracted (as was done for edges III-IV and V-III), the sign and outward facing normal must
be flipped as shown in Equation (15). For clarity, the normals, n, for edge V-III and III-IV are pointing
outwards and the normal for edge IV-V are pointing inwards as shown in Figure 7b.

Bcut =

∫
V−III

NaNbq̂bndΓ +

∫
III−IV

NaNbq̂bndΓ

−
∫
IV−V

NaNbq̂bndΓ

(15)

The interior states (labeled qL in Figure 7b) along the cut element edges are straightforward to compute
since they are just interpolated using the current triangle’s shape functions and weights. The exterior states
(labeled qR) along edges V-III and III-IV are interpolated from neighboring elements on the current mesh and
are easily found. On the other hand, the qR values along the cut boundary correspond to states associated
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Figure 8: The mapping between the unstructured physical triangle and the reference element

with an element on the neighboring mesh. In order to find these exterior states, the physical coordinates of
these quadrature points on each mesh are passed to the neighboring mesh. The meshes will then locate and
interpolate the q values at these points before returning them to the original mesh.

Once these steps are done, it is possible to compute all of the cut element terms in Equation (12) and the
cutting process can be completed for the element. This process is then repeated for every element intersected
by the cut boundary on both of the grids.

As was the case in 1D, cutting the mass matrix may lead to numerical instabilities due to the mass
matrix becoming ill conditioned. This is demonstrated in Figure 9. As the order of accuracy increases and
as greater portions of the element are cut, the condition number of the mass matrix increases dramatically.
This effect can be mitigated through finding cut boundaries which minimize the proportion of each fringe
element being cut, however this is a nontrivial problem. Methods for finding these cut boundaries will be
explored in greater detail in future works.

Figure 9: Condition number of the final mass matrix (M−Mcut) as a function of the percent of the element
removed for 2D triangles
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3 Applications

3.1 1D Linear Advection
The first problem of interest is the 1D advection equation, shown in its continuous strong form in Equation
16.

u,t + cu,x = 0 (16)

u is the quantity of interest, c is the constant convection speed, and the other quantities are unchanged
from their previous definition. The chosen initial condition is a Gaussian hill as shown in Equation (17) and
Figure 10.

u(x, 0) = 0.1exp(−20x2) (17)

Two overlapping grids are used for this case with the finer grid spanning [-0.50703125, 0.24296875] and
chosen to be finer by a factor of 2. Periodic boundary conditions are imposed at the boundaries of the
background mesh so as the hill advects in time, it will eventually return to its initial position at x=0. Due to
the lack of dissipation in the governing equation, the exact solution is identical to the initial condition after
the hill flows through the domain once. However due to numerical dissipation and discretization errors, the
computed solution will have quantifiable differences. The L2 error and conservation errors can thereby be
computed following Equations (18) and (19).

errorL2 = ||u(x, T )− u(x, 0)||2 (18)

errorcons =

∣∣∣∣∣
nelem∑
i=1

∫
Ωei

q(x, T )dΩei −
nelem∑
i=1

∫
Ωei

q(x, 0)dΩei

∣∣∣∣∣ (19)

where T is the final time after a single flow-through, || · ||2 indicates the L2 norm, and | · | is the absolute
value. Note that the integrals in these equations are computed only over the regions where the equations
are being solved. In other words, for the baseline overset method, the overlap region will be integrated over
twice and only once for the conservative method. This is consistent with how the governing equations were
solved.

A convergence study is computed for this case at various orders of accuracy ranging from p = 1 to 4 using
both the baseline and conservative overset methods. For both sets of cases, the timestep size was chosen
such that the CFL = 0.05 based on the finest grid size to minimize temporal errors. For these cases, the
entire overlap region was subtracted from the coarser fringe cell while the finer fringe cell was unmodified.

Both the L2 and conservation error are shown in Figure 11. For the L2 error, all of the cases followed the
expected convergence rate. As expected, increasing the order of accuracy noticeably reduces the L2 error.
Overall the conservative overset shows slightly better convergence than the baseline overset cases across the
board. In terms of the conservation error, there is a clear difference between the performance of the two
overset methods. The baseline overset method shows noticeable conservation error in the range of O(10−3)
to O(10−11). On the other hand, the conservative overset method generally shows errors about 6 orders of
magnitude lower than the baseline overset and the errors approach machine zero for finer grids for all orders.

As mentioned before, there are multiple valid approaches to dividing up the overlap region between the
two grids. One could remove the full overlap region from just one of the fringe elements or remove a portion
from each fringe element. The effect of this is studied for the case of p=1 and the results are shown in Tables
1 and 2. Overall the L2 and conservation errors remain relatively constant regardless of how much of the
overlap was removed from each element. When the order of accuracy was increased to p > 1, a number of
cases were unstable when the entire overlap region was removed from the finer fringe element. This is due
to the ill conditioned mass matrix issues discussed in Section 2.3 and shown in Figure 4. Therefore, while it
does not effect the solution significantly, it is best practice to remove as little of the overlap from the finer
fringe element as possible for the sake of maintaining numerical stability.
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Figure 10: The initial condition for the 1D linear advection case. The colors indicate the regions correspond-
ing to the two grids with blue being the coarse grid and red being the fine grid.

Figure 11: Convergence plots showing the L2 and conservation error for the baseline overset (dashed lines)
and conservative overset (solid lines) from p=1 to 4. ( ): p = 1, ( ): p = 2, ( ): p = 3, ( ): p =
4, ( ): ideal reference line
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Table 1: Effect of cut proportion on the L2 error for the p=1 linear advection cases using conservative overset

% Overlap
Cut from

M1

% Overlap
Cut from

M2

dx1 = 0.25,
dx2 = 0.125

dx1 = 0.125,
dx2 = 0.0625

dx1 = 0.0625,
dx2 = 0.03125

dx1 = 0.03125,
dx2 = 1.5625e-2

100 0 1.4330e-02 4.6395e-03 8.7225e-04 1.2487e-04
50 50 1.4483e-02 4.7308e-03 8.8611e-04 1.2613e-04
0 100 1.5377e-02 4.9453e-03 9.1376e-04 1.2823e-04

Table 2: Effect of cut proportion on the conservation error for the p=1 linear advection cases using conser-
vative overset

% Overlap
Cut from

M1

% Overlap
Cut from

M2

dx1 = 0.25,
dx2 = 0.125

dx1 = 0.125,
dx2 = 0.0625

dx1 = 0.0625,
dx2 = 0.03125

dx1 = 0.03125,
dx2 = 1.5625e-2

100 0 3.4694e-17 3.4694e-17 0.0000e+00 1.3878e-17
50 50 6.9389e-18 2.0817e-17 6.9389e-18 6.9389e-18
0 100 4.1633e-17 2.7756e-17 6.9389e-18 7.6328e-17

3.2 1D Inviscid Burger’s Equation
In order to understand the conservative overset method’s ability to handle nonlinear problems involving
shocks, the inviscid Burger’s equation (Eq. (20)) is modeled.

u,t +
1

2
(u2),x = 0 (20)

The same problem of the advecting hill (see Figure 10 and Equation (17)) was studied. For Burger’s
equation, no exact solution is known so instead only the conservation error of the solution at t = 2 is shown.
Once again, the timestep size is chosen such that it corresponds to a constant CFL = 0.05 based on the
finest grid spacing.

As the hill advects forward, the regions of higher u advect more quickly than the rest of the domain due
to the nonlinear nature of the problem. This causes a shock to form which then will pass through the overset
boundary. In order to smoothly capture this shock and maintain numerical stability, the generalized ΠN

slope limiter with the modified minmod function [12, 13, 14] is implemented for this problem.
The flowfield is presented for various mesh refinement and orders of accuracy in Figure 12. On the coarsest

grids (shown in the top row), there are some observable differences between the baseline and conservative
overset solutions at the fringe elements however overall the differences remain small. Oscillations are observed
to appear before and after the shock location at x ≈ 0.4, especially on coarser meshes. The amplitude of
these oscillations decreases as the mesh is either refined or the order of accuracy is increased. On the finest
grid using linear elements, the oscillations have been greatly diminished.

Comparisons of the conservation error for the cases shown in Figure 12 are shown in Tables 3 to 5. The
conservation error of the single mesh case is added for reference. Since there is no oversetting in the single
mesh case, the conservation error remains low. As was observed in the linear advection case, the baseline
overset method introduces noticeable error due to the doubly counted overlap region and the differences in
fluxes exchanged between meshes, whereas the conservative overset method is similar to the single mesh
case. Interestingly, the errors do not decrease as the order of accuracy is increased for either overset method.
Furthermore, the errors do not decrease dramatically as the mesh is refined. The reason for this appears to
be the slope limiter forcing the solution down to linear orders of accuracy near the shock. The error caused
by the slope limiter in this p=1 region is enough to mask the improvements caused by using higher order
bases.
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Figure 12: Comparison of the solution from the baseline overset (O) and the conservative overset (∆) methods
for various mesh resolution and orders of accuracy at t = 2 for the inviscid Burger’s equation. The blue
curves indicate the coarse mesh solution while the red indicates the finer mesh solution.
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Table 3: Conservation error for the inviscid Burger’s equation cases with dx = [0.25,0.125]

p = 1 p = 2 p = 3 p = 4
Single Mesh 3.4694e-17 2.7756e-17 5.5511e-17 2.0817e-17

Baseline Overset 1.6698e-03 2.6566e-03 2.6114e-03 2.6113e-03
Conservative Overset 4.1633e-17 1.4085e-12 1.1091e-11 1.7699e-11

Table 4: Conservation error for the inviscid Burger’s equation cases with dx = [0.0625, 0.03125]

p = 1 p = 2 p = 3 p = 4
Single Mesh 2.0817e-17 1.3270e-11 1.6389e-11 9.1699e-11

Baseline Overset 1.1935e-03 1.1583e-03 1.1576e-03 1.1577e-03
Conservative Overset 1.3184e-16 1.3034e-11 1.6043e-11 1.3837e-10

Table 5: Conservation error for the inviscid Burger’s equation cases with dx = [0.015625, 0.0078125]

p = 1 p = 2 p = 3 p = 4
Single Mesh 6.8001e-16 1.3861e-11 2.0708e-11 9.0906e-10

Baseline Overset 4.8087e-05 4.9849e-05 4.9865e-05 4.9864e-05
Conservative Overset 1.5266e-16 1.3743e-11 2.0316e-11 9.1472e-10
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3.3 2D Euler
The 2D Euler equations are shown below.

ρ,t + (ρu),x + (ρv),y = 0

(ρu),t + (ρuu+ p),x + (ρuv),y = 0

(ρv),t + (ρuv),x + (ρvv + p),y = 0

E,t + (u(E + p)),x + (v(E + p)),y = 0

(21)

where ρ is the fluid density, u is the x-velocity, v is the y-velocity, p is the pressure, E is the total energy,
and t is time.

The problem of interest is an isentropic vortex advecting through two square overset grids, as shown
in Figure 13. The two grids are composed of triangular elements and are oriented such that they overlap
each other on only one end of the mesh. This configuration was chosen to allow the cut boundary to be a
straight vertical line through the overlap region. As mentioned before in Section 2.4, when the conservative
overset method is extended to two dimensions, finding the cut boundary between multiple grids is nontrivial.
This configuration was also motivated by numerical stability. As with the 1D linear advection and Burger’s
equation simulations, issues with the ill-conditioned mass matrices of cut elements were encountered. Using
the configuration shown in Figure 13 allowed for control of the overlap size and thus the amount by which
each element was cut.

Figure 13: Initial condition and example grid configuration for the 2D Euler advecting vortex

The initial condition of the isentropic vortex is shown in Equations (22) and (23). As the vortex advects
through the two domains, it should remain coherent and not experience any dissipation due to the nature
of the Euler equations.

ρ(x, y) =
P (x, y)

T (x, y)

u(x, y) = u∞ − Γ(y − y0)
2exp(0.5(1− r2))

v(x, y) = v∞ + Γ(x− x0)
2exp(0.5(1− r2))

E(x, y) =
P (x, y)

γ − 1
+

1

2
ρ(x, y)

(
u2(x, y) + v2(x, y)

)
(22)

given that
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Γ =
1

2π

T (x, y) =
P∞

ρ∞
− Γ2

2

(
γ − 1

γ

)
exp(1− r2)

P (x, y) =

(
ργ∞
P∞

T (x, y)γ
) 1

γ−1

(23)

where (x0, y0) is the coordinate of the vortex starting location, γ is the specific heat ratio, and the sub-
script (·)∞ denotes freestream values. For the cases shown here, the following freestream values are used:
{ρ∞, u∞, v∞, P∞} = {1.0, 0.2, 0.0, 0.714286}.

Characteristic boundary conditions are used on all of the outer boundaries of both grids. Time integration
is performed using a 3 stage Runge-kutta method with a non-dimensional ∆t = 0.01. The simulation is
performed for 4000 time steps and the vortex convects 8 units in this time from its staring location at (5,5)
on the first mesh to its final location at (13,5) on the second grid.

Images of the advecting vortex are shown at several instances in Figure 14 to demonstrate the qualitative
ability of the 2D conservative overset to retain the coherency of the vortex as it passes through the cut
overset interface. Error convergence studies are conducted using structured triangular grids that provide
ease of refinement. The exact solution to the isentropic vortex at any given time is given by Equations
(22) and (23) using a value of x0 given by x0(t) = x0(t) + u∞t. L2 error is computed as the norm of
difference between all the computed fields ([ρ, ρu, ρv, E]) and the corresponding exact solution. Since the
outer boundary conditions are non-periodic, conservation errors have to be computed accounting for the
fluxes at all of the outer boundaries. For example, at any time t, the mass conservation error can be
computed as:

errorcons(t) =

∣∣∣∣∣
nelem∑
i=1

∫
Ωe

(ρ(x, y, 0)− ρ(x, y, t)) dΩe −
∫ t

0

(nof∑
i=1

∫
Γi
e

F̂ (x, y, τ)i · ndΓi
e

)
dτ

∣∣∣∣∣ (24)

where Γi
e represent just the faces which lie on the outer boundary of the domain, nof is the number of outer

faces, and F̂ (τ) is the mass flux on an outer boundary faces at time τ . For the cut elements and cut faces,
the integrals in the above equation have to be modified by subtracting the appropriate volume and boundary
portions exactly in the same way as the volume and boundary discretization terms were constructed for cut
elements.

The error convergence and corresponding time history of the L2 error for all primary field variables is
shown in Figures 15 and 16, respectively. In both plots, comparisons are made between results for a dual-
mesh conservative overset simulation and a single mesh simulation with identical domain size and element
size are presented. Overall the conservative overset simulations show slightly higher L2 error compared to
the single mesh simulation though it remains at the same order of magnitude. As expected, increasing order
of accuracy reduces the error considerably and both methods show the expected error convergence rates as a
function of ∆x, i.e. O(∆x2) and O(∆x3) for p=1 and p=2 respectively. A time history of the conservation
errors for the 4000 time steps simulated is shown in Figure 17 for both p=1 and p=2. The conservation
error shows encouraging trends and remains low for both the single mesh and conservative overset cases.

4 Conclusion and Future Work
The focus of this work was to develop an overset methodology which preserved the conservation of the
primary variables as fluid crossed the intermesh boundary. It was found that traditional methods incurred
conservation error because of 1) the double computation of the overlap region by both grids and 2) the
mismatch between the the fluxes entering and exiting each grid. To combat this, the formulation for the
fringe elements was modified such that the overlap region was cleanly divided between each of the grids.
This is conceptually similar to solving the equations on a single fully connected mesh, although no remeshing
was required. Methods for implementing this cutting approach were discussed for both 1D and 2D grids.

The conservative overset method was first demonstrated on 1D linear advection and showed that it led to
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(a) t = 12.4 sec

(b) t = 24.8 sec

(c) t = 37.2 sec

Figure 14: Snapshots of the isentropic vortex advecting through the 2D domain using the conservative overset
method.
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Figure 15: Convergence of the L2 error for the 2D Euler advecting vortex. ( ): conservative overset p
= 1, ( ): single mesh p = 1, ( ): conservative overset p = 2, ( ): single mesh p = 2, ( ): ideal
reference line

(a) p = 1 (b) p = 2

Figure 16: Time series of the L2 error for the 2D Euler advecting vortex flow at (a) p = 1 and (b) p = 2.
( ): conservative overset, ( ): single mesh
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(a) p = 1 (b) p = 2

Figure 17: Time series of the conservation error for the 2D Euler advecting vortex at (a) p = 1 and (b) p =
2

a slight improvement in the convergence rate over the baseline overset. Its largest benefit was a significant
reduction in the conservation error. Compared to the baseline overset method, the conservative method led to
a 5-6 orders of magnitude reduction in conservation error. For finer grids, the conservation error was reaching
machine zero. Similar results were shown when extending this method to nonlinear problems involving
shockwaves for the inviscid Burger’s equation. The conservative overset method demonstrated conservation
errors at the same level as the single mesh case while the baseline overset case showed significantly higher
errors. The conservative method was also extended to a 2D advecting vortex using the Euler equations and
it was shown once again that the L2 and conservation errors were on par with that of the single mesh case.

Overall this method was found to be effective however its primary drawbacks are its numerical stability
and the ability to find appropriate cut boundaries for 2D and 3D grids. These two aspects are related as
the numerical stability of the method depends on the proportion of the element being cut. Severely cutting
fringe elements creates ill-conditioned mass matrices which in turn often lead to divergent solutions. This
effect can be minimized through careful choice of a cut boundary which minimizes the amount of each
element being cut, though this may be difficult to do in general. Numerical tools may also be implemented
to improve stability. For instance, in this work L2 regularization was used during the mass matrix inversion.
This technique was found to be effective at increasing stability though was not sufficient for all cases. In the
future, methods for finding optimal cut boundaries as well as alternative numerical methods for improving
stability will be explored.

This work is still in its early stages and there remains much research to be done on the topic. Of
particular interest are improving the stability of the method, developing of efficient cutting algorithms for
2D cases, developing methods for cutting larger numbers of meshes, introducing viscous fluxes, and ultimately
implementing the conservative overset method for 3D unstructured moving grids.
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