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Abstract: A new method for geometry-sensitive, CFD solver-independent mesh 

adaptation that respects a priori specified boundary layer mesh refinement is 

presented. The method seeks to control numerical error in the discrete solution by 

minimizing interpolation error based on the CFD solver discretization. An adaptation 

sensor, including control over mesh size increases with each adaptation cycle, is used 

to define a target size field for an updated discrete mesh conforming to the underlying 

CAD geometry.  
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1 Introduction 

Mesh generation and, in particular, fit-for-purpose mesh generation is repeatedly stated as a bottleneck 

in the CFD simulation workflow. The NASA CFD Vision 2030 Study [1] outlines a basic set of 

capabilities for CFD by the year 2030 including management of numerical errors and uncertainties 

along with a high degree of automation for the overall analysis process. 

2 Problem Statement 

Unstructured meshing can automate much of the mesh generation process; however, controlling 

numerical errors due to the discrete mesh requires adaptation to the developing solution. A mesh 

adaptation procedure has been developed which utilizes a pre-defined mesh topology with re-meshing 

to an updated continuous size field. Adherence to the underlying geometry is maintained and mesh 

quality is ensured. 

From a cubic fit of solution values, an estimate of interpolation error, ε, and thus the truncation error 

for the CFD solver discretization can be defined [2]:   
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We define a scalar adaptation sensor proportional to the tensor truncation error estimate, ε, as the 

product of the local edge length raised to an exponent, 𝑝, and the difference of the derivatives parallel 

to the edge vector, h. The exponent, 𝑝, provides short edge protection at solution discontinuities (e.g. 

shocks). Another important property of 𝑝 > 1 is to ensure that multiple scales are resolved in the 

solution. 
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Knowing the current edge length and S value, the value for the updated edge length, ℎ𝑇𝑎𝑟𝑔𝑒𝑡, can be

directly computed to meet a threshold sensor value, 𝑆𝑇ℎ𝑟𝑒𝑠ℎ, as:

ℎ𝑇𝑎𝑟𝑔𝑒𝑡 = |ℎ⃑ |  √
𝑆𝑇ℎ𝑟𝑒𝑠ℎ

𝑆

𝑝
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Locations in the current mesh exceeding 𝑆𝑇ℎ𝑟𝑒𝑠ℎ are exported as a sparse, unstructured point cloud

which is used by the Pointwise meshing application as input to the continuous size field. 

2.1 Controlling Mesh Growth 

The selection of the sensor threshold, 𝑆𝑇ℎ𝑟𝑒𝑠ℎ, allows control of the adapted mesh size by utilizing the

concept of continuous mesh complexity introduced by Loseille and Alauzet [3]. The ratio of target to 

current mesh complexity can be computed discretely on the current mesh as: 
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To achieve a user-specified relative mesh complexity ratio, for example 1.3, we iteratively solve for the 

appropriate sensor threshold value. 

2.1 Selection of Sensor Variable 

The adaptation sensor derived above is valid for any solution variable. Selection of the appropriate 

solution variable is problem dependent and must include consideration of solution objective. For 

advection dominated flows, good results have been achieved using velocity, vorticity magnitude, and 

turbulent kinetic energy. External aero calculations work well when selecting Mach Number as the 

solution variable. The method does allow use of multiple solution variables through superposition. 

2.1 Generation of a Conformal Mesh 

The Pointwise application uses the original mesh topology combined with the adaptation point cloud to 

produce a new mesh conformal to the updated size field. In this context, mesh topology means the 

curve, surface, and volume topology, not cell connectivity. By generating a new mesh from the original 

mesh topology, as opposed to in situ mesh modification, geometry associativity of the surface mesh is 

maintained, high-quality orthogonal boundary layers are produced, and overall mesh quality, with 

respect to size gradation and element shape, remains high. 

2.1 Convergence of the Solution-Adapt Cycle 

The method is flexible enough to declare convergence in several ways. One qualitative approach is to 

track the estimated solution truncation error on the current mesh and to declare convergence when the 

error relative to the solution variable magnitude falls below a user defined threshold. Another possibility 

is to track the fraction of the mesh where the local sensor exceeds the sensor threshold. When 

interpolation error becomes equally distributed, a large portion of the mesh (> 90%) will be targeted 

for refinement. In this scenario, the mesh is undergoing uniform refinement making this condition a 

reasonable convergence criteria which is independent of scale. Finally, a limit can be placed on the 

computational resources, e.g. degree of freedom count, of the simulation. 
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3 Results 
 

The adaptation approach was applied to an impinging jet model, and the results were compared with 

experimental data and sequences of manually generated structured hex mesh. To demonstrate 

applicability in a production environment, turbomachinery, automotive, and aeronautical cases are also 

shown. 
 

3.1 Validation 
 

To validate the mesh adaptation approach, a model of an impinging cold jet on a heated plate was 

simulated using the ANSYS CFX solver. The geometry and flow conditions have been set to match 

experiments by Cooper et al. [4] and Baughn et al. [5]. The figure below (Figure 1) shows the 2-D 

axisymmetric model. 

 

The internal pipe diameter D is 26 mm with a pipe wall thickness of 2.912 mm. An inlet velocity profile 

of air modeled as an ideal gas at 20 °C is specified from a fully developed turbulent pipe flow, such 

that the Reynolds number based on the pipe diameter was 23,000. The lower plate was heated by 

specifying a constant temperature of 35 °C. Entrainment conditions (constant total pressure and normal 

direction for local inflow and static pressure for outflow) were used to permit flow to be entrained at 

the upper boundary as well as exit smoothly at the right boundary. Because of the low global Reynolds 

number, the SST transitional intermittency model [6] was used to model the turbulence. The high-

resolution advection model was used for all equations, which is a bounded essentially second order 

numerical scheme. Convergence was declared when the normalized maximum residuals were below 

1 × 10−4, which is close to the single precision round-off level. 

 Baseline solutions where obtained on a manually created sequence of three hexahedral structured 

meshes following best practices for such a geometry, where the meshes ranged from 25k to 400k points. 

The mesh adaptation procedure was then applied to an initial unstructured mesh consisting of 15k points 

(Figure 2). Turbulent kinetic energy was chosen as the adaptation sensor variable. Mid-way and final 

adapted meshes are shown in Figure 3 for a value of 𝑝 = 3.5 and 𝐶𝑟 = 1.3. On the first adaptation 

cycle, 26.5% of nodes where marked for adaptation. After the 9th adaptation cycle, 94% of the mesh 

nodes were marked for adaptation hence the cycle was terminated. The mesh from cycle 9 consisted of 

330,000 nodes. 

Figure 1: Computational model of jet impingement on flat plate. 
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Figure 4 details the mesh size growth with respect to the adaptation cycle. Mesh size grows in a 

controlled fashion. This is due to the mesh complexity calculation which allows the mesh to grow “in 

sync” with near physical features found in the updated solution. 

  

Figure 2: Coarse level hexahedral mesh (left) and initial unstructured hex-dominant mesh (right). 

Figure 3: Adapted mesh at Cycle 5 (left) and Cycle 9 (right). 
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The adapted mesh results compare well with the experimental heat transfer coefficient and with the 

finest structured hex mesh (Figure 5). Looking closer to the impingement location (Figure 6), it can be 

noted that the adaptation sequence converges nicely to the experimental data and is as good as, or even 

better than, the results for the finest structured mesh. 

 

 

Figure 5: Comparison of heat transfer coefficient for the finest hex mesh and the adapted 

mesh cycles. 

Figure 4: Comparison of mesh point count between the structured hex meshes and the 

adapted unstructured meshes. 

 



 

 6 

 

 

A comparison of calculation wall-clock time for the hex mesh sequence from initial conditions against 

the adaptation sequence using solution restart is shown in Figure 7. The adaptation method, despite 

having more computational stages, is competitive with fixed grid run times. 

 

Figure 7: Calculation wall clock times for per-cycle and cumulative adaptation sequence. 

Horizontal lines represent solution time for final adapted and finest hex meshes from 

initial conditions. 

Figure 6: Enlarged view of heat transfer coefficient near the impingement location. 
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3.2 Industrial Applications 

3.2.1 RWTH Aachen Turbine 

 

A RANS solution of the RWTH Aachen axial turbine [7] rotor was computed using the ANSYS CFX 

flow solver. Velocity magnitude was chosen as the adaptation sensor variable. The rotational speed of 

the turbine rotor is 3500 rev/min, and the relative rotor inlet and exit angles are equal to 49.3° and 

151.2°, measured with respect to the circumferential direction. For the demonstration, an operating 

point was chosen with constant inlet total pressure of 169,000 Pa, inlet total temperature of 308 K, and 

an outlet static pressure of 135,000 Pa. The initial unstructured hex-dominant mesh consisted of 355k 

points and 610k cells. After 10 cycles, the mesh consisted of 7.8M points. Extrapolation to mesh 

independent estimates of turbine power and efficiency show only a 0.03% and 0.02% difference from 

the Cycle 10 results. 

The adaptation method is able to resolve relatively weak secondary flow features such as the passage 

vortices (Figure 8) and hub horseshoe vortex (Figure 9). This behavior is due to the exponent 𝑝 used in 

the sensor derivation. A value of 𝑝 > 1 causes adaptation to target relatively large and small solution 

errors.  

Computational time continues to be competitive with best practice hand-made fixed grid solutions. 

Figure 10 plots solution wall clock time for each solution cycle and cumulative time for all cycles 

against “cold start” solutions on the cycle meshes. The total time to reach the converged adapted 

solution is on par with cold start on the final mesh. 

 

 

  

Figure 8: View from downstream of hub and tip passage vortices (left) and adapted mesh (right). 
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Figure 9: Hub wall shear stress (left) and adapted mesh (right). 

Figure 10: Solution wall-clock time for each solution and cumulative time to final 

solution compared with single-runs from initial conditions. 
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3.2.2 Technical University of Munich DrivAer Automobile 

 

An automotive example consists of a RANS solution of the DrivAer Fastback model using the ANSYS 

CFX flow solver with SST two-equation turbulence model. Velocity magnitude was chosen as the 

adaptation sensor variable. Six mesh adaptation cycles were performed starting with an initial hex-

dominant mesh consisting of 1.6M points. The Cycle 6 mesh contained 24.4M points. Figures 11-12 

illustrate adaptation of solution features at the rear of the car. Figure 13 shows mesh size and drag force 

convergence as a function of adaptation cycle. 

 

  

 

 

  

Figure 11: Flow over the car and resolved wake, streamlines (left) and adapted mesh (right). 

Figure 12: Vortex at the rear of the car, streamlines (left) and adapted mesh (right). 
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Figure 13: Mesh size and total drag force as a function of mesh adaptation cycle. 
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3.2.3 DLR F6 

 

An external aero example is given by the SU2 [8] Euler solution of the DLR F6 wing-pylon-nacelle 

configuration from the 2nd AIAA Drag Prediction Workshop [9]. The flow conditions are 𝑀 = 0.75 at 

a one degree angle of attack. The adaptation process begins with a hybrid unstructured mesh consisting 

of 617k points and was run for 13 cycles to produce a final mesh of 3M points. Mach Number was 

chosen as the adaptation sensor variable. As can be seen in Figure 14-15, wing surface pressure induced 

by the shock structure is significantly more resolved in the final mesh as compared to the initial mesh. 

Also apparent in the figure is that geometry associativity is maintained in the surface mesh as evidenced 

by the better resolved fuselage shape in the final mesh. 

Figure 14: Surface pressure on the initial (top) and final (bottom) mesh cycles. 



 

 11 

 

 

4 Unsteady Flows 
 

Initial work has been done applying the mesh adaptation procedure to unsteady RANS solutions. The 

approach is best suited to periodic flows that feature bluff body wake shedding and cyclic inflow 

conditions. The described approach is modified to compute the adaptation sensor at each time step 

(Figure 16) over the period. The maximal sensor value is then retained at each location, and the maximal 

sensor field is then used to compute new target edge lengths for the adapted mesh. The new conformal 

mesh is then a fixed-grid improvement for the entire flow period. Repeated application of the procedure 

in cycles results in a final converged mesh suitable for the full unsteady period (Figure 17). As can be 

seen in Figure 18, small scale features in the unsteady flow are discovered and resolved. The approach 

demonstrated here also has application in turbomachinery blade row analysis. 

-1

-0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-CP

x / C

Pressure Distribution Inboard of Pylon

Cycle 1 Cycle 3 Cycle 5 Cycle7 Cycle 9 Cycle 11

Figure 15: Pressure Coefficient at 𝑁 = 0.331 station inboard of pylon. The shocks are refined as the 

cycles progress. 
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Figure 17: Mesh refinement of the entire unsteady wake region behind a cylinder. 

Figure 16: Unsteady vortex shedding behind a cylinder at the beginning (top) and mid-way 

(bottom) through the period. 



 

 13 

 

5 Conclusion and Future Work 
 

A mesh adaptation procedure which maintains geometry associativity and anisotropic quasi-structured 

boundary layer mesh behavior has been developed and demonstrated on industrial cases. The method 

uses an estimate of truncation error of the discretization scheme to automatically control numerical 

error caused by the discrete mesh. The procedure was shown to be practical and computationally 

efficient on engineering problems while requiring minimal user intervention. Future work will include 

anisotropic adaptation in boundary layer and wake regions. 
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